
ON THE NILRADICAL OF A PARABOLIC SUBGROUP

KARIN BAUR

Abstract. We present various approaches to the understanding of the struc-
ture of the nilradical of parabolic subgroups in type A. In particular, we
consider the complement of the open dense orbit and describe its irreducible
components.

1. Introduction

This report is an extended version of a talk at the conference “Lie Theory and
Its Applications” held at UCSD in March 2011.

Nolan Wallach had ignited interest in parabolic subalgebras (cf. Section 1.4).
During the time I was a post-doc at UCSD and also during later visits, I have
enjoyed numerous lectures by and discussions with Nolan Wallach. I am very
grateful for these. This report allows me to display joint work with N. Wallach and
to give a view on related recent progress. I will present several approaches towards
the understanding of the nilradical of a parabolic subgroup of a reductive algebra
group.

1.1. Classical situation. Let g =End(Cn) be the Lie algebra of endomorphisms
of Cn. The nilpotent endomorphisms among them are well known. Up to conjugacy
by G =GLn(C), they are given by partitions, i.e. by the Jordan canonical form. In
particular, these orbits are well understood. There are finitely many and we have
an order on them, namely by inclusion of orbit closures.

If we put this in a more formal language, we are in the following situation: Let
G be a classical algebraic group over C and let g be its Lie algebra1. G acts on the
cone N ⊂ g of nilpotent elements by conjugation. This action breaks N up into
finitely many orbits. The nilpotent orbits are parametrized by certain partitions.
The exact description can be found in [9]. More generally, Jacobson-Morozov theory
tells us that every nilpotent element e of g can be embedded in an sl2-triple (e, f, h).
The action of the semi-simple element h of this triple gives rise to a labeled Dynkin
diagram associated to the nilpotent orbit, with labels from {0, 1, 2}. This is the
so-called Dynkin-Kostant classification of nilpotent orbits, cf. [9].

Since N is irreducible, there exists an open dense orbit, called the regular nilpo-
tent orbit. We can give a representative of this orbits in a very nice way: If we
take a generator Xα for each simple root space (with respect to a given Cartan
subalgebra of g), we obtain a regular nilpotent element,

X =
∑

α simple

Xα

The labeled Dynkin diagram of this orbit has a 2 at every node.

1Often it would be enough to assume that G is defined over an algebraically closed field.
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Example. Let G be SLn+1(C). We choose the diagonal matrices in its Lie algebra
as the Cartan subalgebra. The root spaces are then spanned by the elementary
matrices Ei,j , i 6= j, where the only non-zero entry is a 1 at position (i, j). With
this choice, the above representative takes the form

X =
n
∑

i=1

Ei,i+1 =















0 1 0
0 1

. . .
. . .

0 1
0















1.2. Flags in n-space. We now consider nilpotent endomorphisms of Cn which
preserve flags of vector spaces. For this and the following section let G =GLn(C)
and let F be a partial flag in Cn:

F : 0 = V0 ( V1 ( · · · ( Vr−1 ( Vr = Cn

for some r ≥ 1. Then we define G ⊃ P to be the parabolic subgroup which is the
stabilizer of the flag F ,

P := {g ∈ G | gVi = Vi ∀ i}

We will sometimes write P = P (F) for the parabolic subgroup corresponding to
F . We will write p to denote the Lie algebra of P .

What can we say about the nilpotent endomorphisms of Cn, which preserve the
flag F? In order words, how can wie describe the X ∈ N with

XVi ⊂ Vi−1 ∀ i

Example. Consider

F : V0 = 0 ⊂ V1 ⊂ V2 ⊂ V3 = C4.

with V1 := 〈e1〉 and V2 := 〈e1, e2〉. Then p consists of the 4×4 matrices of the form








• ∗ ∗ ∗
0 • ∗ ∗
0 0 • •
0 0 • •









(with arbitrary entries at the positions of the •’s and ∗’s). If X is a nilpotent
element satisfying XVi ⊂ Vi−1 for all i, X has to have the form









0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 0
0 0 0 0









1.3. The Richardson orbit. The above example is an instance of the following
situation. Let G ⊃ P be a parabolic subgroup, P = L · U with L reductive (called
Levi factor) and U the unipotent radical of P . The Lie algebra n of U is called the
nilradical of P . It is convenient to assume that P contains the Borel subgroup of
the upper triangular matrices and that L contains the diagonal matrices. Such P
and its Lie algebra p are called standard. The direct sum decomposition p = l⊕ n

is called Levi decomposition of p. In the example above, the nilradical n consists of
the matrices with non-zero entries only at the positions of the ∗’s, and X belongs
to n.
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The Levi part l of p consists of the matrices with non-zero entries only at the
•’s. It is a general feature that l consists of matrices with non-zero entries only in
square blocks on the diagonal. The sizes of these square blocks are the differences
dimVi − dim Vi−1. We will later denote them by d1, . . . , dr.

The parabolic subgroup P acts on its nilradical n by conjugation. It is known
that the nilradical can be written as the union of the intersections of n with the
nilpotent G-orbits in g, cf. [11] (Satz 4.2.8). Recall that the nilpotent G-orbits
are parametrized by partitions of n. If λ is a partition of n, we will write C(λ) to
denote the corresponding nilpotent G-orbit.

Since there are only finitely many nilpotent G-orbits in g, one of the intersections
of n with the nilpotent G-orbits, say C(λ) ∩ n, is open and dense in n. If µ is any
partition of n, we get

• C(µ) ∩ n ⊂ n \ (C(λ) ∩ n) with C(µ) ∩ n 6= 0 ⇐⇒ µ ≤ λ
• dim(C(µ) ∩ n) < dim n whenever µ 6= λ.

Note that we write µ ≤ λ if and only if the closure of the orbit C(µ) is contained
in C(λ). In particular, we see that C(λ) is the unique nilpotent G-orbit of g

intersecting n in an open dense set.
In fact, Richardson shows2 that C(λ) ∩ n is a single P -orbit, [15]. We call this

P -orbit the Richardson orbit of P and denote it by OR. Its elements are called the
Richardson elements (of p).

Even though n contains an open dense P -orbit, we cannot expect that n consists
of finitely many P -orbits. The Borel subgroup B of GL6 already has infinitely many
B-orbits in its nilradical.

Example. Let F : Vi := Ci, 0 ≤ i ≤ n, be the complete flag in Cn. The corre-
sponding parabolic subgroup is a Borel subgroup B ⊂ G. The nilradical consists
of the strictly upper triangular matrices. One can show that if n = 6, there is a
1-parameter family of B-orbits in n.

A consequence of the above example is that whenever a flag F consists of at least
6 non-zero vector spaces, there are infinitely many P (F)-orbits in the corresponding
nilradical. For classical G, the parabolic subgroups with finitely many P -orbits are
classified, cf. [12]. Roughly speaking, they are the ones with at most 5 blocks in
the Levi factor.

1.4. (Very) nice parabolic subalgebras. For the moment, let G be a reductive
algebraic group over C. Let B ⊂ G be a Borel subgroup, T a fixed maximal torus in
B and b the corresponding Borel subalgebra, h =Lie(T ) the corresponding Cartan
subalgebra. This determines a basis {α1, . . . , αn} of simple roots of g (with n the
rank of g).

We assume that p is a standard parabolic subalgebra, i.e. that it contains b. It
gives rise to a Z-grading of g as follows: The parabolic subalgebra p is determined by
the simple roots αi such that p does not contain the root subspace g−αi

, equivalently
by the simple roots whose root space does not lie in the Levi factor. Hence p gives
rise to a tuple (u1, . . . , un) ∈ {0, 1}n with ui = 1 whenever g−αi

is not in p. Then
we set H ∈ h to be the element defined by αi(H) = ui. The adjoint action of H on
g then defines the Z-grading:

gi := {x ∈ g | [H,x] = ix}

2His result holds in much greater generality for reductive algebraic groups.
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The grading g =
∑

i∈Z
gi is such that the parabolic subalgebra is the sum of the

non-negatively graded parts and that the nilradical the sum of the positively graded
part. (cf. eg Section 2 of [6]). In case g = End(Cn) we can read off the graded parts
from the block structure of the matrices. In particular, g0 = l is the Levi part, g1
consists of the sequence of the rectangular regions to the right of the squares on the
diagonal. Any element X ∈ g1 gives rise to a character χX on g−1. In case X ∈ g1
is a Richardson element, the character χX is admissible in the sense of Lynch,
[14]. Hence the existence of a Richardson element in g1 ensures the existence of
an admissible character. This is exactly Lynch’s vanishing condition of certain Lie
algebra cohomology spaces for a generalized Whittaker module (associated with
the parabolic subalgebra). If p has a Richardson element in g1 we say that the
parabolic subalgebra is nice. In joint work with N. Wallach, [6], we have classified
the nice parabolic subalgebras of simple Lie algebras over C.

It is known that for X in OR, the identity component G 0
X of the stabilizer

subgroup in G is contained in PX ⊂ GX , in particular, |GX/PX | is finite. The
numbers |GX/PX | can be found in the article [10] by Hesselink3. Assume that p

is nice. The condition GX = PX corresponds to the birationality of the moment
map from the dual of the cotangent bundle of G/P onto its image. Nice parabolic
subalgebras with GX = PX are called very nice. In [7] we continued our joint
work with N. Wallach and described the very nice parabolic subalgebras. The main
application of this is that under these conditions, one can prove a holomorphic
continuation of Jacquet integrals for a real form of g, cf. [17], [18].

1.5. P -orbit structure in n. What can we say about the P -orbit structure in the
nilradical n? This is a very difficult question. In general, it is a “wild” problem (in
the language of representations of algebras).

A first approach towards understanding the nilradical is the description of the
elements of the open dense orbit. One can give representatives for Richardson
elements explicitely, as has been done for classical and exceptional group, cf. [6],
[1], [2] and [4]. We now go back to G =GLn(C). Let F : 0 = V0 ⊂ V1 ⊂ · · · ⊂
Vr = Cn be a flag and let P ⊂ G be the corresponding parabolic subgroup. For
i = 1, . . . , r we set di := dimVi/Vi−1. The di are the block lengths of the Levi factor
in the nilradical of P . One can show that they determine p and n. The r-tuple
d = (d1, . . . , dr) forms a composition of n. Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λs ≥ 0) be the
dual of the partition obtained by ordering the di by size. Then λ is the partition
of the Richardson orbit.

We finish this section by illustrating how one can construct a representative of
the Richardson orbit.

Example. If we assume d1 ≥ d2 ≥ · · · ≥ dr we obtain a representative4 of the
Richardson orbit by choosing small identity blocks of the size di+1 × di+1 next to

3He attributes them to Spaltenstein, cf. [16]
4It is enough to assume that the sequence of the di is unimodal, i.e. that it is first increasing

and then decreasing.
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the ith block in the Levi factor: For d = (3, 2, 2) we get





















0 0 0 1
0 0 0 1
0 0 0

0 0 1
0 0 1

0 0
0 0





















Clearly, if F is the complete flag, i.e. if di = 1 for all i, then the resulting element
of the nilradical is the regular nilpotent with 1’s next to the diagonal.

1.6. Two approaches to n. As OR is open dense in n, the knowledge about the
Richardson orbit already gives a lot of information about the nilradical. However,
it is very difficult to get a grasp on the remaining P -orbits, in particular if there
are infinitely many of them.

So far, there exist two approaches towards the understanding of the structure of
the nilradical. One approach is to study the complement of the open dense orbit.
The other approach is an example of the process of categorification: We search for
a category of representations for an algebra with the hope of finding a bijection
between the P -orbits in n and a class of isomorphism classes of modules in this
category. Such a correspondence has been established for the general linear groups
in [8]. For the orthogonal groups, we have a good candidate for the corresponding
algebra, but it is not yet clear what is class of representations corresponding to the
P -orbits, [3].

In this article, we explain the first approach: Consider the complement of the
open dense orbit in the nilradical, i.e. the variety Z := n \ OR. We will describe
the irreducible components of Z. In particular, we will see that if the flag F is
composed of r non-zero vector spaces, then Z has at most r − 1 components.

2. Complement of the Richardson orbit

2.1. Notation. In what follows, we derive the description of the components of Z
using rank conditions on matrices. Let d = (d1, . . . , dr) be the sizes of the blocks in
the Levi factor of the parabolic subgroup. If A is a n× n-matrix, we divide A into
rectangular blocks whose sizes are given by the di. We let Aij be the di×dj-rectangle
formed by the intersection of the di rows (d1 + · · ·+ di−1 + 1), . . . , (d1 + · · · + di)
with the dj columns (d1 + · · · + dj−1 + 1), . . . , (d1 + · · · + dj): A11 is the region
formed by the intersection of the first d1 rows and the first d1 columns, etc. With
this notation, the nilradical n consists of the matrices A with Aij = 0 whenever
i ≥ j.

Let X = X(d) be a Richardson element and let λ be the partition of X . If A is
any element in n \ OR, the nilpotency class µ of A is strictly smaller than λ. We
can translate this as follows: X is characterized by the fact that the sequence rkX ,
rkX2, rkX3, . . . of the ranks of its powers decreases as slowly as possible. We will
use this observation to characterize the elements of the complement Z.
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i

di

di − 1

j

dj

dj − 1

(a) di = dj

i

di

di − 1

j

dj

dj − 1

(b) di 6= dj

Figure 1. Dashed lines and shaded areas are not allowed in Λ(d)

For A ∈ gln we write A[ij] for the square formed by the (j − i+1)2 blocks Alm,
i ≤ l ≤ j, i ≤ m ≤ j,

A[ij] :=

Aii . . . Aij

...
. . .

...
Aji . . . Ajj

With this, we are almost ready to state our result. We first need two more
definitions:

κ(i, j) := 1 + |{l | i < l < j, dl ≥ min(di, dj)}|

Zk
ij := {A ∈ n | rk(A[ij]k) < rk(X [ij]k)}

When k = κ(i, j), we write Zij instead of Z
κ(i,j)
ij .

2.2. Decomposition of Z. In this section, we explain how to get Z as a disjoint
union of irreducibe components. We claim that

Z =
⋃

(i,j)∈Λ(d)

Zij

is the decomposition of Z into irreducible components, cf. [5].
It is rather unpleasant to describe the parameter set Λ(d). We will first define a

larger set Γ(d) and then restrict to Λ(d). Let Γ(d) be

Γ(d) := {(i, j) | dl < min(di, dj) or dl > max(di, dj) ∀ i < l < j}

Inside Γ(d) we define Λ(d). In case di 6= dj , we put further constraints on the first
i− 1 entries d1, . . . , di−1 of d and on dj+1, . . . , dr of d:

Λ(d) := {(i, j) ∈ Γ(i, j) | di = dj}

∪ {(i, j) ∈ Γ(i, j) | di 6= dj and

• ∀ k ≤ r : dk ≤ min(di, dj) or dk ≥ max(di, dj)
• for k < i : dk 6= dj
• for k > j : dk 6= di







Figure 1 illustrates this: the vertical lines indicate the entries di and dj of d, the
• stand for di resp. dj , the ◦ for di − 1, di − 2, etc. and dj − 1, dj − 2, etc. Assume
that (i, j) belongs to Λ(d). Figure (a): if di = dj , the conditions on the elements
of Λ(d) tell us that there is no l between i and j such that dl equals di = dj . That
means that the dashed line is ruled out for the dl (with i < l < j). Figure (b): if
di 6= dj , the shaded area shows that among the i < l < j, no dl is allowed with
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min(di, dj) < dl < max(di, dj). The two dashed lines to the left resp. to the right
correspond to the two last conditions on elements of Λ(d).

Examples. We compare Γ(d) and Λ(d) for several different choices of d.

a) If d is increasing or decreasing, then
Γ(d) = Λ(d) = {(1, 2), (2, 3), . . . , (r − 1, r)}.

b) d = (1, 1, 2, 1): Γ(d) = {(1, 2), (2, 3), (2, 4), (3, 4)} and Λ(d) = {(1, 2), (2, 4)}.
c) For d = (7, 5, 2, 3, 5, 1, 2, 6, 5) we have Γ(d) = {(i, i+ 1) | i = 1, . . . , 8}∪

{(1, 8), (2, 4), (2, 5), (3, 6), (3, 7), (4, 6), (4, 7), (5, 7), (5, 8), (5, 9), (7, 9)} and
Λ(d) = {(1, 8), (2, 5), (3, 7), (5, 9)}.

A consequence of the result above is that Z has at most r − 1 irreducible com-
ponents: when d is increasing or decreasing, it is clear that Λ(d) has size r − 1. If
all di are different, the same is true. In all other cases, there is at least one pair
i, j with di = dj , |i − j| > 1. Then one can find an index l between i and j such
that (i, l) and (l, j) do not belong to Λ(d). Example c) above shows that the actual
number of irreducible components can be much smaller than r − 1.

We first illustrate the decomposition of Z on an example before explaining the
main ideas behind the proof.

Example. Let d = (1, 2, 3, 2).

n = {A ∈ gl8 | A =

























0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗

0 0 0 ∗ ∗
0 0 0 ∗ ∗
0 0 0 ∗ ∗

0 0
0 0

























}

Then Λ(d) = {(1, 2), (2, 4)}, with κ(1, 2) = 1 and κ(2, 4) = 2. The matrix X =
E1,2 + E2,4 + E3,5 + E4,7 + E5,8 is a Richardson element for the corresponding
parabolic subgroup and X2 = E1,4 + E2,7 + E3,8. We have to compute the ranks
of X [12] (the matrix formed by the first 3 rows and columns) and of the second
power of X [24] (the matrix formed by rows and columns 2 to 8): rkX [12] = 1 and
rkX [24]2 = 2.

The component Z12 thus consists of all elements of the nilradical whose 1 × 2-
rectangle A12 is zero. The component Z24 of the matrices A ∈ n with rkA[24]2 ≤ 1.
Observe that the only non-zero entries of A[24]2 are in the intersection of its first
two rows with its last two columns. This square is just A23A34.

2.3. Ideas of the proof. The main steps in proving that Z is the union of the

Zij = Z
κ(i,j)
ij with (i, j) ∈ Λ(d) are the following:

• Show that Zk
ij = ∅ ⇐⇒ k > j − i, that Z l

ij ( Z
κ(i,j)
ij for 1 ≤ l ≤ κ(i, j)

and that for l with κ(i, j) < l ≤ j − i there are i < i0 ≤ j0 < j such that

Z l
ij ⊂ Z

κ(i,j0)
ij0

∪ Z
κ(i0,j)
i0j

.

• Argue that Z = ∪1≤i<j≤rZ
κ(i,j)
ij = ∪i<j ∪k≥1 Z

k
ij

• Prove that for any two (i, j) 6= (k, l) in Λ(d) we have Zij 6⊂ Zkl and that the
elements (i, j) in Λ(d) are enough to get all components: For (i, j) /∈ Γ(d),
we can find pairs (km, lm) in Γ(d) such that Zij lies in the union of the
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corresponding Z(km,lm). If (i, j) is in Γ(d)\Λ(d), then there exists k, l ∈ Λ(d)
such that Zij ⊂ Zkl.

It then remains to see that the Zij are irreducible. This can be done using Young
tableaux. We first recall a result of Hille, cf. [11]: If C(µ) is a nilpotent G-orbit,
then the irreducible components of n ∩ C(µ) are in bijection with a set T (µ, d) of
Young tableaux of shape µ.

The Young tableaux of T (µ, d) are all possible fillings of the Young diagram of
shape µ with d1 ones, with d2 twos, d3 threes, etc. If µ = λ is the partition of the
Richardson orbit, there is exactly one way to fill the Young diagram of λ with d1
ones, etc., i.e. |T (λ, d)| = 1. We write T (d) for this tableau.

Since we want to describe irreducible components of the complement, we aim for
degenerations of the Young tableau T (d). These degenerations should be minimal:
If not, we might end up taking subsets of irreducible components. The minimal
degenerations arise from T (d) by moving a single box down a number of rows as
follows.

Let T (i, j) be the tableau obtained from T (d) by removing the box containing
the number j from the last row containing i and j and inserting it in the closest row
in order to obtain another tableau. We call its partition µ(i, j). By construction,
µ(i, j) ≤ λ. Then we set n(T (i, j)) ⊂ n to be the irreducible component of n ∩
C(µ(i, j)) whose tableau is T (i, j) under Hille’s bijection.

We proceed by showing that the components Zij (with (i, j) ∈ Λ(d)) are equal
to n(T (i, j)).

We observe that for every row a box from a Young diagram is moved down,
the dimension of the GLn-orbits of the new nilpotent orbit is decreased by two.
This can be derived from the formula for the dimension of the stabilizer, [13]. The
change in dimension in the nilradical is half of this. This gives us the codimension
of Zij in n as the number of rows the box j has been moved down to get T (i, j).

2.4. Examples and remarks. (1) If d = (1, 1, 1, 1, 1), P = B is a Borel subgroup.
Since Λ(d) = {(1, 2), (2, 3), (3, 4), (4, 5)}, the complement is the union of four irre-
ducible components. The regular nilpotent elements are the nilpotent 5×5-matrices
whose 4th power is non-zero. Thus the Richardson orbit consists of strictly upper
triangular matrices A = (aij)ij with

A[1, 5]4 =













0 0 0 0 x
0 0 0 0

0 0 0
0 0

0













where x := a12a23a34a45 6= 0. For A to belong to the complement Z of the Richard-
son orbit, this product has to be zero. In other words, A[1, 5]4 is the zero matrix.
But this means that A belongs to Zi,i+1 for some i ≤ 4 as the component Zi,i+1 is
the set of matrices with Ai,i+1 = ai,i+1 = 0. So A lies in one of the components
Zi,i+1. The components Zi,i+1 all have codimension one. The Young tableaux in
T (µ, d) for µ = (4, 1) are in Figure 2.

In the case of a Borel subalgebra, the irreducible components are all orbit closures
of B-orbits in n. So far, it is not known whether this is true in general, though we
suspect that it is the case. Another question to which we do not know the answer
yet is whether the Zij are reduced.
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5

1 2 3 4

4

1 2 3 5

3

1 2 4 5

2

1 3 4 5

Figure 2. The four Young tableaux of T ((5, 1), d)

(2) The smallest interesting case is d = (1, 1, 2, 1). Here, Γ(d) ) Λ(d) =
{(1, 2), (2, 4)}. From the description in Section 2.2 we expect two irreducible com-
ponents. Z12 is the set of the matrices A with a12 = 0 and Z24 the set of matrices
A with A[24]2 = 0. We take A = (aij)ij ∈ n and compute A2, A3. Then A3 has
a12(a23a35 + a24a45) as only non-trivial entry, it is in the upper right corner of A3.
A belongs to the Richardson orbit if and only if this product is non-zero. If it is
zero, then a12 = 0 or a23a35 + a24a45 = 0. The case a12 = 0 clearly corresponds to
A ∈ Z12.

By definition, Z24 consists of the A with A[24]2 = 0. We have

A[24]2 =









0 0 0 a23a35 + a24a45
0 0 0 0
0 0 0 0
0 0 0 0









So A ∈ Z24 if and only if a23a35 + a24a45. Thus, A /∈ OR is equivalent to A ∈
Z12 ∪ Z24.
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