Geometric construction of m-cluster categories

Karin Baur
University of Leicester

BLOC Meeting, 15 February 2007

Joint work with Robert Marsh

Type A_n: Transactions (math.RT/0607151)
Type D_n: IMRN (math.RT/0610512)
Cluster algebras

Introduced by Fomin/Zelevinsky

Subrings of $\mathbb{Q}(u_1, \ldots, u_m)$.

Defined via generators, the cluster variables (constructed recursively).

Clusters: subsets of fixed cardinality.

Motivation: algebraic framework for

- total positivity
- canonical basis of quantum groups (Lusztig/Kashiwara).
Laurent phenomenon: Cluster variables are in $\mathbb{Z}[u_1^\pm, \ldots, u_m^\pm]$, hence the cluster algebra is in $\mathbb{Z}[u_1^\pm, \ldots, u_m^\pm]$

Connections to

- Poisson geometry, Teichmüller spaces
- Grassmannians
- Y-systems
Cluster categories

Introduced by BMRRT, CCS.

Q quiver, underlying graph: ADE.

$D^b(kQ)$: bounded derived category of fin.dim. kQ-modules ($k = \overline{k}$).

Cluster category, \mathcal{C}: orbit category of $D^b(kQ)$ under canonical automorphism.

Independent of orientation of Q.

$\mathcal{C} := D^b(kQ)/\tau^{-1} \circ [1]$
Correspondence:

Gabriel: \(\text{indec. } kQ\text{-mods} \leftrightarrow \text{pos. roots} \)

cluster case: \(\text{indec. obj. of } \mathcal{C} \leftrightarrow \text{almost pos. roots} \)
\[\leftrightarrow \text{cluster variables} \]

\[\text{tilting objects of } \mathcal{C} \leftrightarrow \text{clusters} \]

(BMRRT ‘06 types \(A, D, E \); CCS ‘06 type \(A \)).
m-cluster category, \(\mathcal{C}^m \): (Keller, ‘05)

\[
\mathcal{C}^m := D^b(kQ)/\tau^{-1} \circ [m].
\]

\(\mathcal{C}^m \) is triangulated (Keller), Krull-Schmidt (BMRRT). Calabi-Yau of dimension \(m + 1 \) (Keller).

Goal: Describe \(\mathcal{C}^m \) using diagonals of a polygon (type \(A_n \)) and arcs in a punctured polygon (type \(D_n \)).
Translation Quiver

Definition: A translation quiver is a pair (Γ, τ) where

- $\Gamma = (\Gamma_0, \Gamma_1)$ is a locally finite quiver without loops
- $\tau : \Gamma'_0 \to \Gamma_0$ is an injective map, $\Gamma'_0 \subseteq \Gamma_0$
- $\forall x \in \Gamma_0, y \in \Gamma'_0$:
 $$\# \{\text{arrows } x \to y\} = \# \{\text{arrows } \tau y \to x\}$$

τ is the translation of (Γ, τ)
Example:

\[\tau: \text{indicated by } \longrightarrow, \text{ maps from right to left.}\]

Vertices in \(\Gamma_0 \setminus \Gamma'_0\) are called \textbf{projective}.
More general example:

A a finite dimensional algebra over a field $k = \overline{k}$.

Quiver: Γ_0: isom. classes of indecomposable modules in mod A

Γ_1: irreducible maps

Auslander-Reiten quiver of A

Map τ: “Auslander-Reiten translation”
Example Hexagon:

Γ_0: diagonals (ij)

Γ_1: arrows $(ij) \rightarrow (i, j + 1), (ij) \rightarrow (i + 1, j)$, provided the image is a diagonal $(i, j \in \mathbb{Z}_6)$.

Translation τ: $(ij) \rightarrow (i - 1, j - 1)$

(anti-clockwise rotation about center, 60°)
(Γ, τ) is called **stable** if $\Gamma_0' = \Gamma_0$.
Mesh category

$\Gamma = (\Gamma, \tau)$ a translation quiver, $y \in \Gamma_0$.

Let $\alpha_i : x_i \to y$ be the arrows to y ($i = 1, \ldots, k$) and $\beta_i : \tau y \to x_i$ the corresponding arrows from τy.

The mesh ending at y is the subquiver
Let $k \langle \Gamma \rangle$ be the free k-linear category on Γ.

Objects $\leftrightarrow \Gamma_0$
morphisms \leftrightarrow paths, under composition

Extend this k-linearly.

Definition

The **mesh category** of Γ is

$$k \langle \Gamma \rangle / \mathcal{R}$$

where \mathcal{R} is given by the $m_y := \sum_{i=1}^k \beta_i \alpha_i$, over all meshes as above (i.e. for all $y \in \Gamma'_0$)
Tzanaki complex

For $n, m \in \mathbb{N}$ let Π be an $nm + 2$-gon, label the vertices $1, 2, \ldots, nm + 2$.

An **m-diagonal** is a diagonal (ij) dividing Π into an $mj + 2$-gon and an $m(n - j) + 2$-gon $(1 \leq j \leq \frac{n-1}{2})$.

Obtain a simplicial complex on the set of m-diagonals.

Simplices: collections of non-crossing m-diagonals.
Maximal simplex: contains $n - 1$ elements.
Example Octagon: Here $n = 3, m = 2$:

\[nm + 2 = 8, \quad jm + 2 = 4, 6 \]

A maximal simplex: \{ (16), (36) \}
Quiver $\Gamma(n,m)$, type A_{n-1}.

We define a quiver $\Gamma(m,n) = (\Gamma, \tau_m)$ as follows:

Γ_0: m-diagonals

Γ_1: $(ij) \rightarrow (ij')$ if (ij), $B_{jj'}$ and (ij') span an $m + 2$-gon ($B_{jj'}$ is boundary j to j').

τ_m: rotation anti-clockwise (about center), angle $m \frac{2\pi}{nm+2}$.

If $m = 1$: usual diagonals.
Proposition:
\(\Gamma(n, m)\) is a translation quiver.

Let \(\mathcal{C}(n, m)\) be the mesh category of \(\Gamma(m, n)\).

E.g. for \(n = 3, m = 2\):

\[
\begin{align*}
16 & \rightarrow 38 & \rightarrow 25 & \rightarrow 47 & \rightarrow 16 \\
14 & \rightarrow 36 & \rightarrow 58 & \rightarrow 27 & \rightarrow 14
\end{align*}
\]
Equivalence of categories

Q a Dynkin quiver of type A_{n-1} (type D_n)
$D^b(kQ)$ bounded derived category of fin. dim. kQ-modules
$	au$: Auslander-Reiten translate,
$F_m := \tau^{-1} \circ [m]$.

Theorem ($m = 1$: Caldero-Chapoton-Schiffler. $m \geq 1$: B.-Marsh).

$\mathcal{C}(n,m) \cong \text{ind } D^b(kQ)/F_m$

Proof uses Happels description of (AR-quiver of) $D^b(kQ)$ and combinatorial analysis of
$\Gamma(n,m)$ (resp. of $\Gamma_\odot(n,m)$).

In above example: $D^b(A_2)/F_2$.
Quiver $\Gamma_{\odot}(n,m)$, type D_n.

We define a quiver $\Gamma_{\odot}(m,n) = (\Gamma, \tau_m)$:

Γ_0: tagged m-arcs of a punctured $nm - m + 1$-gon

Γ_1: m-moves

E.g $(ij) \rightarrow (ik)$ if (ij), B_{jk} (boundary j to k) and (ik) span a (degenerate) $m + 2$-gon.

τ_m: rotation anti-clockwise (about center).
m-th power of translation quivers

(Γ, τ) a translation quiver.

A path $x_0 \to x_1 \to \cdots \to x_{m-1} \to x_m$ is **sectional** if $\tau x_{i+1} \neq x_{i-1}$ for $i = 1, \ldots, m - 1$ (for which τx_{i+1} is defined).

Define Γ^m as the quiver with vertices Γ_0 and arrows: sectional paths in Γ of length m.

Let τ^m be $\tau \circ \tau \circ \cdots \circ \tau$ (m times).

Theorem: Let (Γ, τ) be a translation quiver such that if y is projective and $x \to y$ then x is projective.

Then (Γ^m, τ^m) is a translation quiver.

Example: a stable (Γ, τ).
Theorem: (type A_{n-1})

$\text{ind } D^b(kQ)/F_m$ is a full subcategory of $(\text{ind } D^b(kQ)/F_1)^m$

So: $\Gamma(n, m)$ is a full subquiver of $(\Gamma(nm, 1))^m = (\Gamma(\text{cluster category}))^m$
Example: Type A_5, gives $C(3, 2)$ from above.

Obtain two other components: $D^b(A_3)/S$ twice.
Working on: other types, describing other components.

E.g. type D_4:
Second power is a torus:

Solution: restrict sectional paths of length m.
Theorem: (type D_{nm-m+1})

The restricted m-th power

$\mu_m(\Gamma(D_{nm-m+1}, 1), \tau^m)$ is the union of the following connected components:

$$\mu_m(\Gamma(D_{nm-m+1}, 1), \tau^m) = \Gamma_{\odot}(n, m) \cup \bigcup_{k=1}^{m-1} \Gamma(D^b(\mathbb{A}_{n-1})/\tau^{nm-m+1})$$

$(\Gamma(D^b(\mathbb{A}_{n-1})/\tau^{nm-m+1})$ denotes the Auslander-Reiten quiver of $D^b(\mathbb{A}_{n-1})/\tau^{nm-m+1})$.