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Abstract. Parabolic subalgebras of semi-simple Lie algebras decompose as

p = m ⊕ n where m is a Levi factor and n the corresponding nilradical. By
Richardsons theorem [R], there exists an open orbit under the action of the

adjoint group P on the nilradical. The elements of this dense orbits are known

as Richardson elements.
In these talks we describe a normal form for Richardson elements in the

classical case (cf. [B06]). This generalizes a construction for glN of Brüstle,

Hille, Ringel and Röhrle [BHRR] to the other classical Lie algebra and it
extends the authors normal forms of Richardson elements for nice parabolic

subalgebras of simple Lie algebras to arbitrary parabolic subalgebras of the

classical Lie algebras [B05]. As applications we obtain a description of the
support of Richardson elements and we recover the Bala-Carter label of the

orbit of Richardson elements.

1. Introduction

These are lecture notes from a short course on Richardson elements for classical
Lie algebras given at the university of Leicester in May 2006. Most of the material
for these lectures can be found in [B06].

Let g be a classical Lie algebra, i.e. of type An (sln+1), Bn (so2n+1), Cn (sp2n)
or Dn (so2n) over the complex numbers (in fact, the construction of Richarsdon
elements works over an algebraic closed field of characteristic p, p a good prime,
cf. [BG]).

To define the orthogonal Lie algebras soN , we use the skew diagonal matrix Γ :=
JN with ones on the skew diagonal and zeroes else. The symplectic Lie algebras,

sp2n are defined using Γ :=
[

0 Jn
−Jn 0

]
. Then the elements of the corresponding

Lie algebras are the {A ∈MN (C) | AtΓ+ΓA = 0} where MN (C) is the set of N×N
matrices (with the correct N) and At is the transpose of A. So soN consists of the
N ×N -matrices that are skew-symmetric around the skew-diagonal (in particular,
the entries on the skew-diagonal are zero). And sp2n is the set of 2n× 2n-matrices
of the form [

A B
C A∗

]
where B and C are symmetric about the skew-diagonal and where A∗ denotes
the skew-transpose of A about the skew-diagonal. (For details, we refer to [GW,
Chapter 1]).

Inside g we fix a Borel subalgebra b and a Cartan subalgebra h. We will always
work with the Borel subalgebra consisting of the upper triangular matrices in g and
of the Cartan subalgebra given by the diagonal matrices in the Lie algebra.

We denote by 4 = {α1, . . . , αn} the set of simple roots of g relative to b, h.

Example 1. It is best to keep the example sln+1 of the traceless (n+ 1)× (n+ 1)
matrices in mind. There, h is the set of traceless diagonal matrices and b the trace
zero upper triangular matrices. The simple roots correspond to the entries just
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above the diagonal, the root space of the simple root αi is given by the matrices
with zeroes except in the place i, i+ 1.

A parabolic subalgebra p of g is a Lie subalgebra that contains a Borel subalgebra.
We call p standard if it contains the fixed Borel subalgebra.

A standard parabolic subalgebra p is then just given by a sequence of square
matrices on the diagonal and all the (rectangular) blocks above (in the upper right
corner). p decomposes into a direct sum of a Levi factor and the corresponding
nilradical,

p = m⊕ n

(On the level of the associated adjoint groups, we have G = M · N , a semi direct
product, where the Levi factor M is a reductive group and N is the corresponding
unipotent radical.) We can assume that m contains the fixed Cartan subalgebra and
call such a Levi factor standard. The standard Levi factor consists of the sequence
of block matrices on the diagonal and n is the union of the rectangular blocks above
the diagonal.

From now on we will assume that p and m are standard. A parabolic subalgebra
corresponds bijectively to a subset of the simple roots and to a coloring of the
Dynkin diagram:

p ↔ S := {αi ∈ 4 | gαi
⊂ n}

↔ coloring of the Dynkin diagram of g

The coloring of the Dynkin diagram is obtained by the rule: the vertex i is colored
if and only if gαi is a subspace of m.

From the block structure of the parabolic subalgebra or of the Levi factor we
can read off a Z-grading of the Lie algebra. For α ∈ S we set deg(gα) = 1 and
from there, the grading of the whole Lie algebra is obtained. Formally, let α be a
positive root and write α =

∑n
j=1 kjαj with coefficients kj ∈ N. Then gα lies in

the ith graded part gi if
∑
j:αj∈S kj = i.

Alternatively, the grading is given by an element of the Cartan subalgebra: let
h1, . . . , hn ∈ h be “dual to the simple roots”, i.e. given by the requirement αi(hj) =
δij . Then set H =

∑
αi∈S hi. The map ad(H) acts on g with integer eigenvalues,

denote the corresponding eigenspaces by gi, i ∈ Z.
This gives

g =
⊕
i∈Z

gi, p =
⊕
i≥0

gi, m = g0 and n =
⊕
i>0

gi

Example 2. We consider the parabolic subalgebra p = p(α2, α6, α8) in sl11 as
pictured in Figure 1. So S = {α2, α6, α8} ⊂ 4. The colored Dynkin diagram is
shown in Figure 2.

Figure 1. The parabolic subalgebra p(α2, α6, α8) in sl11.

The corresponding grading is

g = g−3 ⊕ g−2 ⊕ g−2 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3.

Let p be a parabolic subalgebra of g and let P be the associated parabolic sub-
group in the adjoint classical group G. We recall a fundamental result of Richard-
son, [R].

Figure 2. The colored Dynkin diagram for p(α2, α6, α8)
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Theorem 1.1 (Richardson). There is always an open dense P -orbit under the
adjoint action in n.

In other words, there exists X ∈ n such that [p, X] = n.

We call this P -orbit the Richardson orbit and its elements Richardson elements
(for p). An alternative definition of Richardson elements is given by Hesselink
in [H]. We state it here in full generality.

Definition 1. Let G be a conected reductive group over an algebraically closed
field, let P be a parabolic subgroup. Denote their Lie algebras by g, p, where
p = m ⊕ n. An element X ∈ n is called a Richardson element of n if dim(GX) =
2 dim(G/P ).

Now the dimension of GX is just the codimension of the stabilizer of X in G (i.e.
dimG = dimGX + dimGX) and we have dim g = dimM + 2 dim(G/P ) (where M
is a Levi factor of P ). So we get the following useful criterion:

X ∈ n is a Richardson element for p ⇐⇒ dim gX = dim m(1)

(gX = {y ∈ g | [X, y] = 0} denotes the stabilizer of X in g).
The purpose of these talks is to construct Richardson elements for the classical

Lie algebras and to explain the use of these elements.

2. Applications

The construction of Richardson elements for parabolic subalgebras has various
applications. Among them are

• If there is a Richardson element x in g1, one has Lynch’s vanishing theorem
for induced Lie algebra cohomology, Hi(n, V ⊗ C−ψx

) = 0 for i > 0 (ψx is
the character induced by the chosen element in g1) (cf. [L] - generalizing
earlier work of Kostant for Borel subalgebras).

• If there is a Richardson element in g1 and if furthermore, the stabilizer sub-
groups of a Richardson element in G and in P are the same, a multiplicity
one theorem for generalized Whittaker vector holds (cf. [W1], [W2], [BK]).

• In the case of sln+1, there is a 1 − 1 correspondence between 4-filtered
modules without self extension for an Ar-type Auslander Reiten quiver
and Richardson orbits (cf. [BHRR]).

• The canonical forms of Richardson elements are of interest for understand-
ing the ring of invariants of (bi-)parabolic subalgebras ([J]).

For the first two applications, the construction of Richardson elements is used
to show that there exist Richardson elements in the first graded parts. For many
applications it is of interest to find a “simple form” of a Richardson element. We
can take simple quite literally: the most useful form of a Richarson element is a
nilpotent element whose support forms a simple system of roots. We will see that
there is not always such an element and that there is not a unique element with
simple support.

3. First examples

We include a couple of examples. We’ll need the notion of the support of a
nilpotent element. Denote the positive roots of g (with respect to the chosen b, h)
by Φ+.

Definition 2. Let X ∈ g be a nilpotent element, write X =
∑
α∈Φ+ kαXα (where

Xα spans the root subspace gα). Then the support of X, supp(X), is the set of
roots α ∈ Φ+ with kα 6= 0.
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Example 3. If p = b is the Borel subalgebra, then any element
∑n
i=1 Cαi

Xαi

(with Cαi
6= 0) is a Richardson element. Especially the element with Cαi

= 1 for
all i. Since the Richardson orbit is dense, a randomly picked element of n is also a
Richardson element. We illustrate this for sl5:

X1 =


0 1 0 0 0

0 1 0 0
0 1 0

0 1
0

 X2 =


0 ∗ ∗ ∗ ∗

0 ∗ ∗ ∗
0 ∗ ∗

0 ∗
0

with rank(X2) = 4.

The support of X1 only involves the simple roots of g, supp(X1) = 4. However,
the support of X2 may involve all the positive roots.

We have already mentioned that a good candidate of a Richardson element
should use as few root spaces as possible. The next example shows that there are
different possibilities to do so.

Example 4. If p ⊂ sln+1 is parabolic subalgebra with two blocks of the same size
d, then the nilradical is the d× d - block in the upper right corner. Any matrix of
rank d in that corner gives a Richardson element. So in particular, any permutation
matrix of size d in the upper right corner is a Richardson element with only d roots

in its support. We illustrate this with sl6, d = 3. Let Xi :=
[
0 Bi
0 0

]
where Bi

(1 ≤ i ≤ 6) is one of the following square matrices,1
1

1

 ,
1

1
1

 ,
 1

1
1

 ,
 1

1
1

 ,
 1

1
1

 ,
 1

1
1

 .
Each supp(Xi) consists of three positive roots which do not add up nor subtract
from each other. Therefore, these simple roots all span a factor A1 and so for
each i, supp(Xi) is a basis of a Lie algebra of type A1 × A1 × A1. We have
supp(X1) = {α123, α234, α345} and supp(X6) = {α3, α234, α12345}. Note that we
usually abbreviate the sum αi1 + · · ·+ αil by αi1,...,il .

In our construction of Richardson elements we will mostly stick to X1. I.e. we
will use some variant of an identity matrix in the nilradical. From a representation
theoretic view, the last matrix, is also interesting. If we consider the adjoint action
of the Levi factor m on the nilradical (more precisely, on the space g1), then α12345

is the highest root and α3 is the lowest root appearing in that representation. A
way to obtain this element is to start with the highest (or lowest) root in each
component of g1 and successively take the next lower (or next higher) root. (Such
a procedure is called the “Kostant cascade” by A. Joseph).

Remark 3.1. In example 4 we have jumped ahead. We explain a bit more now.
The adjoint action of P on g induces an action of the Levi factor M on g. In
particular, each gi is a representation of M , which in general is not irreducible.
The irreducible components of gi are the blocks in the matrix picture. This is best
seen in the case of sln+1. In Figure 1, we can see that g1 has 3 blocks, g2 has 2
blocks and g3 has one block (is irreducible). As representations of M , we obtain
thus

g1 = g1,2 ⊕ g2,3 ⊕ g3,4

g2 = g1,3 ⊕ g2,4

g3 = g1,4

where we label the block in position i, j by gi,j .
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4. Special linear Lie algebra

We recall the beautiful construction of [BHRR, §8].
We have already mentioned that the parabolic subalgebras (or the Levi factors)

consists of a sequence of square matrices on the diagonal and all the blocks above
the diagonal (resp. the square matrices on the diagonal). That means that we can
give p ⊂ sln+1 by specifying the sizes of the square matrices. So p = p(d), where
d = (d1, . . . , dr) with

∑
di = n + 1 is the vector of the block lengths in the Levi

factor.
We construct a Richardson element for p(d) as follows. We draw a (horizon-

tal) line diagram L(d): Write the numbers 1, . . . , n, n + 1 in r columns of sizes
d1, d2, . . . , dr, top adjusted, from left to right. Then connect the entries with hori-
zontal lines wherever possible.

Define X = X(d) :=
∑
i−j Eij where Eij is the elementary matrix in gln+1

whose entries are zero except for a one in position i, j.

Example 5. We look at Example 2. The block lenghts are d = (2, 4, 2, 3) and we
draw the line diagram

L(d) = 1 3 7 9

2 4 8 10

5 11

6

This defines the element X = E13 + E24 + E37 + E48 + E5,11 + E79 + E8,10. The
partition of X is (4, 4, 2, 1) and the dual of the partition is (4, 3, 2, 2).

Remark 4.1. The following observations are easy to see:
1) By construction, X(d) is an element of the nilradical n(d) of p(d).
2) The partition of X is given by the length of the chains in L(d), say λ = λ1 ≥

· · · ≥ λs. We set the length of the chain i1 − i2 − · · · − il in L(d) to be l, i.e. to be
equal to the number of vertices that are connected.

3) The dual of the partition is just the dimension vector d, with ordered entries,
say µ = µ1 ≥ · · · ≥ µr.

We use criterion (1) to check that X = X(d) is really a Richardson element.
To do that we need formulae to calculate the dimension of the centralizer of X.
They are given by Kraft and Procesi in [KP] and in Jantzens book [Ja] for positive
characteristic:

Theorem 4.2. Let (n1, . . . , nr) be the partition of the Jordan canonical form of a
nilpotent matrix x in the Lie algebra g, let (m1, . . . ,ms) be the dual partition. Then
the dimension of the centralizer of x in g is∑

i

m2
i if g = gln∑

i

m2
i

2 + 1
2 |{i | ni odd}| if g = sp2n∑

i

m2
i

2 − 1
2 |{i | ni odd}| if g = soN

Corollary 4.3. The nilpotent element X = X(d) defined above is a Richardson
element for p(d).

Proof. From the observations above we obtain that the dimension of the centralizer
ofX is

∑r
i=1 µ

2
i−1. On the other hand, it is clear that the Levi factor has dimension∑r

i=1 d
2
i − 1. Hence X is a Richardson element. �
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The line diagram also displays the support of the Richardson element X(d):
In the notation of Definition 2, we write X = X(d) =

∑
i−j Eij =

∑
i−j Xεi−εj

.
In other words, whenever there is an edge i− j in L(d), the support supp(X) of X
contains εi − εj = αi + · · ·+ αj−1.

Remark 4.4. Let α, β be positive roots of sln+1, α = εi−εj and β = εk−εl (with
i < j, k < l). Then α+ β is a (positive) root of sln+1 if and only if j = k or i = l.
Similarly, ±(α− β) are roots of sln+1 if and only if i = k or j = l.

Corollary 4.5. Let λ = (λ1 ≥ · · · ≥ λs) be the partition of X(d). Then the support
of X(d) is a simple system of type Aλ1−1 × · · · ×Aλs−1.

Proof. Let α, β be in the support of X. So in the diagram L(d), they correspond to
two edges, say i− j and k − l. By the definition of the line diagram, ±(α− β) are
not roots of sln+1 (for any 1 ≤ p ≤ n+ 1 there is only one edge p− q with p < q).
Furthermore, α+ β is a root of sln+1 if and only if their edges are joint, i.e. if and
only if j = k or i = l. So if there is a chain of length m in the diagram L(d), the
support of X has m− 1 roots β1, . . . , βm−1 that form a factor of type Am−1. Since
the parts of the partition λ of X correspond to the chains in L(d), the statement
follows. �

5. Orthogonal and symplectic Lie algebras

For the other classical types, the parabolic subalgebras and the Levi factors are
symmetric around the skew diagonal. So if we describe them by using the block
lengths of the square matrices on the diagonal, we have dimension vectors of the
form

d = (dt, dt−1, . . . , d1, d0, d1, . . . , dt)

where we allow d0 = 0 for an even number of blocks in the Levi factor m.
For simplicity, we assume the first and last t entries of d to be ordered: dt ≤

dt−1 ≤ · · · ≤ d1. (In case the entries ds, . . . , d1 are not ordered, we can permute
them using the symmetric group Σr). This will ensure that the line diagrams have
a minimal number of crossing lines.

The approach for the Lie algebras soN and sp2n is similar to the approach for
sln+1. The main differences are

(i) the symmetry (around skew diagonal)
(ii) the slopes (lines are not only horizontal)
(iii) “branching” appears (i.e. multiple edges ending at a single vertex).
(i) and (ii) are due to the (skew) symmetry around the skew diagonal of the

matrices: for spN , soN there is a edge (N − j + 1)− (N − i+ 1) whenever there is
an edge i− j. We sometimes call the edge (N − j+1)− (N − i+1) the counterpart
of i− j.

For the moment, we will avoid (iii) by extra assumptions on the dimension vectors
(d).

We now describe the diagrams. In both cases we arrange the numbers 1, . . . , N
(N = 2n in the symplectic case, N = 2n or N = 2n + 1 for the orthogonal Lie
algebras) in columns of length dt, . . . , d1, d0, d1, . . . , dt (2t columns if d0 = 0, 2t+ 1
columns if d0 > 0), from left two right, ordered from top to bottom.

5.1. Symplectic Lie algebras. We assume in addition, that there are no repeated
odd entries di < d0. Otherwise we will have to introduce branched diagrams. We
will cover this later.

The central block is of even length, so if its not zero, we have d0 ≥ 2. We describe
an algorithmic approach to obtain a Richardson element for p(d).



RICHARDSON ELEMENTS FOR THE CLASSICAL LIE ALGEBRAS 7

Algorithm 1. There are four different cases to consider. In (I), we describe what
to do with all these cases and illustrate each of them.

(I) (a) If dt ≥ 2 and d0 ≥ 2: Connect all the vertices on the top and their
counterparts on the bottom of each row. The edges form two chains of
length 2t+ 1.

Example with t = 2 1 3 6 8 11

2
===

4 7
AAA

9 12

5

���
10

zzz

(b) If dt ≥ 2 and d0 = 0: Connect the 2t vertices on the top and their
counterparts, the 2t vertices on the bottom. The edges form two chains of
length 2t.

Example with t = 2 1 3 6 9

2
===

4 7 10

5 8

}}}

(c) If dt = 1 and d0 ≥ 2: Connect the first 2t top vertices (from the
left) and their counterpart, the last 2t bottom vertices (all except the right
most bottom vertex).

Example with t = 2 1 2 6 8 12

3 7

00
00

00
9

4 10

5

������
11

����������

(d) If dt = 1 and d0 = 0: Connect the central vertices and next-to-
central vertices of each column: If dk (k ≤ t) is even, take the dk

2 th vertex
of column k and the dk

2 + 1st vertex of the k to the last column. This gives
one chain of length 2t.

Example with t = 2 1
===

2 6 10

3
KKKKK 7

4 8

������

5 9

(II) Rearrange all the remaining vertices to have top adjusted (possibly fewer)
columns. We call the new dimension vector also (d), (possibly with a smaller
t). Then go back to (I).

The algorithm eventually stops when all the vertices are connected. Denote the
resulting diagram by L(d), the line diagram for L(d). Define the corresponding
nilpotent element by

X(d) :=
∑

i−j, i≤n

Eij −
∑

i−j, i>n
Eij

The extra conditions we imposed on the shape (d) of the Levi factor ensured that
there is no branching in the diagram. Therefore (as for sln+1) the line diagram L(d)
gives we can read off the partition of X(d) and the support of the resulting X(d)
The partition is given by the lengths of the chains. And each pair of chains obtained
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as in (a), (b) or (c) corresponds to a factor A2t, A2t−1 resp. A2t−1 whereas the
chain obtained in step (d) corresponds to a factor Ct.

Example 6. Now you can work out a Richardson element for sp22 with dimension
vector (d) = (2, 3, 5, 2, 5, 3, 2).

1 3 6 11 13 18 21

2 4 7 12 14 19 22

5 8 15 20

9 16

10 17

Figure 3 displays the Richardson element for (d) = (2, 3, 5, 2, 5, 3, 2) from exam-
ple 6. For convenience, the diagonal entries are numbering the rows/columns. The
Levi factor has dimension 4 + 9 + 25 + 3 = 41. You can find the corresponding
line diagram in subsection 5.3 below. The partition of X(d) is λ = (7, 7, 4, 2, 2) and
the dual of λ is µ = (5, 5, 3, 3, 2, 2, 2). So using the formulae from Theorem 4.2,
one computes that the dimension of the centralizer of X(d) is 41 as needed. The
support of the corresponding Richardson element is of type A6 ×A1 × C2.

Figure 3. Richardson element for p(2, 3, 5, 2, 5, 3, 2) in sp22

5.2. Orthogonal Lie algebras. Let g = soN with N = 2n+1 or N = 2n. Again,
we will first treat the cases, where there exists a line diagram without branching.
The conditions on the shape of the Levi factor for such a “simple” diagram are
more complicated for the orthogonal Lie algebras. They are listed here.

We assume furthermore, that there are 0 ≤ i ≤ j ≤ t, such that
(i) dt−j+1 ≤ d0 < dt−j
(ii) the first i entries dt, . . . , dt−i+1 are even,
(iii) the next entries dt−i, . . . , dt−j+1 are odd,
(iv) entries of parity different from the parity of d0 appear only once among

dt−j , . . . , d1,
(v) if i < j then d0 is odd.

Remark 5.1. In (ii), i = 0 means that there is no even entry ≤ d0. And in (iii),
i = j means that there are no odd entries ≤ d0.

The first condition imples that among the {dt, . . . , dt−j+1}∪{d0} any even entry
is smaller than all the odd entries. In particular, if d0 is even, we must have i = j,
i.e. no odd entries smaller than d0.

Algorithm 2. In (I), we explain, what to do in the different cases and illustrate
them.

(I) (a) If d0 is odd and d1 = 1: Connect the central vertices and next-to-central
vertices of each column, i.e. if dk is even 1 ≤ k ≤ t, take the dk

2 th entry of
the kth column and the dk

2 + 1st entry of the k to the last column. This
gives a 2t+ 1-chain.

Example with t = 2 1
===

2 5 8 11

3 6 9

zzz

4 7 10



RICHARDSON ELEMENTS FOR THE CLASSICAL LIE ALGEBRAS 9

(b) If d0 is odd and d1 > 1: Connect 2t + 1 vertices at the top and
correspondingly the 2t + 1 entries at the bottom. This gives two 2t + 1-
chains.

Example with t = 2 1 3 6 9 12

2
===

4 7 10 13

5 8 11

zzz

(c) If d0 is even and d1 = 1 (then d0 = 0 by (v)): Connect the first 2t− 1
vertices of the top column and all their counterparts at the bottom. This
gives two 2t− 1-chains.

Example with t = 2 1 2 5 8

3 6

4 7

������

(d) If d0 is even and d1 > 1. Connect all the vertices of the top column
and all their counterparts at the bottom. This gives two 2t + 1-chains if
d0 ≥ 2, otherwise its a pair of 2t-chains.

Examples with t = 2 1 3 6 8 11

2
===

4 7
AAA

9 12

5

���
10

zzz

1 3 6 9

2
===

4 7 10

5 8

}}}

(II) Rearrange all the remaining vertices to have top adjusted (possibly fewer)
columns. We call the new dimension vector also (d), (possibly with a smaller
t). Then go back to (I).

The algorithm will eventually stop and we denote the diagram obtained by L(d).
From that we can define an element of the nilradical n(d) by setting

X(d) :=
∑

i−j: i+j≤N

Eij −
∑

ij : i+j≥N+2

Eij

where g = soN .
Using the dimension criterion and the formulae for the dimension of the central-

izer, one checks that the constructed element X(d) is Richardson.

Example 7. You can now work out the line diagram L(d) for the dimension vector
(d) = (2, 3, 4, 3, 4, 3, 2)

1 3 6 10 13 17 20

2 4 7 11 14 18 21

5 8 12 15 19

9 16

The Richardson element obtained from the line diagram L(d) for Example 7 is
displayed in Figure 4. Its Levi factor has dimension 32. And X(d) has partition
λ = (7, 7, 5, 1, 1) and its dual is µ = (5, 34, 22). Using Theorem 4.2 one obtains
dim gX(d) = 32
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Figure 4. Richardson element for p(2, 3, 4, 3, 4, 3, 2) in so21

5.3. Line diagrams for examples. Here is the line diagram for Example 6

1 3 6 11 13 18 21

2
===

4
AA

A 7 12

,,
,,

,,
,,

,,
14 19 22

5

00
00

00
8 15

zzz
20

zzz

9 16

10

����������
17

������

And here the line diagram for Example 7

1 3 6 10 13 17 20

2
===

4 7 11
DDD
14 18 21

5
===

8 12
DDD
15

zzz
19

zzz

9

}}}
16

zzz

5.4. Support of Richardson elements.

Remark 5.2. If the parabolic subalgebra admits a line diagram without branching,
we can read off the partition immediately and the support of the Richardson element
X(d). Let λ = λ1 ≥ · · · ≥ λs be the partition of X(d).

The roots of the support span a system of type Aλ1−1×· · ·×Aλs−1 if g = sln+1.
For the symplectic and orthogonal Lie algebras we observe that for each a pair

of chains of length t in L(d), the support of X(d) contains a factor Al−1. And for a
single chain of length 2t in the symplectic case, the support has a factor Ct whereas
for a single chain of length 2t+ 1 in the odd orthogonal case, the support contains
a factor Bt.

If g = sp2n, the support is of the form Ai1 × · · · × Aik × Cj1 × · · · × Cjl (with
l ≤ d0). From the observations above, it follows that l is equal to the number of
single even entries in λ.

And if g = sp2n, the support is of the form Ai1 × · · · ×Aik ×Bj1 × · · · ×Bjl

If there is branching in the diagram, we need a bit more work to obtain the
partition of the orbit. This can be done, it only needs the understanding of the
three types of branching (resp. the knowledge of the partition that appear for the
orthogonal and symplectic cases). (For more details of the branched cases: [BG]).

It turns out that in all cases, the support one obtains is the Bala Carter label of
the Richardson orbit (for the theory of Bala Carter labels refer to [C] and [P] - the
latter gives the labels in terms of the partition of the nilpotent orbits).

6. Remarks and outlook

Remark 6.1. By definition, a Richardson element X lies in the nilradical n. More
precisely, it lies in the subspace g1⊕· · ·⊕gk for some k ≥ 1. For example, X(d) ∈ g1

if and only if in the line diagram L(d) there is no “jumped” columns, i.e. no pattern

• • •

• •

appears. More general, the minimal k0 such that X(d) ∈ g1⊕· · ·⊕gk0 is the the size
of the largest jump in the diagram, i.e. it is k0 if the maximal number of columns
an edge avoids is k0 − 1:
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• • . . . • •

• •

Column 1 2 . . . k0 k0 + 1

6.1. Branching. The diagrams we have introduced had at most one line to the left
and at most one line to the right of a vertex. We call such a diagram a simple line
diagram. If there is no simple line diagram, there appear three types of branching.
We illustrate them here by way of examples. The correct statements are still work
in progress (cf. Section 5 in [B06] and [BG]). The extra edges needed in those
diagrams are indicated by dashed lines.

Example 8. Let p be the parabolic subalgebra of sp6 with dimension vector
(1, 1, 2, 1, 1). Consider the diagrams

1 2 3 5 6

4

���

3

1 2

���
___ 5 6

4

���

The line diagram to the left is obtained using the rules of Subsection 5.1. The
corresponding nilpotent element has a centralizer of dimension 7. However, the Levi
factor is five dimensional. In the second diagram, there is one extra line, connecting
the vertices 2 and 5. The defined matrix X = E12 + E23 + E25 − E45 − E56 has a
five dimensional centralizer as needed.

Observe: to make the diagrams look more symmetric, we have arranged the
central entries of each column to be on the same height.

Example 9. The following branched line diagram for the parabolic subalgebra
of sp22 with dimension vector d = (1, 1, 1, 3, 3, 4, 3, 3, 1, 1, 1) gives a Richardson
element for p(d)

10

CC
CC

4 7

~~~~

B
B

B
B

B
B 11 14 17

1 2 3

����
5 8

~~~~ ____ 15 18 20 21 22

6 9

@@
@@

12

{{{{
16 19

{{{{

13

{{{{

The Levi factor and the centralizer of the constructed X have dimension 31.

Example 10. For the orthogonal Lie algebras, the smallest example are given
by d = (1, 1, 2, 2, 1, 1), i.e. (a)-type of g = so8 and by d = (2, 2, 1, 2, 2) for an
odd number of blocks in so9. The following branched diagrams give Richardson
elements for the corresponding parabolic subalgebras.

3

..
..

..
6

===

1
N

N
N 2

���
7 8

4

������
5

p
p

p

1 3
===

___ 6 8

5
===

2 4 ___ 7 9
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6.2. Generalizing [BHRR]. The work of Brüstle, Hille, Ringel and Röhrle is for
the type An Lie algebras. In [BHRR], the authors describe a correspondence be-
tween the Richardson orbits and ∆-good modules for the Auslander Reiten quiver
of type Ar without self-extension (here, r is the number of blocks in the Levi factor
of the standard parabolic subalgebra and not the rank of the Lie algebra).

The goal is to generalize these results to the other classical Lie algebras. The
AR-quiver in [BHRR] is a quiver of Dynkin type Ar with arrows αi : i → i + 1
(i = 1, . . . , n − 1), βi : i → i − 1 (i = 2, . . . , n) and relations αi−1βi = βi+1αi for
i = 2, . . . , n− 1 together with β2α1 = 0.

Instead of using the category of ∆-good representations for this quiver, we will
have to use another category or representations.
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