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1 Preface

These are notes on higher dimensional homological algebra for the

LMS–CMI Research School “New trends in representation theory —

The impact of cluster theory in representation theory”, held at the

University of Leicester 19–23 June 2017.

The notes take the view that the natural framework for higher dimen-

sional homological algebra are d-abelian and (d + 2)-angulated ca-

tegories, as introduced by Jasso and Geiss–Keller–Oppermann. The

theory of d-cluster tilting subcategories and higher Auslander–Reiten

theory, as introduced by Iyama, are developed as means to this end.

The notes are organised as follows: Section 2 gives a list of notation.

Section 3 introduces d-cluster tilting subcategories. Section 4 in-

troduces higher Auslander–Reiten translations which, among other

applications, permit the construction of objects of d-cluster tilting

subcategories. Section 5 introduces d-abelian categories. The main

examples are d-cluster tilting subcategories of abelian categories.

Section 6 states the basics of the theory of higher Auslander–Reiten

sequences. Section 7 introduces (d + 2)-angulated categories. The

main examples are d-cluster tilting subcategories of triangulated ca-
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tegories which are stable under Σd. Appendix A describes a class of

examples by Vaso, and Appendix B an example by Iyama.

We do not describe any of the other examples which are known:

Higher Auslander, Nakayama, and preprojective algebras, Iyama’s

cone construction, etc. In particular, we do not explain their rich

combinatorial structure, which is one of the motivations for higher

homological algebra. Several other important parts of the theory

are not covered: The higher Auslander correspondence, d-exact cate-

gories, d-Frobenius categories, relative d-cluster tilting subcategories,

etc.

None of the material in these notes is due to me. I have tried to

give due credit for all definitions and results, but would be grateful

to learn if there are missing, incomplete, or wrong attributions.

I thank the organisers of the LMS–CMI Research School, Karin Baur

and Sibylle Schroll, for the opportunity to give a course, and for the

chance to present these notes. I thank the participants in the School

for their feedback and for spotting a number of typos.

I thank Gustavo Jasso for providing feedback on a preliminary ver-

sion, for conducting a number of useful tutorials during the Research
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School, parts of which have subsequently been turned into Appendix

B, and for providing several exercises.

I thank Laertis Vaso for permitting me to include the material in

Appendix A.
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2 Notation and Terminology

Symbol Meaning

d A positive integer

Φ A finite dimensional C-algebra

mod(Φ) The category of finite

dimensional right Φ-modules

mod(Φ) mod(Φ) modulo morphisms which

factor through a projective

mod(Φ) mod(Φ) modulo morphisms which

factor through an injective

mod(Φop), mod(Φop), mod(Φop) The same for left Φ-modules

A An abelian category

D A triangulated category

C , F d-cluster tilting subcategories

F F modulo morphisms which

factor through a projective

F F modulo morphisms which

factor through an injective

D(−) HomC(−,C)

(−)∗ HomΦ(−,Φ) if − is a Φ-module

Trd The d’th higher transpose

τd = D Trd The d-Auslander–Reiten translation

τ−d = Trd D The inverse d-Auslander–Reiten

translation
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3 d-cluster tilting subcategories

Definition 3.1. Let A be a category, F ⊆ A a full subcategory.

Then F is called:

(i) Generating if each a ∈ A permits an epimorphism f � a

with f ∈ F ,

(ii) Cogenerating if each a ∈ A permits a monomorphism a ↪→ f

with f ∈ F .

Definition 3.2 (Enochs [3]). Let A be a category, F ⊆ A a full

subcategory. A morphism a
α→ f in A with f ∈ F is called:

• An F -preenvelope of a if it has the extension property

a α //

��

f

∃
��

f ′

for each morphism a→ f ′ with f ′ ∈ F .

• An F -envelope of a if it is an F -preenvelope which is left

minimal, that is, satisfies that each morphism f
ϕ→ f with

ϕα = α is an automorphism.

7



We say that F is preenveloping (resp. enveloping) in A if each

a ∈ A has an F -preenvelope (resp. envelope).

The dual notion of preenvelope is precover, and F is called functo-

rially finite if it is preenveloping and precovering. 2

The following definition is illustrated by Example A.4 and Remark

B.4.

Definition 3.3 (Iyama [6, def. 2.2], Jasso [8, def. 3.14]). Let A be

an abelian or triangulated category. A d-cluster tilting subcategory

F of A is a full subcategory which satisfies the following.

(i) F = {a ∈ A | Ext1..d−1
A (F , a) = 0}

= {a ∈ A | Ext1..d−1
A (a,F ) = 0}.

(ii) F is functorially finite.

(iii) If A is abelian then F is generating and cogenerating.

A d-cluster tilting object f of A is an object f such that F =

add(f ) is a d-cluster tilting subcategory.

Remark 3.4. If d = 1 then F = A is the unique choice of F . This
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reflects that if d = 1, then higher dimensional homological algebra

becomes classic homological algebra.

Remark 3.5. If p ∈ A is projective, then 3.3(i) implies p ∈ F .

Similarly, if i ∈ A is injective, then i ∈ F . Hence if A has enough

projectives and injectives, then 3.3(i) implies 3.3(iii).

The following definition is again illustrated by Example A.4.

Definition 3.6. Let A be an abelian category, F a full subcate-

gory. An augmented left F -resolution of a ∈ A is a sequence

· · · → f2 → f1 → f0 → a→ 0

with fi ∈ F for each i, which becomes exact under A (f,−) for

each f ∈ F . Then

· · · → f2 → f1 → f0 → 0→ · · ·

is called a left F -resolution of a.

The resolutions are said to have length 6 n if fj = 0 for j > n+ 1.

(Augmented) right resolutions are defined dually. 2

Proposition 3.7 (Iyama [6, prop. 2.2.2]). Let A be an abelian

category, F ⊆ A a d-cluster tilting subcategory. Then each
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a ∈ A has (augmented) left and right F -resolutions of length

6 d− 1.

Proof. We give a proof for left resolutions in the special case d = 2.

There is an F -precover f
ϕ−→ a by Definition 3.3(ii), and ϕ is an

epimorphism by Exercise 3.8. Hence there is a short exact sequence

0 −→ k −→ f
ϕ−→ a → 0. If f̃ ∈ F then there is a long exact

sequence

0 −→ HomA (f̃ , k) −→ HomA (f̃ , f )
ϕ∗−→ HomA (f̃ , a) (1)

−→ Ext1
A (f̃ , k) −→ Ext1

A (f̃ , f ).

Here ϕ∗ is surjective since ϕ is an F -precover, and Ext1
A (f̃ , f ) = 0

by Definition 3.3(i) whence Ext1
A (f̃ , k) = 0. This shows k ∈ F . It

also shows that

0→ HomA (f̃ , k)→ HomA (f̃ , f )→ HomA (f̃ , a)→ 0

is exact for each f̃ ∈ F whence

· · · → 0→ k → f → a→ 0

is an augmented left F -resolution of a.

Exercise 3.8. Let A be an abelian category, F a full subcategory.
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(i) Show that if F is generating, then each F -precover is an epimorphism.

(ii) Show that if F is cogenerating, then each F -preenvelope is a monomorphism.

Exercise 3.9. Let R be a commutative ring, A an R-linear Hom-finite Krull–Schmidt
category, F a full subcategory closed under sums and summands. Show that if F has only
finitely many isomorphism classes of indecomposable objects, then it is functorially finite.

Exercise 3.10. Let A be an abelian category, F a full subcategory. Show that if F is
precovering, then each a ∈ A has an augmented left F -resolution which can be obtained as
follows:

Set k−1 = a. Suppose ki has been defined. Pick an F -precover fj+1 → kj and complete to
a left exact sequence 0→ kj+1 → fj+1 → kj.

Exercise 3.11. Prove Proposition 3.7 in general.
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4 Higher Auslander–Reiten translations

The following definition is illustrated by Proposition A.9 and Remark

B.4.

Definition 4.1 (Iyama [6, 1.4.1]). Let m ∈ mod(Φ) have the aug-

mented projective resolution

· · · → p2 → p1 → p0 → m→ 0.

The d’th higher transpose of m is

Trd(m) = Coker(p∗d−1 → p∗d ).

The d-Auslander–Reiten translation of m and the inverse d-Aus-

lander–Reiten translation of m are

τd(m) = D Trd(m) , τ−d (m) = Trd D(m).

Remark 4.2. Note that Trd(m) = Tr1 Ωd−1(m), where Tr1 is the

classic Auslander–Bridger transpose and Ωd−1 is the (d−1)st syzygy.

Hence

τd(m) = D Trd(m) = D Tr1 Ωd−1(m) = τ1Ωd−1(m),

where τ1 is the classic Auslander–Reiten translation.
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Proposition 4.3. There are functors

mod(Φ)
Trd // mod(Φop),

and

mod(Φ)
τd // mod(Φ).
τ−d

oo

Lemma 4.4. Let F ⊆ mod(Φ) be a d-cluster tilting subcategory.

Let f ∈ F have the augmented projective resolution

· · · → p2 → p1 → p0 → f → 0.

Then Trd(f ) has an augmented projective resolution which begins

· · · → p∗0 → p∗1 → · · · → p∗d−1 → p∗d → Trd(f )→ 0, (2)

and τd(f ) has an augmented injective resolution which begins

0→ τd(f )→ D(p∗d )→ D(p∗d−1)→ · · · → D(p∗1 )→ D(p∗0 )→ · · · .

Proof. Each module p∗j = HomΦ(pj,Φ) is projective.

The last part of the augmented projective resolution,

p∗d−1 → p∗d → Trd(f )→ 0,

is exact by the definition of Trd(f ).
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If 1 6 j 6 d − 1 then the homology of (2) at p∗j is ExtjΦ(f,Φ) by

definition, and this Ext is 0 since f,Φ ∈ F .

The augmented injective resolution is obtained by dualising the aug-

mented projective resolution.

Lemma 4.5. For m, p ∈ mod(Φ) with p projective, there is a

natural isomorphism

HomΦ

(
m,D(p∗)

) ∼= DHomΦ(p,m).

Proof. We can compute as follows, using tensor-Hom adjointness (a)

and an evaluation morphism (b).

HomΦ

(
m,D(p∗)

)
= HomΦ

(
m,HomC

(
HomΦ(p,Φ),C

))
(a)∼= HomC

(
m⊗

Φ
HomΦ(p,Φ),C

)
(b)∼= HomC

(
HomΦ(p,m⊗

Φ
Φ),C

)
∼= HomC

(
HomΦ(p,m),C

)
= DHomΦ(p,m).

Theorem 4.6 (Iyama [6, thm. 2.3]). Let F ⊆ mod(Φ) be a d-

cluster tilting subcategory. The τd and τ−d map F to itself.
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Proof. We show the statement for τd. Let f, f ′ ∈ F and 1 6 j 6

d − 1 be given. Lemma 4.4 gives an injective resolution of τd(f ).

Applying HomΦ(f ′,−) gives a complex

· · · → 0→ HomΦ

(
f ′,D(p∗d )

)
→ · · · → HomΦ

(
f ′,D(p∗0 )

)
→ · · · .

The homology at HomΦ

(
f ′,D(p∗j )

)
is Extd−jΦ

(
f ′, τd(f )

)
. By Lemma

4.5, the complex is isomorphic to the following.

· · · → 0→ DHomΦ(pd, f
′)→ · · · → DHomΦ(p0, f

′)→ · · ·

The homology at DHomΦ(pj, f
′) is DExtjΦ(f, f ′), so

Extd−jΦ

(
f ′, τd(f )

) ∼= DExtjΦ(f, f ′).

The right hand side is zero since f, f ′ ∈ F , so Extd−jΦ

(
f ′, τd(f )

)
= 0

whence τd(f ) ∈ F since f ′ ∈ F and 1 6 j 6 d−1 are arbitrary.

Theorem 4.7 (Iyama [6, thm. 2.3]). Let F ⊆ mod(Φ) be a d-

cluster tilting subcategory. There are quasi-inverse equivalences

F
τd // F .
τ−d

oo

Proof. Combine Proposition 4.3 and Theorem 4.6 to get the exis-

tence of the functors. It is a separate argument to show that they

are quasi-inverse to each other.
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Definition 4.8 (Iyama–Oppermann [7, def. 2.2]). The algebra Φ is

called d-representation finite if gldim(Φ) 6 d and Φ has a d-cluster

tilting object.

Examples of d-representation finite algebras ase given in Appendices

A and B.

Theorem 4.9 (Iyama). If Φ is d-representation finite, then mod(Φ)

has the unique d-cluster tilting subcategory

F = add{ τ jd (i) | i injective in mod(Φ) and 0 6 j }.
Exercise 4.10. Prove Proposition 4.3.

Exercise 4.11. Show that a d-representation finite algebra has global dimension 0 or d.

Exercise 4.12. Let Φ be the path algebra of the following quiver with the indicated relation.

◦
��

◦

??

◦

Show that Φ is 2-representation finite.
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5 d-abelian categories

The following definition is illustrated by Example A.4.

Definition 5.1 (Jasso [8, defs. 2.2 and 2.4]). Let F be an additive

category.

(i) A diagram fd+1 → · · · → f2 → f1 is a d-kernel of a morphism

f1 → f0 if

0→ fd+1 → · · · → f2 → f1 → f0

becomes an exact sequence under F (f̃ ,−) for each f̃ ∈ F .

(ii) A diagram fd → fd−1 → · · · → f0 is a d-cokernel of a mor-

phism fd+1 → fd if

fd+1 → fd → fd−1 → · · · → f0 → 0

becomes an exact sequence under F (−, f̃ ) for each f̃ ∈ F .

(iii) A d-exact sequence is a diagram

fd+1 → fd → fd−1 → · · · → f2 → f1 → f0

such that fd+1 → · · · → f2 → f1 is a d-kernel of f1 → f0 and

fd → fd−1 → · · · → f0 is a d-cokernel of fd+1 → fd.
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Remark 5.2. A d-exact sequence is often written

0→ fd+1 → fd → fd−1 → · · · → f2 → f1 → f0 → 0. (3)

This is motived by Exercise 5.7.

The following definition is illustrated by Theorem A.3, Example A.4,

and Remark B.4.

Definition 5.3 (Jasso [8, def. 3.1]). An additive category F is

called d-abelian if it satisfies the following:

(A0) F has split idempotents.

(A1) Each morphism in F has a d-kernel and a d-cokernel.

(A2) If fd+1 → fd is a monomorphism which has a d-cokernel

fd → · · · → f0, then

0→ fd+1 → fd → · · · → f0 → 0

is a d-exact sequence.

(A2op) The dual of (A2).

Conditions (A2) and (A2op) can be replaced with:
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(A2’) If fd+1 → fd is a monomorphism, then there exists a

d-exact sequence 0→ fd+1 → fd → · · · → f0 → 0.

(A2’op) The dual of (A2’). 2

Remark 5.4. The notions of 1-kernel, 1-cokernel, 1-exact sequence,

and 1-abelian category coincide with the notions of kernel, cokernel,

short exact sequence, and abelian category.

Theorem 5.5 (Jasso [8, thm. 3.16]). If F is a d-cluster tilting

subcategory of an abelian category A , then F is d-abelian.

Remark 5.6. We will not prove Theorem 5.5, but will explain how

to obtain d-kernels and d-cokernels in F :

Let f1
ϕ1−→ f0 be a morphism in F . Viewed as a morphism in A ,

is has a kernel k
κ−→ f1. By Proposition 3.7 there is an augmented

left F -resolution

· · · −→ 0 −→ fd+1 −→ · · · −→ f2
ε−→ k −→ 0.

Then

fd+1 −→ · · · −→ f2
κε−→ f1

is a d-kernel of ϕ1.
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Let fd+1
ϕd+1−→ fd be a morphism in F . Viewed as a morphism in A ,

is has a cokernel fd
ϕ−→ c. By Proposition 3.7 there is an augmented

right F -resolution

0 −→ c
γ−→ fd−1 −→ · · · −→ f0 −→ 0 −→ · · · .

Then

fd
γϕ−→ fd−1 −→ · · · −→ f0

is a d-cokernel of ϕd+1.

Exercise 5.7. (i) Let fd+1 → · · · → f2 → f1 be a d-kernel of f1 → f0. Show that
fd+1 → fd is a monomorphism.

(ii) Let fd → fd−1 → · · · → f0 be a d-cokernel of fd+1 → fd. Show that f1 → f0 is an
epimorphism.

Exercise 5.8. (i) Show that 1-kernel means kernel.

(ii) Show that 1-cokernel means cokernel.

(iii) Show that 1-exact sequence means short exact sequence.

(iv) Show that 1-abelian category means abelian category.

Exercise 5.9. Show that the d-kernels and d-cokernels constructed in Remark 5.6 have the
properties required by Definition 5.1.

Exercise 5.10. (i) Show that kernels and cokernels (=1-kernels and 1-cokernels) are
unique up to unique isomorphism.

(ii) Give an example to show that if d > 2, then d-kernels and d-cokernels are not unique
up to isomorphism.

Exercise 5.11. Let
δ = 0 −→ f3

ϕ3−→ f2 −→ f1
ϕ1−→ f0 −→ 0

be a 2-exact sequence in an additive category. Show that the following conditions are equiv-
alent.
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(i) ϕ3 is a split monomorphism (see Definition 6.1).

(ii) ϕ1 is a split epimorphism (see Definition 6.1).

(iii) Viewed as a complex, δ is null homotopic.
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6 Higher Auslander–Reiten sequences

Definition 6.1. Let F be a category.

(i) A morphism f1
ϕ1−→ f0 is a split epimorphism if it has a right

inverse, that is, if there is a morphism f0
ϕ0−→ f1 such that

ϕ1ϕ0 = idf0.

(ii) A morphism f1
ϕ1−→ f0 is right almost split if it is not a split

epimorphism and has the lifting property

f

��

∃
��

f1 ϕ1
// f0

for each morphism f → f0 which is not a split epimorphism.

(iii) A morphism f1
ϕ1−→ f0 is right minimal if each morphism

f1
ϕ−→ f1 with ϕ1ϕ = ϕ1 is an isomorphism.

There are dual notions of split monomorphism, left almost split

morphism, and left minimal morphism.

The notion of d-Auslander–Reiten sequences is due to Iyama, see
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[5, def. 2.1]. The definition is illustrated by Proposition A.10 and

Remark B.5.

Definition 6.2 ([5, def. 2.1]). A d-Auslander–Reiten sequence in
a d-abelian category F is a d-exact sequence

0 −→ fd+1
ϕd+1−→ fd

ϕd−→ fd−1
ϕd−1−→ · · · ϕ3−→ f2

ϕ2−→ f1
ϕ1−→ f0 −→ 0 (4)

such that ϕd+1 if left almost split and left minimal, ϕ1 is right almost

split and right minimal, and ϕd, . . ., ϕ2 are in the radical of F .

Theorem 6.3 ([6, thm. 3.3.1]). Let F ⊆ mod(Φ) be a d-cluster

tilting subcategory.

(i) For each non-projective indecomposable object f0 ∈ F ,

there exists a d-Auslander–Reiten sequence (4) in F .

(ii) For each non-injective indecomposable object fd+1 ∈ F ,

there exists a d-Auslander–Reiten sequence (4) in F .

(iii) If (4) is a d-Auslander–Reiten sequence in F , then fd+1 =

τd(f0) and f0 = τ−d (fd+1).
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7 (d + 2)-angulated categories

Definition 7.1 (Geiss–Keller–Oppermann [4, def. 2.1]). Let C be

an additive category with an automorphism Σd. The inverse is de-

noted Σ−d, but Σd is not assumed to be a power of another functor.

A Σd-sequence in C is a diagram of the form

c0 γ0−→ c1 −→ c2 −→ · · · −→ cd −→ cd+1 γd+1

−→ Σd(c0). (5)

Definition 7.2 (Geiss–Keller–Oppermann [4, def. 2.1]). A (d+ 2)-

angulated category is a triple (C ,Σd,D) where D is a class of Σd-

sequences, called (d + 2)-angles, satisfying the following conditions.

(N1) D is closed under sums and summands and contains

c
idc−→ c −→ 0 −→ · · · −→ 0 −→ 0 −→ Σd(c)

for each c ∈ C . For each morphism c0 γ0−→ c1 in C , the

class D contains a Σd-sequence of the form (5).

(N2) The Σd-sequence (5) is in D if and only if so is its left

rotation

c1 −→ c2 −→ · · · −→ cd+1 γd+1

−→ Σd(c0)
(−1)dΣd(γ0)−→ Σd(c1).
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(N3) A commutative diagram with rows in D has the following

extension property.

b0 //

β0
��

b1 //

��

b2 //

��

· · · // bd−1 //

��

bd //

��

bd+1 //

��

Σd(b0)

Σd(β0)
��

c0 // c1 // c2 // · · · // cd−1 // cd // cd+1 //Σd(c0)

(N4) “The octahedral axiom” (the following version of the ax-

iom is equivalent to the one in [4] by [2, thm. 4.4]): A

commutative diagram with rows in D has the following

extension property,

x
ξ // y

ζ //

υ

��

a2 //

��

a3 //

��

��

· · · // ad //

��

ad+1 //

��

��

Σd(x)

x //

ξ

��

z // b2 //

��

b3 //

��

· · · // bd //

��

bd+1 //

��

Σd(x)

Σd(ξ)
��

y υ
// z // c2 // c3 // · · · // cd // cd+1

δ
//Σd(y),

where each upright square is commutative and the totali-

sation

a2 → a3 ⊕ b2 → a4 ⊕ b3 ⊕ c2 → · · ·

→ ad+1 ⊕ bd ⊕ cd−1 → bd+1 ⊕ cd → cd+1 Σd(ζ)δ−→ Σd(a2)

is a (d + 2)-angle.
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The following is a sample of what can be concluded from the defini-

tion.

Proposition 7.3 (Geiss–Keller–Oppermann [4, prop. 2.5(a)]). Let
(C ,Σd,D) be a (d+2)-angulated category, c ∈ C an object. Each
(d + 2)-angle (5) induces long exact sequences

· · · → C
(
c,Σ−d(cd+1)

)
→ C (c, c0)→ · · · → C (c, cd+1)→ C

(
c,Σd(c0)

)
→ · · ·

and

· · · → C
(
Σd(c0), c

)
→ C (cd+1, c)→ · · · → C (c0, c)→ C

(
Σ−d(cd+1), c

)
→ · · · .

We would like to be able to obtain (d+ 2)-angulated categories from

d-abelian categories:

Question 7.4 (The higher derived category problem). Let F be a

suitable d-abelian category. Does there exist a d-derived category of

F , in the sense that there is a (d + 2)-angulated category C with

the following properties?

(i) C contains F as an additive subcategory.

(ii) Each d-exact sequence (3) in F induces a (d+ 2)-angle (5) in

C .

(iii) We have ExtdjF (f ′′, f ′) ∼= C
(
f ′′, (Σd)j(f ′)

)
when j > 0 is an

integer and f ′, f ′′ ∈ F . The Ext groups are defined by means

of Yoneda extensions.
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(iv) Each d-exact sequence in F induces two long exact sequences

of Ext-groups (note that this is only true for suitable F ). Each

(d+ 2)-angle in C induces the long exact sequences in Propo-

sition 7.3. The long exact sequences are identified under the

isomorphisms in (iii).

The answer to Question 7.4 is unknown. Here is a method we do

have for obtaining (d + 2)-angulated categories:

Theorem 7.5 (Geiss–Keller–Oppermann [4, thm. 1]). Let D be

a triangulated category with suspension functor Σ. Let C be a

d-cluster tilting subcategory of D which satisfies Σd(C ) ⊆ C .

Then (C ,Σd,D) is a (d+2)-angulated category, where D consists

of all Σd-sequences (5) which can be obtained from diagrams in

D of the form

c1 //

��

c2 //

��

· · · // cd−1 //

��

cd

��

c0

??

x1.5

??

oo x2.5oo

??

· · ·oo xd−0.5

??

oo cd+1.oo

A wavy arrow x // y signifies a morphism x → Σ(y), and the

composition of the wavy arrows is cd+1 γd+1

−→ Σd(c0) in (5). Each

oriented triangle is a triangle in D , and each non-oriented tri-

angle is commutative.
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This permits answering Question 7.4 in a special case:

Theorem 7.6 (Iyama). Let Φ be a d-representation finite al-

gebra, and let F be the unique d-cluster tilting subcategory of

mod(Φ), cf. Theorem 4.9. Then F has a d-derived category C

in the sense of Question 7.4.

Remark 7.7. What Iyama in fact proved is that the subcategory

C = add{Σdjf | j ∈ Z, f ∈ F } ⊆ Db(modΦ)

is d-cluster tilting, see [5, thm. 1.21]. It clearly satisfies Σd(C ) ⊆ C ,

so is (d + 2)-angulated by Theorem 7.5. It is also clear that C has

property (i) in Question 7.4, and it can be proved that it satisfies

(ii)–(iv) as well.

Exercise 7.8. Prove Proposition 7.3.
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A A class of examples by Vaso

We follow the conventions of [1, chps. II and III] for quivers and

quiver representations.

All the results in this appendix are due to Vaso, see [9, sec. 4].

Definition A.1. Let d > 2, ` > 2, m > 3 be integers with d even

such that
m− 1

`
=
d

2
.

Let Q be the quiver

m→ m− 1→ · · · → 2→ 1.

Set Γ = CQ/(radCQ)`.

Equivalently, Γ is the path algebra of the quiver Q with the relations

that ` consecutive arrows compose to zero.

Remark A.2. The indecomposable projective and injective modu-
les in mod(Γ), shown as representations ofQ, are the following, where
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each morphism C→ C is the identity.

g1 = 0→ 0 → 0 → 0 →0→0→· · ·→0→0→0→ 0 → 0 →C
g2 = 0→ 0 → 0 → 0 →0→0→· · ·→0→0→0→ 0 → C →C
...

g`−1 = 0→ 0 → 0 → 0 →0→0→· · ·→0→0→0→ ︸ ︷︷ ︸
`− 1

C →· · ·→C

g` = 0→ 0 → 0 → 0 →0→0→· · ·→0→0→︸ ︷︷ ︸
`

C→ C →· · ·→C

g`+1 = 0→ 0 → 0 → 0 →0→0→· · ·→0→︸ ︷︷ ︸
`

C→C→· · ·→ C →0

...

gm−1 = 0→ ︸ ︷︷ ︸
`

C → C →· · ·→C→0→· · ·→0→0→0→ 0 → 0 →0

gm = ︸ ︷︷ ︸
`

C→ C →· · ·→ C →0→0→· · ·→0→0→0→ 0 → 0 →0

gm+1 = ︸ ︷︷ ︸
`− 1

C→· · ·→ C → 0 →0→0→· · ·→0→0→0→ 0 → 0 →0

...
gm+`−2= C→ C → 0 → 0 →0→0→· · ·→0→0→0→ 0 → 0 →0
gm+`−1= C→ 0 → 0 → 0 →0→0→· · ·→0→0→0→ 0 → 0 →0

 projective



projective-
injective

 injective

Among them, the indecomposable projective modules are

gi = eiΓ for 1 6 i 6 m

where ei is the idempotent corresponding to the vertex i in Q. The
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gi appear in the Auslander–Reiten quiver of mod(Γ) as follows.

g`
��

g`+1

��

gm−1
��

gm
��

g`−1
��

??

◦
��

??

◦ · · · ◦
��

??

◦
��

??

gm+1
��

. .
.

��

??

. .
.

��

??

. .
.

��

??

. . .

��

??

. . .

��

??
. . .

��
g2

��

??

◦
��

??

◦
��

??

◦ · · · ◦
��

??

◦
��

??

◦
��

??

gm+`−2
��

g1

??

◦

??

◦

??

◦

??

◦

??

◦

??

◦
??

gm+`−1

It will be convenient to set gi = 0 if i 6 0 or i > m + `.

A.i The d-abelian category of Γ

The following result shows that there is a canonical d-abelian cate-

gory G associated to Γ, cf. Theorem 4.9.

Theorem A.3. The algebra Γ is d-representation finite. The

unique d-cluster tilting subcategory of mod(Γ), which is d-abelian

by Theorem 5.5 is

G = add(Γ⊕ DΓ) = add { gi | 1 6 i 6 m + `− 1 }.

Example A.4. Consider the algebra Γ of Definition A.1 in the case
d = 4, ` = 4, m = 9. The Auslander–Reiten quiver of mod(Γ) is the
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following.

g4
��

g5
��

g6
��

g7
��

g8
��

g9
��

g3
��

??

a

��

??

◦
��

??

◦
��

??

◦
��

??

c

��

??

g10
��

g2
��

??

◦
��

??

◦
��

??

◦
��

??

◦
��

??

◦
��

??

◦
��

??

g11
��

g1

??

◦

??

◦

??

◦

??

b

??

◦

??

◦

??

◦
??

g12

The unique 4-cluster tilting subcategory of mod(Γ) is

G = add{g1, . . . , g12};

it is a 4-abelian category. There is a short exact sequence

0

↓
g1= 0→0→0→0→0→ 0→ 0→ 0→C
↓
g4= 0→0→0→0→0→C→C→C→C
↓
a= 0→0→0→0→0→C→C→C→ 0

↓
0,

and similarly
0 → a → g5 → b → 0,

0 → b → g8 → c → 0,

0 → c → g9 → g12 → 0.
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The short exact sequences can be spliced to give augmented G -

resolutions of a, b, and c in the sense of Definition 3.6.

· · · → 0 → g1 → g4 → a → 0,

· · · → 0 → g1 → g4 → g5 → b → 0,

· · · → 0 → g1 → g4 → g5 → g8 → c → 0.

The short exact sequences can also be spliced to an exact sequence

0→ g1 → g4 → g5 → g8 → g9 → g12 → 0

which is a 4-exact sequence in G , see Definition 5.1. In particular,

several 4-kernels and 4-cokernels can be read off. Observe that a

4-kernel does not necessarily have 4 non-zero objects; for instance,

0→ 0→ g1 → g4 → g5 is a 4-kernel of g5 → g8.

Proposition A.5. (i) We have

dimC HomΓ(gi, gj) =

{
1 if 0 6 j − i 6 `− 1,

0 otherwise.

(ii) If i 6 q 6 j then each morphism gi → gj factors as gi →
gq → gj.

(iii) The quiver of G is

g1 → g2 → g3 → · · · → gm+`−3 → gm+`−2 → gm+`−1

where the composition of ` consecutive arrows is zero.
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(iv) If 0 6 j − i 6 `− 1 then each non-zero morphism gi → gj

fits into an exact sequence

gj−` → gi → gj → gi+`.

Remark A.6. Part (iii) is immediate from parts (i) and (ii).

Part (iv) implies that if j 6 `, then gi → gj is an injection because

gj−` = 0.

Similarly, if i > m then gi → gj is a surjection because gi+` = 0.

Proposition A.7. If 0 6 j − i 6 ` − 1 then there is an exact

sequence

· · · → gi−` → gj−` → gi → gj → gi+` → gj+` → · · · .

Proof. Iterate Proposition A.5(iv).

Remark A.8. We can follow the sequence in Proposition A.7 left

or right until we reach a zero module. This gives a d-kernel or a

d-cokernel of gi → gj.

Proposition A.9. We have

τd(gj) =

{
0 if 1 6 j 6 m,

gj−m if m + 1 6 j 6 m + `− 1.
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Proof. If 1 6 j 6 m then gj is projective whence τd(gj) = 0.

Suppose m + 1 6 j 6 m + ` − 1. There is a surjection gm → gj

which fits into an exact sequence from Proposition A.7:

· · · → gm−2` → gj−2`︸ ︷︷ ︸
2

→ gm−` → gj−`︸ ︷︷ ︸
1

→ gm → gj︸ ︷︷ ︸
0

→ 0.

The numbered brackets are useful for bookkeeping. Since m−1
` = d

2

we have m− d
2` = 1, so on the left, the exact sequence contains

· · · → 0→ g1 → gj−d
2`︸ ︷︷ ︸

d
2

→ · · ·

which can also be written

· · · → 0→ g1 → gj+1−m︸ ︷︷ ︸
d
2

→ · · · . (6)

The exact sequence is an augmented projective resolution of gj be-

cause each term except gj is projective. The non-zero terms in Equa-

tion (6) are pd → pd−1. We can write them

e1Γ→ ej+1−mΓ.

Applying (−)∗ and augmenting with the cokernel gives an exact

sequence

Γej+1−m → Γe1 → Trd(gj)→ 0.
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These left modules can be viewed as representations of the quiver

Qop = m← m− 1← · · · ← 2← 1.

Then Γej+1−m is supported on the vertex j + 1 −m and at most `

higher vertices, while Γe1 is supported on the vertices 1 through `.

Hence Trd(gj) is supported on the vertices 1 through j − m. This

finally means that τd(gj) = DTrd(gj), viewed as a representation of

Q, is supported on the same vertices, 1 through j −m, and hence

τd(gj) = ej−mΓ = gj−m.

Proposition A.10. If m + 1 6 j 6 m + ` − 1 then the d-

Auslander–Reiten sequence ending in gj is

0→ gj−m → gj+1−m → · · · → gj−1−` → gj−` → gj−1 → gj → 0.

A.ii The (d + 2)-angulated category of Γ

Combining Remark 7.7 and Theorem A.3 shows that

C = add{Σdjg | j ∈ Z, g ∈ G } ⊂ Db(modΓ)
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is a (d+ 2)-angulated category which can be viewed as the d-derived

category of the d-abelian category G from Subsection A.i.

Proposition A.11. (i) Up to isomorphism, the indecomposa-

ble objects of C are the Σdjgi where i, j are integers with

1 6 i 6 m + `− 1.

(ii) The quiver of C is

· · · → Σ−dg1 → · · · → Σ−dgm+`−1 → g1 → · · · → gm+`−1 → Σdg1 → · · · → Σdgm+`−1 → · · ·

where the composition of ` consecutive arrows is zero.

Exercise A.12. Prove Proposition A.5.

Exercise A.13. Show that the sequence in Proposition A.10 is indeed a d-Auslander–Reiten
sequence.

Exercise A.14. Prove Proposition A.11.

37



B An example by Iyama

We follow the conventions of [1, chps. II and III] for quivers and

quiver representations.

All the results in this appendix are due to Iyama.

Definition B.1. Let Λ be the algebra defined by the following

quiver with relations.

6
ε

��
5

ζ
??

γ
��

4
α

��
3

δ
??

2

β
??

1

The relations are δγ = βα = γβ + ζε = 0.

Observe that the quiver with relations is the Auslander–Reiten quiver

of the algebra Φ = C( 3 // 2 // 1 ), and that hence Λ is the Aus-

lander algebra of Φ.

Theorem B.2 (Iyama [5, thm. 1.18]). The algebra Λ is 2-repre-

sentation finite.

Remark B.3. We will denote indecomposable modules in mod(Λ)

by their radical series. For instance, 1 is the simple module given by
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the representation

0

��
0

??

��

0

��
0

??

0

??

C

while
6
4
1

is its indecomposable projective cover given by the represen-

tation
C

��
0

??

��

C
��

0

??

0

??

C
where each morphism C→ C is the identity.

The Auslander–Reiten quiver of mod(Λ) is the following, where red

means projective (but not injective), green means injective (but not

projective), and blue means projective-injective.

6
4
1

��

3
5
6

��
4
1

��

??

6
4

��

2

��

5
6

��

??

3
5

��
1

??

4

��

??

26
4

��

??

//
5
26
4

// 5
26

��

??

5

??

3

2
4

??

6

??

5
2

??
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The classic Auslander–Reiten translation τ1 is given by moving one

step to the left on the quiver. For instance, τ1 ( 6
4 ) = 4

1 , while

τ1 ( 4
1 ) = 0 (there is no module one step left of 4

1 ).

Remark B.4. By Theorems 4.9 and B.2 the unique 2-cluster tilting

subcategory of mod(Λ) is

L = add{ τ j2 (i) | i injective in mod(Φ) and 0 6 j }.

It is 2-abelian by Theorem 5.5.

The injective modules
6
4
1

,
5
26
4

,
3
5
6

are projective, so the 2-Auslander–

Reiten translation τ2 satisfies

τ2

(
6
4
1

)
= τ2

(
5
26
4

)
= τ2

(
3
5
6

)
= 0.

The injective module 3 permits a short exact sequence

0→ 5
6 →

3
5
6
→ 3 → 0

whence Ω ( 3 ) = 5
6 . Remark 4.2 gives

τ2 ( 3 ) = τ1 ( 5
6 ) = 2 .

In turn, the module 2 permits a short exact sequence

0→ 4 → 2
4 → 2 → 0
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whence Ω ( 2 ) = 4 . Remark 4.2 gives

τ2 ( 2 ) = τ1 ( 4 ) = 1 .

This module is projective, so applying τ2 again gives zero.

The injective modules 3
5 , 5

2 can be handled by the same method to

give
τ2 ( 3

5 ) = 2
4 , τ2 ( 5

2 ) = 4
1 .

These modules are projective, so applying τ2 again gives zero.

It follows that

L = add{ 1 , 4
1 ,

6
4
1
, 2

4 , 2 ,
5
26
4
, 5

2 ,
3
5
6
, 3

5 , 3 }.

Remark B.5. Here is the AR quiver of L . The dotted arrows

41



show the action of the 2-Auslander–Reiten translation τ2.
6
4
1

��
4
1

??

��

5
26
4

��

��

1

??

2
4

??

��

3
5
6

��

5
2

��

jj

2

??

\\

3
5

��

]]

3

\\

Note that the quiver is 3-dimensional, consisting of 3-dimensional

analogues of the meshes found in classic Auslander–Reiten quivers.

This is reflected in the 2-Auslander–Reiten sequences which can be

read off, such as

0→ 2
4 →

5
26
4
⊕ 2 → 3

5
6
⊕ 5

2 → 3
5 → 0.
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