Übungen zur Diskreten Mathematik, WS 18/19

Blatt 5, 20.11.2018

21. Zeigen Sie für alle $n, r \in \mathbb{N}_0$ mit $n \geq r$

$$\sum_{k=r}^{n} \binom{k}{r} = \binom{n+1}{r+1} \quad .$$

Falls möglich, führen Sie bitte den Beweis mit Hilfe eines Zählarguments.

- **22.** Es seien $n \in \mathbb{N}$ und M eine Menge mit #M = n. Bestimmen Sie die Anzahl aller Paare (A, B), wobei A und B Teilmengen von M sind, mit
 - (a) $B \subset A$;
 - (b) $B \subset A$ und $B \neq A$;
 - (c) $B \subset A \text{ und } \#B = \#A 2;$
 - (d) $B \subset A \text{ und } \#B < \#A 2$.
- **23.** Es seien $k, N \in \mathbb{N}$. Wieviele ganzzahlige Lösungen $(x_1, \ldots, x_k) \in \mathbb{Z}^k$ besitzt die Gleichung $x_1 + \ldots + x_k = N$, wenn man zusätzlich fordert, dass $x_i \geq i$ für alle $i = 1, \ldots, k$ gelten soll?
- **24.** Vor einer Kinokasse stehen 2n Personen $(n \in \mathbb{N})$ an. Dabei haben n Personen nur 5–Euro–Scheine, die übrigen nur 10–Euro–Scheine. Der Eintritt kostet 5 Euro und die Kinokasse hat zu Beginn kein Wechselgeld.

Wieviele mögliche Schlangen vor der Kinokasse können gebildet werden, wenn man alle Personen mit einem 5-Euro-Schein (bzw. mit einem 10-Euro-Schein) als gleich betrachtet? Bei wievielen davon können alle Personen eine Kinokarte kaufen, ohne dass der Kasse das Wechselgeld ausgeht? Wie groß ist das Verhältnis dieser beiden Anzahlen?

25.* In einem Rinderstall stehen in einer Reihe nebeneinander 11 Standplätze zur Verfügung. Wieviele Möglichkeiten gibt es, 4 (unterscheidbare) Stiere und 7 (unterscheidbare) Kühe auf diese Standplätze aufzuteilen, wenn keine zwei Stiere nebeneinander stehen dürfen?