Übungen zur Diskreten Mathematik, WS 18/19

Blatt 3, 30.10.2018

- 11. Wir ordnen die Menge
 - (a) $U = \mathbb{N} \setminus \{1\}$
 - (b) $U = \{10, 11, \dots, 100\}$

mit Hilfe der Teilbarkeitsrelation (siehe Aufgabe 9). Untersuchen Sie, ob es in U ein kleinstes und ein größtes Element gibt. Bestimmen Sie alle minimalen und alle maximalen Elemente von U.

- **12.** Es sei M eine beliebige Menge und $\mathcal{P}(M)$ ihre Potenzmenge. Zeigen Sie, dass \subset eine Ordnung auf $\mathcal{P}(M)$ definiert.
- 13. Es sei M eine Menge
 - (a) Es sei I eine nicht leere Indexmenge und für $i \in I$ sei $R_i \subset M \times M$ eine Äquivalenzrelation. Zeigen Sie, dass $\bigcap_{i \in I} R_i$ ebenfalls eine Äquivalenzrelation ist.
 - (b) Es sei $X \subset M \times M$ gegeben. Wir ordnen die Menge R(X) aller Äquivalenzrelationen auf M, die X enthalten, durch die Inklusion. Zeigen Sie, dass R(X) ein kleinstes Element besitzt. Dieses heißt die von X erzeugte Äquivalenzrelation.
- **14.** Es seien $M = \{1, 2, ..., 10\}$ und $X = \{(1, 2), (5, 7), (1, 4)\} \subset M \times M$.
 - (a) Bestimmen Sie die von X erzeugte Äquivalenzrelation (siehe Aufgabe 13).
 - (b) Konstruieren Sie zwei Äquivalenrelationen R_1 , R_2 auf M, sodass $R_1 \cup R_2$ keine Äquivalenzrelation ist.
- 15. Wir ordnen \mathbb{N} durch die Teilbarkeitsrelation. Zeigen Sie, dass dann $\{6, 14\}$ ein Infimum und ein Supremum besitzt und bestimmen Sie diese.