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Wir verwenden die üblichen Bezeichnungen der Mengenlehre:

• Für zwei Mengen A und B schreiben wir A ⊂ B, falls A eine Teilmenge von B ist.
A ( B bedeutet A ⊂ B und A 6= B.
• Ist A eine Menge so sei #A ∈ {0, 1, 2, . . .} ∪ {∞} ihre Anzahl.
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1. Teilbarkeit

1.1. Die ganzen Zahlen.

1.1.1. Wir setzen

• N = {0, 1, 2, 3, . . .} die Menge der natürlichen Zahlen (inklusive 0)
• N+ = N \ {0} die Menge der strikt positiven natürlichen Zahlen.
• Z = N ∪ (−N) = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} die Menge aller ganzen Zahlen.

Dann gilt
N+ ⊂ N ⊂ Z .

Vorsicht: In manchen Büchern wird

N = {1, 2, 3, 4, . . .}, ,N0 = {0, 1, 2, 3, 4, . . .}
gesetzt.

1.1.2. Ganze Zahlen können addiert und multipliziert werden, d.h. wir haben zwei Ab-
bildungen

+: Z× Z→ Z, (a, b) 7→ a+ b, · : Z× Z→ Z, (a, b) 7→ ab .

In der Sprache der Algebra sind + und · Verknüpfungen auf Z.

Es gelten dann für a, b, c ∈ Z folgende Rechengesetze:

Kommutativgesetze: a+ b = b+ a, ab = ba.
Assoziativgesezte: a+ (b+ c) = (a+ b) + c, a(bc) = (ab)c.
Existenz der Null: Es gibt genau ein n ∈ Z mit n + x = x + n = x für alle x ∈ Z

(nämlich n = 0).
Existenz von additiven Inversen: Für jedes x ∈ Z gibt es ein y ∈ Z mit x + y =

0 = y + x (nämlich y = −x).
Existenz der Eins: Es gibt genau ein e ∈ Z mit ex = xe = x für alle x ∈ Z (nämlich
e = 1).

Distributivgesetz: a(b+ c) = ab+ ac (und dann natürlich auch (b+ c)a = ba+ ca).
Kürzungsregel: Ist c 6= 0 und ac = bc so folgt a = b.

In der Sprache der Algebra bedeutet dies: (Z,+, ·) ist ein kommutativer Ring ohne Nullteiler, d.h. ein

Integritätsbereich.

Die Teilmengen N+, N von Z sind bezüglich + und · abgeschlossen, d.h. enthalten mit
a, b auch a+ b und ab.

Wie üblich setzen wir für a, b ∈ Z: a− b = a+ (−b). Für a, b, c ∈ Z gelten dann:

• a(b− c) = ab− ac.
• −(ab) = (−a)b = a(−b).
• ab = (−a)(−b).
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1.1.3. Ganze Zahlen (und damit natürliche Zahlen) können auch ihrer Größe nach ver-
glichen werden. Wie üblich schreiben wir a ≤ b, falls a kleiner oder gleich b ist. Ebenso
habe a < b, a > b, a ≥ b die übliche Bedeutung. Dann gelten für a, b, c ∈ Z folgende
Regeln:

• a ≤ a
• (a ≤ b) ∧ (b ≤ a)⇒ a = b.
• (a ≤ b) ∧ (b ≤ c)⇒ a ≤ c.
• a ≤ b oder b ≤ a.
• a ≤ b⇒ a+ c ≤ b+ c, a < b⇒ a+ c < b+ c.
• a ≤ b, c ≥ 0⇒ ac ≤ bc, a < b, c > 0⇒ ac < bc.
• a ≤ b, c ≤ 0⇒ ac ≥ bc, a < b, c < 0⇒ ac > bc.

In der Sprache der Algebra: (Z,+, ·,≤) ist ein total geordneter Ring.

Wir setzen noch für a ∈ Z:

|a| =

{
a a ≥ 0

−a a < 0
.

Dann ist |a| ≥ 0, |a| = 0 ⇐⇒ a = 0 und für b ∈ N gelten

|a| < b ⇐⇒ −b < a < b, |a| ≤ b ⇐⇒ −b ≤ a ≤ b .

Weiters ist |ab| = |a||b| für alle a, b ∈ Z.

1.1.4. In N haben wir das folgende Induktionsprinzip: Sei A ⊂ N. Gelten dann

• 0 ∈ A;
• ∀n ∈ N : n ∈ A⇒ n+ 1 ∈ A;

so ist A = N. Wie bekannt, beruht darauf das Beweisprinzip der vollständigen Induktion.
Das Induktionsprinzip hat folgende logisch äquivalente Fassung: Jede nicht leere Teil-

menge von N hat ein kleinstes Element.

1.2. Division mit Rest.

1.2.1. Schon in der Volksschule lernen wir mit Rest zu dividieren. Das schaut dann zum
Beispiel so aus:

13578 : 11 = 1234
25
37
48
4R .

Dies ist also ein Rechenverfahren, das für (a, b) ∈ Z× N+ (hier a = 13578, b = 11) ein
Ergebnis (q, r) ∈ Z × Z liefert (hier q = 1234, r = 4). Wie hängen nun (a, b) und (q, b)
zusammen? Antwort: a = qb+ r, im Beispiel also 13578 = 1234 · 11 + 4.
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Satz 1.2.2. Seien a ∈ Z, b ∈ N+. Dann gibt es eindeutig bestimmte q ∈ Z, r ∈ {0, 1, . . . b−
1} mit a = qb+ r. Zusatz: Gilt a ∈ N so ist auch q ∈ N.

Beweis. Existenz von q und r: Wir setzen

T = {a+ kb | k ∈ Z} = {a, a± b, a± 2b, . . .}.
Dann ist a+ |a|b ∈ T . Wegen

a+ |a|b
b≥1, |a|≥0
≥ a+ |a| =

{
2a falls a ≥ 0

0 falls a < 0
≥ 0

gilt sogar
a+ |a|b ∈ T ∩ N .

Daher ist die Menge T ∩ N nicht leer und hat somit ein kleinstes Element. Sei dieses r.
Wegen r ∈ T gibt es k ∈ Z mit r = a + kb. Setzen wir q = −k, so folgt a = qb + r. Es
bleibt r ∈ {0, . . . , b − 1} zu zeigen. Wegen r ∈ N ist r ≥ 0. Angenommen es ist r ≥ b.
Dann ist r − b ∈ N und wegen

r − b = a+ kb− b = a+ (k − 1)b

ist auch r − b ∈ T , also r − b ∈ T ∩ N und damit r − b ≥ r. Es folgt b ≤ 0, Widerspruch.
Eindeutigkeit von q und r: Seien q, q′ ∈ Z, r, r′ ∈ {0, 1, . . . , b−1}mit a = qb+r = q′b+r′.

Wir zeigen r = r′ und q = q′. Aus qb+ r = q′b+ r′ folgt

r − r′ = (q′ − q)b, und damit |r − r′| = |q′ − q|b .

Wegen r, r′ ∈ {0, 1, . . . , b− 1} ist

0 ≤ r < b und − b < −r′ ≤ 0

woraus
−b < r − r′ < b also |r − r′| < b

folgt. Wir erhalten damit
|q′ − q|b = |r − r′| < b

woraus wegen b > 0, |q′ − q| < 1 folgt. Also ist |q′ − q| = 0, d.h. q′ − q = 0 und daher
q′ = q. Dann ist auch r = a− qb = a− q′b = r′.

Zusatz: Seien a ∈ N. Angenommen es ist q /∈ N. Dann ist q ≤ −1 und damit a =
qb+ r ≤ −b+ r < 0, Widerspruch. �

Definition 1.2.3. Seien a ∈ Z und b ∈ N+. Sind q ∈ Z und r ∈ {0, 1, . . . , b − 1} mit
a = qb+ r, so heißt q der Quotient und r der Rest der Division von a durch b. Man sagt
auch, dass a bei der Division durch b den Rest r läßt.

Beispiele 1.2.4.

1. Wir haben gesehen, dass 13578 = 1234 · 11 + 4 ist. Es folgt −13578 = (−1234) ·
11− 4 = (−1234) · 11− 11 + 11− 4 = (−1235) · 11 + 7.
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2. Wir zeigen, dass jede Quadratzahl in N bei der Division durch 4 den Rest 0 oder
1 läßt. Sei also n2 (n ∈ N) eine Quadratzahl. Wir dividieren zuerst n durch 4:
n = 4q + r mit r ∈ {0, 1, 2, 3}. Dann folgt

n2 = (4q + r)2 = 16q2 + 8qr + r2 = 4(4q2 + 2qr) + r2 =

=


4(4q2 + 2qr) + 0 falls r = 0

4(4q2 + 2qr) + 1 falls r = 1

4(4q2 + 2qr + 1) + 0 falls r = 2

4(4q2 + 2qr + 2) + 1 falls r = 3

.

Die Behauptung folgt.
Eine Anwendung: In der Folge (11, 111, 1111, 11111, . . .) kommt keine Quadrat-

zahl vor. Denn, jedes Folgenglied a hat die Form a = 100n + 11 mit n ∈ N. Es
folgt

a = 4 · 25n+ 2 · 4 + 3 = 4 · (25n+ 2) + 3 .

Also läßt jedes Folgenglied bei der Division durch 4 den Rest 3, kann also keine
Quadratzahl sein.

1.3. Teiler und Vielfache.

Definition 1.3.1. Seien a, b ∈ Z. Gibt es ein k ∈ Z mit bk = a, so schreibt man b | a
und sagt

• b teilt a;
• a ist durch b teilbar;
• b ist ein Teiler von a.
• a ist ein Vielfaches von b.

Ist b kein Teiler von a so schreibt man b - a.

1.3.2. Seien b ∈ N+ und a ∈ Z. Aus der Eindeutigkeitsaussage im Satz über die Division
mit Rest (1.2.2) folgt sofort: b ist genau dann ein Teiler von a, wenn a bei der Division
durch b den Rest 0 läßt. Mit Hilfe der Division mit Rest kann also rechnerisch entschieden
werden, ob eine Zahl ein Teiler einer anderen ist.

Satz 1.3.3 (Eigenschaften der Teilerrelation). Seien a, b, c ∈ Z. Dann gelten:

1. 1 | b, b | 0, b | b.
2. 0 | a ⇐⇒ a = 0.
3. b | a ⇐⇒ |b| | |a| ⇐⇒ ±b | ±a.
4. (b | a) ∧ (a | c)⇒ b | c.
5. Sind n ∈ N und x1, y1,. . . , xn, yn ∈ Z und gilt b | xi, i = 1, . . . , n, so gilt b |∑n

i=1 xiyi. Insbesondere gelten: Aus b | a folgt b | ac und aus b | a und b | c folgt
b | a± c.
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In der Sprache der Algebra bedeutet dies: die Menge aller ganzen Zahlen, die von b geteilt

werden, also die Menge bZ = {0,±b,±2b,±3b, . . .} aller Vielfachen von b ist ein Ideal des Ringes

Z.

6. b | a⇒ bc | ac. Ist c 6= 0 so gilt auch die Umkehrung: [(c 6= 0) ∧ (bc | ac)]⇒ b | a.
7. Ist a 6= 0 und gilt b | a, so ist |b| ≤ |a|.
8. (a | b) ∧ (b | a) ⇐⇒ |a| = |b|.

Beweis. 1. 1 · b = b = b · 1⇒ 1 | b ∧ b | b. 0 = 0 · b⇒ b | 0.
2. Ist a = 0 so gilt 0 = a | a nach 1. Gelte umgekehrt 0 | a. Dann gibt es k ∈ Z mit

a = k0 und es folgt a = 0.
3. Seien e, f ∈ {−1, 1} mit a = e|a| und b = f |b|. Wegen e2 = f 2 = 1 gelten dann auch
|a| = ea und |b| = fb.

Wir nehmen zunächst b | a an. Dann gibt es k ∈ Z mit a = kb. Es folgt

|a| = ea = ekb = (ekf)|b| ,

also |b| | |a|.
Gelte nun umgekehrt |b| | |a|. Dann gibt es k ∈ Z mit |a| = k|b|. Es folgt

a = e|a| = ek|b| = (ekf)b ,

also b | a.
Wegen |±a| = |a|, |±b| = |b| folgt damit auch |b| | |a| ⇐⇒ ±b | ±a.
4. Es gelte also b | a und a | c. Dann gibt es k, l ∈ Z mit a = kb und c = la. Dann ist

c = (lk)b, also b | c.
5. Es gelte b | xi, für i = 1, . . . , n. Dann gibt es k1,. . . kn ∈ Z mit xi = kib für i = 1, . . . , n.

Es folgt
n∑
i=1

xiyi =
n∑
i=1

kibyi = b
n∑
i=1

kiyi ,

also b |
∑n

i=1 xiyi.
6. Ist b | a, so gilt a = kb mit k ∈ Z. Es folgt ac = kbc, also bc | ac. Gelte nun bc | ac

und c 6= 0. Dann ist ac = kbc mit k ∈ Z. Wegen c 6= 0 können wir c in dieser Gleichung
kürzen und erhalten a = kb, und daher b | a.

7. Wir nehmen a 6= 0 und b | a an. Dann gilt a = kb mit k ∈ Z. Wegen a 6= 0 ist auch
k 6= 0 und damit |k| ≥ 1. Es folgt

|a| = |k||b| ≥ |b| .

8. Es gelte also a | b und b | a. Ist a = 0, so folgt aus a | b nach 2. auch b = 0. Analog
folgt aus b | a und b = 0 auch a = 0.

Wir können daher a 6= 0 und b 6= 0 annehmen. Wir wenden nun zweimal Teil 7. an:

a | b⇒ |a| ≤ |b|, b | a⇒ |b| ≤ |a| .

Also ist |a| = |b|.
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Gelte nun umgekehrt |a| = |b|. Nach 1. gelten dann |a| | |b| und |b| | |a|. Anwendung
von 3. liefert a | b und b | a. �

Beispiel 1.3.4. Als Anwendung dieser Regeln lösen wir folgende Aufgabe der Mathema-
tikolympiade in Großbritannien aus dem Jahr 2001/2002:

Bestimmen Sie alle (x, y) ∈ Z× Z, die der Gleichung

(1.3.4.1) 1 + x2y = x2 + 2xy + 2x+ y

genügen.
Bemerkung: Gleichungen, in denen die Variablen auf ganze Zahlen beschränkt sind,

nennt man diophantische Gleichungen (nach dem griechischen Mathematiker Diophantos
von Alexandria, ca. 250 n. Chr.).

Wir nehmen nun an, dass (x, y) ∈ Z2 eine Lösung der Gleichung (1.3.4.1) ist und formen
um:

x2y − 2xy − y = x2 + 2x− 1, also (x2 − 2x− 1)y = x2 + 2x− 1 .

Daher ist x2 − 2x− 1 ein Teiler von x2 + 2x− 1. Wir wollen ausnutzen, dass Teiler einer
Zahl z ungleich Null betragsmäßig kleiner als z sein müssen. Für große positive x ist
aber x2− 2x− 1 sowieso betragsmäßig kleiner als x2 + 2x− 1, dies wird also direkt nichts
bringen. Wir müssen also x2+2x−1 irgendwie kleiner machen. Wir benutzen dazu unsere
Regeln:

(x2 − 2x− 1 | x2 + 2x− 1) ∧ (x2 − 2x− 1 | x2 − 2x− 1)⇒
x2 − 2x− 1 | (x2 + 2x− 1)− (x2 − 2x− 1) = 4x .

Also erhalten wir jetzt x = 0 oder |x2 − 2x− 1| ≤ 4|x|.
Wir nehmen also x 6= 0 an und wir untersuchen zunächst wann x2−2x−1 < 0 ist. Dies

ist äquivalent zu (x− 1)2 − 2 < 0, also zu x− 1 ∈ {−1, 0, 1} also zu (x 6= 0) x ∈ {1, 2}.
Wir nehmen daher jetzt an, dass x /∈ {0, 1, 2} gilt. Ist x ≥ 3 so folgt, dass

x2 − 2x− 1 ≤ 4x

gilt. Wir erhalten daher

x2 − 6x− 1 ≤ 0 also (x− 3)2 − 10 = x2 − 6x− 1 ≤ 0.

Wegen x ≥ 3 folgt daraus x ∈ {3, 4, 5, 6}.
Sei nun x < 0. Dann gilt also

x2 − 2x− 1 ≤ −4x also (x+ 1)2 − 2 = x2 + 2x− 1 ≤ 0 .

Es folgt x+ 1 ∈ {−1, 0, 1} also (x < 0) x ∈ {−2,−1}.
Damit haben wir nun gezeigt: Ist (x, y) ∈ Z2 eine Lösung unserer Gleichung, so muss

x ∈ {−2,−1, 0, 1, 2, 3, 4, 5, 6} gelten. Wir erhalten daher für jeden dieser möglichen Werte
von x eine lineare Gleichung in y, die wie üblich gelöst werden kann. Vorsicht: Wir haben
die Bedingung y ∈ Z. Es kann also vorkommen, dass diese lineare Gleichung keine Lösung
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(in Z) hat; dies passiert genau wenn x ∈ {−2, 4, 5, 6} gilt. Als Lösungsmenge ergibt sich
damit

{(−1,−1), (0, 1), (1,−1), (2,−7), (3, 7)} .

1.4. Der größte gemeinsame Teiler.

Definition 1.4.1. Sei a ∈ Z. Wir bezeichnen mit

T (a) = {t ∈ N+ | t | a}

die Menge aller echt positiven Teiler von a.

Beispiele 1.4.2.

1. Seien a ∈ Z und t ∈ N+. Nach 1.3.3.3 gilt t | a ⇐⇒ t | −a. Es folgt T (a) =
T (−a) = T (|a|).

2. Nach 1.3.3.1 gilt T (0) = N+.
3. T (1) = {1}.
4. In der folgenden Tabelle sind für manche natürliche Zahlen n die Anzahl der Ele-

mente von T (n) eingetragen

n 4 5 6 7 8 9 16 25 26 36
#T (n) 3 2 4 2 4 3 5 3 4 9

Was fällt auf? Antwort: In der Tabelle ist #T (n) nur dann ungerade, wenn n eine
Quadratzahl ist.
Welche Vermutung könnte man aufstellen? Antwort: Für alle n ∈ N+ gilt: #T (n)
ist genau dann ungerade, wenn n eine Quadratzahl ist.

Lemma 1.4.3. Für a, b, k ∈ Z gelten:

1. 1 ∈ T (a). Inbesondere ist T (a) nicht leer.
2. Ist a 6= 0, so gilt

{1, |a|} ⊂ T (a) ⊂ {1, 2, . . . , |a|} .

Insbesondere ist T (a) endlich für a 6= 0.
3. a | b ⇐⇒ T (a) ⊂ T (b).
4. T (a) ∩ T (b) = T (a) ∩ T (b+ ka).

Beweis. 1 folgt aus 1.3.3.1 und 2 folgt aus 1.3.3.1,3,7.
3. Gilt a | b so folgt T (a) ⊂ T (b) aus 1.3.3.4. Gelte nun umgekehrt T (a) ⊂ T (b). Ist

a = 0, so folgt N+ = T (0) ⊂ T (b). Aus Teil 2 erhalten wir damit auch b = 0 und es folgt
a | b.

Sei nun a 6= 0. Wegen |a| ∈ T (a) (nach Teil 2) folgt |a| ∈ T (b) also |a| | b, also auch
a | b (1.3.3.3).

4. Wir zeigen zuerst T (a) ∩ T (b + ka) ⊂ T (a) ∩ T (b) für alle a, b, k ∈ Z. Seien also a,
b, k ∈ Z und t ∈ T (a) ∩ T (b + ka). Dann ist nach Definition t ∈ N+ und t | a, t | b + ka.
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Wir müssen also nur noch t | b zeigen. Dies folgt aber aus 1.3.3.5:

t | a ∧ t | b+ ka⇒ t | b+ ka− ka = b .

Wir zeigen nun T (a)∩T (b) ⊂ T (a)∩T (b+ka) für alle a, b, k ∈ Z. Seien also a, b, k ∈ Z.
Wir setzen a′ = a, b′ = b + ka, k′ = −k und erhalten mit Hilfe der schon bewiesenen
Inklusion:

T (a) ∩ T (b) = T (a′) ∩ T (b′ + k′a′) ⊂ T (a′) ∩ T (b′) = T (a) ∩ T (b+ kb) .

�

1.4.4. Seien k ∈ N+ und a1,. . . , ak ∈ Z. Dann ist nach Definition

T (a1) ∩ . . . ∩ T (ak)

die Menge aller echt positive Zahlen, die alle ai teilen, also die Menge der echt positiven,
gemeinsamen Teiler der ai. Wegen 1 | ai für i = 1, . . . , k ist diese Menge nicht leer.

Sind alle ai = 0, so gilt nach Beispiel 1.4.2.2

T (a1) ∩ . . . ∩ T (ak) = N+ .

Seien nun nicht alle ai gleich Null, etwa al 6= 0 mit 1 ≤ l ≤ k. Dann ist wegen

T (a1) ∩ . . . ∩ T (ak) ⊂ T (al)

und Lemma 1.4.3.2 T (a1) ∩ . . . ∩ T (ak) endlich und besitzt daher ein größtes Element.
Daher ist folgende Definition sinnvoll.

Definition 1.4.5. Seien k ∈ N+ und a1,. . . , ak ∈ Z nicht alle Null. Dann heißt

ggT(a1, . . . , ak) := max(T (a1) ∩ . . . ∩ T (ak))

der größte gemeinsame Teiler von a1,. . . , ak.

Beispiele 1.4.6. Es seien a1,. . . , ak ∈ Z nicht alle Null.

1. Ist k = 1 so gilt ggT(a1) = |a1|.
2. Es gilt

ggT(a1, . . . , ak) = ggT(±a1, . . . ,±k) = ggT(|a1|, . . . , |ak|)
(wegen T (ai) = T (−ai) = T (|ai|)).

3. ggT(a1, . . . , ak) hängt nicht von der Reihenfolge der ai ab, d.h.: Ist σ eine Permu-
tation der Menge {1, . . . , k} so gilt

ggT(a1, . . . , ak) = ggT(aσ(1), . . . , aσ(k)) .

Denn:
T (a1) ∩ . . . ∩ T (ak) = T (aσ(1)) ∩ . . . ∩ T (aσ(k)).

4. Ist a ∈ Z \ {0} so gilt ggT(a, 0) = |a|.
5. Seien a, b ∈ Z nicht beide Null und k ∈ Z. Wegen Lemma 1.4.3.4 gilt dann

ggT(a, b) = max(T (a) ∩ T (b)) = max(T (a) ∩ T (b+ ka)) = ggT(a, b+ ka) .
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6. Wir benutzen Beispiel 5 um d = ggT(123456789, 432) zu bestimmen. Wir dividieren
dazu 123456789 mit Rest durch 432 und erhalten

123456789 = 285779 · 432 + 261 .

Es folgt

d = ggT(123456789, 432) = ggT(123456789− 28779 · 432, 432) =

= ggT(261, 432) .

Analog geht es weiter. Wir dividieren 432 mit Rest usw. Wir erhalten

d = ggT(261, 432) = ggT(261, 261 + 171) = ggT(261, 171) =

= ggT(171 + 90, 171) = ggT(90, 171).

Nun könnte man analog fortfahren, aber es lohnt sich genau hinzuschauen: Dividiert
man 171 mit Rest durch 90 so erhält man 171 = 90 + 81. Es gilt aber auch 171 =
2 · 90− 9. Beachte, dass −9 betragsmäßig viel kleiner als 81 ist. Es folgt

d = ggT(90, 171) = ggT(90, 2 · 90− 9) = ggT(90,−9) = ggT(90, 9) = 9 .

Diese Methode funktioniert nun nicht nur für die zwei Zahlen 123456789 und 432,
sondern ganz allgemein.

Satz 1.4.7. Seien a, b ∈ N mit a > b. Wir definieren induktiv eine Folge (rn)n∈N natürli-
cher Zahlen wie folgt:

r0 = a, r1 = b,

und für n ≥ 2: rn =

{
0 falls rn−1 = 0

Rest der Division von rn−2 durch rn−1 falls rn−1 6= 0
.

Dann gibt es n ∈ N+ mit rn = 0. Ist n ∈ N+ so klein wie möglich mit rn = 0, so gilt
rn−1 = ggT(a, b) (Euklidische Algorithmus zur Bestimmung des größten gemeinsamen
Teilers).

Beweis. Angenommen es ist rn 6= 0 für alle n ∈ N+. Da für n ≥ 2, rn der Rest einer
Division durch rn−1 ist, folgt rn < rn−1 für n ≥ 2. Also ist (rn)n∈N+ eine streng monoton
fallende Folge natürlicher Zahlen. So eine kann aber nicht existieren. Also ist rn = 0 für
mindestens ein n ∈ N+ (und dann nach Definition rk = 0 für alle k ≥ n).

Sei nun n ∈ N+ minimal mit rn = 0. Wir zeigen

ggT(a, b) = ggT(ri, ri+1)

für i = 0, . . . , n − 1. Wir benutzen dazu Induktion nach i. Wegen r0 = a, r1 = b, ist die
Aussage für i = 0 klar. Sei jetzt 0 ≤ i ≤ n− 2 und es gelte ggT(a, b) = ggT(ri, ri+1). Wir
müssen ggT(a, b) = ggT(ri+1, ri+2) zeigen.
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Wegen i + 1 ≤ n − 1 < n ist ri+1 6= 0. Daher ist nach Definition ri+2 der Rest der
Division von ri durch ri+1. Also gibt es k ∈ Z mit ri = kri+1 + ri+2. Es folgt

ggT(a, b) = ggT(ri, ri+1) = ggT(kri+1 + ri+2, ri+1)
1.4.6.4

= ggT(ri+2, ri+1) = ggT(ri+1, ri+2).

Beispiel 1.4.8. Zur Illustration noch ein Beispiel dazu. Wir bestimmen ggT(−352, 106).
Zunächst ist ggT(−352, 106) = ggT(352, 106). Nun dividieren wir laufend mit Rest und
erhalten:

352 = 3 · 106 + 34 ⇒ r2 = 34,

106 = 3 · 34 + 4 ⇒ r3 = 4,

34 = 8 · 4 + 2 ⇒ r4 = 2,

4 = 2 · 2 + 0 ⇒ r5 = 0 .

Also ist ggT(−352, 106) = 2.

�

Satz 1.4.9. Seien k ∈ N+, a1,. . . , ak ∈ Z nicht alle Null und d ∈ N+. Dann sind
äquivalent:

1. d = ggT(a1, . . . , ak).
2. d | ai, i = 1, . . . , k und es gibt x1,. . . , xk ∈ Z mit d = x1a1 + . . .+ xkak.
3. d | ai, i = 1, . . . , k und ist d′ ∈ N+ mit d′ | ai für alle i = 1, . . . , k, so gilt d′ | d.

Beweis. 1 ⇒ 2. Es sei also d = ggT(a1, . . . , ak). Nach Definition des ggT gilt dann d | ai
für alle i = 1, . . . , k. Wir müssen also noch x1,. . . , xk ∈ Z mit d = x1a1+ . . .+xkak finden.

Wir setzen dazu

L = {x1a1 + . . .+ xkak | x1, . . . , xk ∈ Z} ⊂ Z .

Sei 1 ≤ j ≤ k mit aj 6= 0. Dann ist

0 < a2j = 0 · a1 + . . .+ 0 · aj−1 + aj · aj + 0 · aj+1 + . . .+ 0 · ak ∈ L .

Daher ist L∩N+ 6= 0. Wir bezeichnen mit d′ das kleinste Element von L∩N+ und zeigen
d′ = d (dann ist d = d′ ∈ L). Wir wählen dazu x1,. . . , xk ∈ Z mit d′ = x1a1 + . . .+ xkak.

Wegen d | ai, i = 1, . . . k, gilt auch d | d′ nach 1.3.3.5. Anwendung von 1.3.3.7 liefert
d = |d| ≤ |d′| = d′. Es bleibt d′ ≤ d zu zeigen. Nach Definition des ggT genügt es dazu
d′ | ai für alle i = 1, . . . , k zu zeigen. Angenommen, dies ist falsch. Dann könen wir ein
1 ≤ j ≤ k mit d′ - aj wählen. Wir dividieren nun aj durch d′ mit Rest: aj = qd′ + r.
Wegen d′ - aj ist 0 < r < d′.

Nun gilt

r = aj − qd′ = aj − q(x1a1 + . . .+ xkak) =

= (−qx1)a1 + . . .+ (−qxj−1)aj−1 + (1− qxj)aj + (−qxj+1)aj+1 + . . .+ (−qxk)ak ∈ L.
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Wegen r > 0 folgt sogar r ∈ L ∩ N+. Da d′ das kleinste Element von L ∩ N+ ist, folgt
r ≥ d′, was r < d′ widerspricht.

2 ⇒ 3. Es gelte also d | ai für alle i = 1, . . . , k und es seien x1,. . . , xk ∈ Z mit
d = x1a1 + . . .+xkak. Wir müssen noch zeigen: Ist d′ ∈ N+ mit d′ | ai für alle i = 1, . . . , k,
so gilt d′ | d. Dies folgt aber aus 1.3.3.5

3 ⇒ 1. Wir nehmen also an, dass die Aussage in 3 wahr ist. Es sei d′ = ggT(a1, . . . , ak)
und zeigen d = d′. Wegen d′ | ai, für alle i = 1, . . . , k gilt nach Voraussetzung d′ | d.

Wegen d′ = ggT(a1, . . . , ak) können wir die schon bewiesene Implikation 1⇒ 2 verwen-
den: Es gibt x1, . . . , xk ∈ Z mit d′ = x1a1 + . . . + akxk. Wegen d | ai für alle i = 1, . . . , k
gilt wieder nach 1.3.3.5 d | d′.

Wir wissen also jetzt d′ | d und d | d′. Anwendung von 1.3.3.8 liefert jetzt d = |d| =
|d′| = d′. �

Korollar 1.4.10. Es seien k ∈ N+ und a1,. . . , ak ∈ Z nicht alle Null. Ist d = ggT(a1, . . . , ak)
so gilt

T (a1) ∩ . . . ∩ T (ak) = T (d) .

Beweis. Es sei d′ ∈ T (d). Dann folgen d′ ∈ N+ und d′ | d. Wegen d | ai für alle i = 1, . . . , k
gilt dann auch d′ | ai, i = 1, . . . , k. Es folgt d′ ∈ T (a1) ∩ . . . T (ak). Damit haben wir ⊃
gezeigt.

Es sei nun umgekehrt d′ ∈ T (a1) ∩ . . . ∩ T (ak). Nach 1.4.9.3 gilt dann d′ | d, also
d′ ∈ T (d). �

1.4.11. Seien k ∈ N+, a1, . . . ak ∈ Z nicht alle Null und d = ggT(a1, . . . , ak). Nach 1.4.9
gibt es x1,. . . , xk ∈ Z mit d = x1a1 + . . .+ akxk. Wie findet man solche xi?

Wir behandeln zunächst den Fall k = 2 an einem Beispiel. Wir hatten schon berechnet
(siehe Beispiel 1.4.8):

352 = 3 · 106 + 34,(1.4.11.1)

106 = 3 · 34 + 4(1.4.11.2)

34 = 8 · 4 + 2(1.4.11.3)

4 = 2 · 2 + 0 .(1.4.11.4)

Es folgt 2 = ggT(352, 106). Nun rechnen wir zurück:

ggT(106, 352) = 2
(1.4.11.3)

= 34− 8 · 4 (1.4.11.2)
= 34− 8 · (106− 3 · 34) =

= 25 · 34− 8 · 106
(1.4.11.1)

= 25 · (352− 3 · 106)− 8 · 106

= 25 · 352− 83 · 106 .

Der folgende Satz zeigt, wie man den Fall k ≥ 3 auf den Fall k = 2 zurückführt.
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Satz 1.4.12. Seien k ∈ N≥3, a1,. . . , ak ∈ Z, sodass von den k − 1 Zahlen a1,. . . , ak−1
nicht alle Null sind. Wir setzen d = ggT(a1, . . . , ak−1). Dann gilt

ggT(a1, . . . , ak) = ggT(d, ak)

(rekursive Berechnung des ggT).
Sind u, v, x1,. . . , xk−1 ∈ Z mit ggT(d, ak) = ud + vak und d = x1a1 + . . . + xk−1ak−1

so gilt
ggT(a1, . . . , ak) = (ux1)a1 + . . .+ (uxk−1)ak−1 + vak .

Beweis. Wir beweisen zunächst ggT(d, ak) = ggT(a1, . . . , ak). Wir setzen dazu d′ =
ggT(d, ak). Um d′ = ggT(a1, . . . , ak) zu zeigen, benutzen wir die Äquivalenz 1 ⇐⇒ 3 in
1.4.9. Wegen d′ = ggT(d, ak) gilt d′ | d und d′ | ak. Für i = 1, . . . , k − 1 gilt d | ai. Aus
d′ | d und d | ai folgt nun d′ | ai für i = 1, . . . , k − 1.

Sei nun e ∈ N+ mit e | ai, i = 1, . . . , k. Wir müssen e | d′ zeigen. Wegen e | a1, . . . , ak−1
und d = ggT(a1, . . . , ak−1) gilt e | d (1.4.9). Wegen e | d und e | ak gilt wiederum nach
1.4.9 e | ggT(d, ak) = d′.

Schließlich gilt

ggT(a1, . . . , ak) = ggT(d, ak) = ud+ vak = u(x1a1 + . . .+ xk−1ak−1) + vak =

= (ux1)a1 + . . .+ (uxk−1)ak−1 + vak .

�

Beispiel 1.4.13. Wir bestimmen d = ggT(2107, 1848,−1554) und x, y, z ∈ Z mit d =
2107x+ 1848y − 1554z.

Dazu berechnen wir zunächst ggT(1848, 1554). Laufende Division mit Rest liefert:

1848 = 1 · 1554 + 294,(1.4.13.1)

1554 = 5 · 294 + 84,(1.4.13.2)

294 = 3 · 84 + 42,(1.4.13.3)

84 = 2 · 42 + 0 .(1.4.13.4)

Also erhalten wir ggT(1848,−1554) = 42. Nun bestimmen wir x,y ∈ Z mit 42 = 1848x−
1554y. Dazu rechnen wir wieder zurück:

42
(1.4.13.3)

= 294− 3 · 84
(1.4.13.2)

= 294− 3 · (1554− 5 · 294) =

= 16 · 294− 3 · 1554
(1.4.13.1)

= 16 · (1848− 1554)− 3 · 1554 =

= −19 · 1554 + 16 · 1848 = 19 · (−1554) + 16 · 1848 .

Nach 1.4.12 ist nun ggT(2107, 1848,−1554) = ggT(2107, 42). Um diesen zu bestimmen,
dividieren wir wieder laufend mit Rest:

2107 = 50 · 42 + 7

42 = 6 · 7 + 0 .
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Es folgt 7 = ggT(2107, 42) = 1 · 2107 + (−50) · 42. Insgesamt erhalten wir nun

7 = ggT(2107, 1848,−1554) = 1 · 2107 + (−50)42

= 1 · 2107 + (−50)(16 · 1848 + 19 · (−1554)) =

= 1 · 2107− 800 · 1848 + (−950) · (−1554) .

Definition 1.4.14. Seien a, b ∈ Z. a und b heißen teilerfremd, falls (a, b) 6= (0, 0) ist und
falls ggT(a, b) = 1 gilt.

Satz 1.4.15. Seien k ∈ N+, a1,. . . , ak ∈ Z nicht alle Null und a, b, c ∈ Z. Dann gelten:

1. Ist c 6= 0 so gilt

ggT(ca1, . . . , cak) = |c| ggT(a1, . . . , ak) .

Insbesondere: Ist d = ggT(a1, . . . , ak) so ist ggT(a1/d, . . . , ak/d) = 1.
2. Sind a und b teilerfremd, so folgt aus a | bc auch a | c.
3. Sind a und b teilerfremd, so folgt aus a | c und b | c auch ab | c.
4. Sind für i = 1, . . . , k c und ai teilerfremd, so sind auch c und a1 · . . . ·ak teilerfremd.
5. Sind a und b teilerfremd so auch am und bn für alle m, n ∈ N+.

Beweis. 1. Wir machen eine Induktion nach k. Für k = 1 ist die Aussage trivial und für
k = 2 siehe Aufgabe 18. Es sei nun k ≥ 2 und die Aussage gelte für k. Wir zeigen, dass
sie auch für k + 1 gilt. Seien also a1, . . . , ak+1 ∈ Z.

1.Fall: a1 = a2 . . . = ak = 0. Dann folgt

ggT(ca1, . . . , cak+1) = ggT(0, . . . , 0, cak+1) = |cak+1| = |c||ak+1| =
= |c| ggT(0, . . . , 0, ak+1) = |c| ggT(a1, . . . , ak+1) .

2.Fall: a1,. . . , ak sind nicht alle gleich Null. Dann folgt

ggT(ca1, . . . , cak+1)
1.4.12
= ggT(ggT(ca1, . . . , cak), cak+1)

IV
= ggT(|c| ggT(a1, . . . , ak), cak+1) =

1.4.6.2
= ggT(|c| ggT(a1, . . . , ak), |c|ak+1)

k=2
= |c| ggT(ggT(a1, . . . , ak), ak+1) =

1.4.12
= |c| ggT(a1, . . . , ak+1) .

Die Insbesondere–Aussage folgt jetzt aus

d = ggT(a1, . . . , ak) = ggT(d · a1
d
, . . . , d

ak
d

)
d>0
= d ggT(

a1
d
, . . . ,

ak
d

) .

Bemerkung: Die Insbesondere–Aussage folgt auch direkt aus der Definition des ggT.
2. Da a und b teilerfremd sind, gibt es nach 1.4.9 x, y ∈ Z mit ax+ yb = ggT(a, b) = 1.

Durch Multiplikation mit c folgt c = axc + ybc. Wegen a | axc und a | ybc (da ja a | bc)
folgt auch a | axc+ ybc = c.

3. Wegen a | c gibt es k ∈ Z mit c = ak. Es folgt b | c = ak. Da a und b teilerfremd
sind, folgt b | k aus 2. Anwendung von 1.3.3.6 liefert ab | ak = c.
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4. Wir benutzen Induktion nach k. Für k = 1 ist die Aussage trivial. Wir betrachten
nun den Fall k = 2. Wir überlegen uns als erstes (c, a1a2) 6= (0, 0). Ist c 6= 0 so ist dies klar.
Ist aber c = 0, so gilt nach Voraussetzung ai 6= 0, i = 1, . . . , 2 (da c und ai teilerfremd
sind). Also ist auch a1a2 6= 0. Wir setzen nun d = ggT(c, a1a2), d1 = ggT(d, a1) und
d2 = ggT(d, a2). Sei i = 1 oder i = 2. Dann gilt di | d und di | ai. Wegen d | c gilt
nach 1.3.3.4 auch di | c und di | ai. Wegen ggT(c, ai) = 1 folgt nach 1.4.9 di | 1, also
1 = di = ggT(d, ai).

Aus d | a1a2 und ggT(d, a1) = 1 folt aus Teil 2 d | a2. Wir erhalten

1 = ggT(d, a2) = d .

Sei jetzt k ≥ 2 und es seien c und a1 . . . ak−1 teilerfremd. Der Fall k = 2 zeigt dann
auch, dass c und (a1 . . . ak−1)ak = a1 . . . ak teilerfremd sind.

5. Wir verwenden Teil 4 mit c = b, k = m und a1 = . . . = ak = a. Es folgt, dass am

und b teilerfremd sind. Nun verwenden wir wieder Teil 4, diesmal mit c = am, k = n und
a1 = . . . = ak = b. Also sind auch am und bn teilerfremd. �

Satz 1.4.16. Es sei q ∈ Q. Dann gibt es eindeutig bestimmte a ∈ Z, b ∈ N+ mit q = a/b
und ggT(a, b) = 1 (gekürzte Bruchdarstellung von q).

Beweis. Existenz von a, b: Zunächst gibt es a′, b′ ∈ Z, b′ 6= 0 mit q = a′/b′. Ist b′ < 0
so ersetzen wir a′ durch −a′ und b′ durch −b′. Wir können daher b′ ∈ N+ annehmen.
Wir setzen nun d = ggT(a′, b′). Dann gelten d | a′ und d | b′. Also gibt es a, b ∈ Z mit
a′ = ad und b′ = bd. Wegen d, b′ ∈ N+ ist dann auch b ∈ N+. Nach 1.4.15.1 gilt dann
ggT(a, b) = ggT(a′/d, b′/d) = 1. Weiters ist q = a′/b′ = (ad)/(bd) = a/b.

Eindeutigkeit von a und b: Seien a, a′ ∈ Z, b, b′ ∈ N+ mit a/b = q = a′/b′ und
ggT(a, b) = 1 = ggT(a′, b′). Wir zeigen a = a′ und b = b′. Aus a/b = q = a′/b′ folgt
ab′ = a′b. Inbesondere gelten b | ab′ und b′ | a′b. Wegen ggT(a, b) = 1 = ggT(a′, b′)
erhalten wir nach 1.4.15.2 b | b′ und b′ | b. Es folgt |b| = |b′| aus 1.3.3.8. Wegen b, b′ ∈ N+

erhalten wir b = b′. Aus ab = ab′ = a′b folgt nun auch a = a′. �

Satz 1.4.17. Seien n ∈ N+, a0,. . . , an ∈ Z mit an 6= 0. Sei q ∈ Q eine Nullstelle des
Polynoms anX

n + . . .+ a1X + a0 und q = a/b die gekürzte Bruchdarstellung von q. Dann
gelten b | an und a | a0.

Beweis. Wir multiplizieren die Gleichung

0 =
n∑
k=0

akq
k =

n∑
k=0

ak
ak

bk

mit bn und erhalten

0 =
n∑
k=0

aka
kbn−k .
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Nun folgt aus

0 =
n∑
k=0

aka
kbn−k = ana

n +
n−1∑
k=0

aka
kbn−k = ana

n + b
n−1∑
k=0

aka
kbn−1−k

b | anan. Nach 1.4.15.5 gilt ggT(an, b) = 1, woraus nach 1.4.15.2 b | an folgt.
Analog zeigen wir a | a0. Aus

0 =
n∑
k=0

aka
kbn−k = a0b

n +
n∑
k=1

aka
kbn−k = a0b

n + a
n∑
k=1

aka
k−1bn−k

folgt a | a0bn. Wegen ggT(a, bn) = 1 (1.4.15.5) folgt a | a0 (1.4.15.2). �

Beispiel 1.4.18. Wir bestimmen alle q ∈ Q, die Nullstellen des Polynoms P = 3X3 +
4X2 − 5X − 2 sind. Sei dazu q ∈ Q eine Nullstelle von P und sei q = a/b die gekürzte
Bruchdarstellung von q. Anwendung von 1.4.17 liefert a | −2 und b | 3. Es folgt a ∈
{±1,±2} und b ∈ {1, 3} und damit

q ∈ {±1,±2,±1

3
,±2

3
} .

Wir haben also nur mehr endlich viele Möglichkeiten für q. Einsetzen liefert

P (1) = P (−2) = P (−1

3
) = 0 .

Wegen grad(P ) = 3, sind also 1, −2, −1/3 alle Nullstellen von P .

Satz 1.4.19. Seien m ∈ N+ und n ∈ N+, sodass m keine n-te Potenz in Z ist (also
m 6= bn für alle b ∈ Z). Dann ist n

√
m irrational.

Beweis. Angenommen n
√
m ∈ Q. Es sei n

√
m = a/b die gekürzte Bruchdarstellung von

n
√
m. Nun ist n

√
m Nullstelle von Xn − m. Nach 1.4.17 folgt b | 1, also b = 1 (wegen

b ∈ N+). Es folgt n
√
m = a ∈ Z, also m = an, Widerspruch. �

1.5. Das kleinste gemeinsame Vielfache.

Definition 1.5.1. Sei a ∈ Z \ {0}. Wir bezeichnen mit

V (a) = {v ∈ N+ | a | v}

die Menge aller echt positiven Vielfachen von a. Es ist dann also

V (a) = N+|a| = {k|a| | k ∈ N+} .

1.5.2. Seien k ∈ N+ und a1,. . . , ak ∈ Z\{0}. Für alle i = 1, . . . , k gilt dann ai | |a1 . . . ak|.
Also ist |a1 . . . ak| ∈ V (a1) ∩ . . . ∩ V (ak). Inbesondere ist V (a1) ∩ . . . ∩ V (ak) 6= ∅. Daher
besitzt V (a1)∩ . . .∩V (ak) ein kleinstes Element. Die folgende Definition ist also sinnvoll.
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Definition 1.5.3. Seien k ∈ N+ und a1,. . . , ak ∈ Z \ {0}. Dann heißt

kgV(a1, . . . , ak) := min(V (a1) ∩ . . . ∩ V (ak))

das kleinste gemeinsame Vielfache von a1,. . . , ak.

1.5.4. Wie bestimmt man nun das kleinste gemeinsame Vielfache von k ganzen Zahlen
ungleich Null? Wir beweisen dazu drei Sätze. Der erste entspricht Satz 1.4.9 für den
größten gemeinsamen Teiler.

Dies benutzen wir dann um eine rekursive Darstellung des kgV zu geben (1.5.6). Dies
entspricht 1.4.12 für den ggT. Dieser Satz führt das Problem darauf zurück, das kgV von
zwei ganzen Zahlen zu berechnen. Dieses Problem wird dann in 1.5.7 auf die Bestimmung
des ggT’s zweier Zahlen zurück geführt.

Satz 1.5.5. Seien k ∈ N+, a1,. . . , ak ∈ Z \ {0} und v ∈ N+. Dann sind äquivalent:

1. v = kgV(a1, . . . , ak).
2. Für alle i = 1, . . . , k gilt ai | v und ist w ∈ N+ mit ai | w für alle i = 1, . . . , k, so

gilt v | w.

Beweis. 1 ⇒ 2. Sei also v = kgV(a1, . . . , ak). Dann ist v nach Definition ein Vielfaches
aller ai, also gilt ai | v für alle i = 1, . . . , k. Sei nun w ∈ N+ mit ai | w für alle i = 1, . . . , k.
Wir müssen v | w zeigen. Angenommen dies ist falsch. Wir dividieren w mit Rest durch
v: w = kv + r mit r ∈ {1, . . . , v − 1}. Sei 1 ≤ i ≤ k. Aus ai | v und ai | w folgt
ai | w − kv = r aus 1.3.3.5. Also ist r ∈ N+ ein gemeinsames Vielfaches der ai. Da v
das kleinste gemeinsame Vielfache der ai ist, erhalten wir v ≤ r. Dies widerspricht aber
r ≤ v − 1.

2⇒ 1. Habe nun v die Eigenschaft 2. Es sei v′ = kgV(a1, . . . , ak). Da wir die Implikation
1 ⇒ 2 schon bewiesen haben, wissen wir, dass auch v′ die Eigenschaft 2 hat (wenn wir in
2 v durch v′ ersetzen). Wegen ai | v für alle i = 1, . . . , k folgt v′ | v, da v′ die Eigenschaft 2
hat. Wegen ai | v′ für alle i = 1, . . . , k folgt v | v′, da v nach Voraussetzung die Eigenschaft
2 hat. Also ist |v| = |v′| und damit v = v′. �

Satz 1.5.6. Seien k ∈ N≥2, a1,. . . , ak ∈ Z \ {0} und v′ = kgV(a1, . . . , ak−1). Dann gilt
kgV(a1, . . . , ak) = kgV(v′, ak).

Beweis. Wir setzen v = kgV(v′, ak) und zeigen, dass v die Eigenschaft 2 aus 1.5.5 besitzt.
Nach Definition gilt zunächst ak | v. Sei 1 ≤ i ≤ k − 1. Dann gelten ai | v′ und v′ | v,
woraus ai | v folgt.

Sei nun w ∈ N+ mit ai | w für alle i = 1, . . . , k. Wir müssen v | w zeigen. Wegen
v′ = kgV(a1, . . . , ak−1) und ai | w, i = 1, . . . k − 1 gilt v′ | w nach 1.5.5. Also gilt v′ | w
und ak | w. Nochmalige Anwendung von 1.5.5 liefert v | w. �

Satz 1.5.7. Seien a, b ∈ Z \ {0}. Dann gilt

kgV(a, b) =
|ab|

ggT(a, b)
.
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Beweis. Wir setzen d = ggT(a, b) ∈ N+. Wegen d | a (also auch d | |a|) gilt

v := |ab|/d = (|a|/d)|b| ∈ N+ .

Wir zeigen, dass v die Eigenschaft 2 aus 1.5.5 besitzt.
Wegen d | a und d | b gelten |a|/d ∈ Z und |b|/d ∈ Z. Aus

v =
|ab|
d

= |a| |b|
d

= |b| |a|
d

folgen a | v und b | v. Sei nun w ∈ N+ mit a | w und b | w. Wegen d | a, d | b gilt auch
d | w und daher gelten a/d, w/d, b/d ∈ Z. Aus (a/d)d = a | w = (w/d)d folgt nach 1.3.3.6
a/d | w/d. Ersetzt man in dieser Überlegung a durch b, so folgt auch b/d | w/d. Nach
1.4.15.1 gilt ggT(a/d, b/d) = 1. Wegen a/d | w/d und b/d | w/d, folgt aus 1.4.15.3 auch
(a/d)(b/d) | w/d. Wir wenden nocheinmal 1.3.3.6 an und erhalten (ab)/d | w, also auch
v = |ab|/d | w. �

Beispiel 1.5.8. Wir bestimmen kgV(102, 153, 136). Dazu bestimmen wir mit Hilfe von
1.5.7 kgV(102, 153). Wir berechnen zunächst ggT(102, 153). Es ist

153 = 1 · 102 + 51, 102 = 2 · 51 + 0 .

Also ist 51 = ggT(102, 153) und damit

kgV(102, 153) =
102 · 153

51
= 2 · 153 = 306 .

Nun müssen wir nur noch kgV(306, 136) bestimmen. Aus

306 = 2 · 136 + 34, 136 = 4 · 34 + 0

folgt 34 = ggT(306, 136) und damit

kgV(102, 153, 136) = kgV(306, 136) =
306 · 136

34
= 306 · 4 = 1224 .

2. Primzahlen

2.1. Der Fundamentalsatz der Arithmetik.

Definition 2.1.1. p ∈ N+ heißt Primzahl, falls p 6= 1 ist und falls T (p) = {1, p} gilt
(Erinnerung: für a ∈ Z ist T (a) = {t ∈ N+ | t | a}, siehe 1.4.1).

Wir bezeichnen mit P die Menge aller Primzahlen.

Lemma 2.1.2. Seien p ∈ P und a ∈ Z. Dann gilt

ggT(a, p) =

{
p falls p | a
1 falls p - a

.
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Beweis. Gelte einmal p | a. Dann folgt

T (p) = {1, p} ⊂ T (a) ∩ T (p) ⊂ T (p) .

Also ist T (a) ∩ T (p) = {1, p} und daher ggT(a, p) = p.
Es gelte nun p - a. Wegen

{1} ⊂ T (a) ∩ T (p) ⊂ T (p) = {1, p}
und p /∈ T (a) ∩ T (p) folgt T (a) ∩ T (p) = {1} und daher ist ggT(a, p) = 1. �

Satz 2.1.3. Sei p ∈ N mit p ≥ 2. Dann ist p genau dann eine Primzahl, wenn für alle a,
b ∈ Z gilt: p | ab⇒ p | a oder p | b.

Beweis. Sei einmal p eine Primzahl und a, b ∈ Z mit p | ab. Wir zeigen p | a oder p | b.
Falls p | a gilt, sind wir fertig. Wir können daher p - a annehmen und müssen nun p | b
zeigen. Nach Lemma 2.1.2 gilt aber

p | ab und ggT(p, a) = 1 .

Daher folgt p | b aus 1.4.15.2.
Gelte nun umgekehrt p | ab⇒ p | a oder p | b für alle a, b ∈ Z. Wir zeigen, dass p eine

Primzahl ist. Wegen p ≥ 2 ist p 6= 1. Sei nun t ∈ T (p). Dann gibt es u ∈ N+ mit p = tu.
Es folgt p | p = tu. Nach Voraussetzung folgt p | t oder p | u.

1. Fall: p | t. Dann gilt p | t und t | p, woraus (beachte t, p ∈ N+) t = p folgt.
2. Fall: p | u. Wegen tu = p, gilt u | p. Wie eben folgt jetzt u = p. Aus tp = tu = p

erhalten wir t = 1.
Wir haben nun T (p) ⊂ {1, p} gezeigt. Da die inverse Inklusion trivial ist, folgt T (p) =
{1, p}. Daher ist p eine Primzahl. �

Korollar 2.1.4. Seien p ∈ P , k ∈ N+ und a1,. . . , ak ∈ Z mit p | a1 . . . ak. Dann gibt es
ein i ∈ {1, . . . , k} mit p | ai.

Beweis. Wir machen eine Induktion nach k. Für k = 1 ist die Aussage trivial. Sei nun
k ≥ 2 und die Aussage gelte für k− 1. Wir zeigen, dass sie dann auch für k zutrifft. Seien
also a1,. . . , ak ∈ Z mit p | a1 . . . ak = (a1 . . . ak−1)ak. Nach Satz 2.1.3 folgt p | a1 . . . ak−1
oder p | ak. Gilt p | ak so sind wir fertig. Wir können daher p | a1 . . . ak−1 annehmen.
Dann gibt es nach Induktionsvoraussetzung ein i ∈ {1, . . . , k − 1} mit p | ai und wir sind
ebenfalls fertig. �

Satz 2.1.5. Sei n ∈ N mit n ≥ 2. Dann ist n ein Produkt (eventuell mit nur einem
Faktor) von Primzahlen und diese Darstellung von n als Produkt von Primzahlen ist bis
auf die Reihenfolge der Faktoren eindeutig (Fundamentalsatz der Arithmetik).

Beweis. Wir zeigen zunächst die Existenz. Wir benutzen dazu eine Induktion. Wir neh-
men also an, dass jedes m ∈ N mit 2 ≤ m < n ein Produkt von Primzahlen ist, und
zeigen, dass dies auch für n zutrifft.
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Ist n schon selbst eine Primzahl, so ist die Aussage klar. Wir können also annehmen,
dass n keine Primzahl ist. Dann gibt es t ∈ T (n) mit 1 < t < n. Sei u ∈ N+ mit tu = n.
Wegen 1 < t < n ist 2 ≤ t < n. Aus 1 < t < n und n = tu folgt 1 < u < n, also
2 ≤ u < n. Nach Induktionsvoraussetzung sind daher t und u Produkte von Primzahlen.
Wegen n = tu ist auch n ein Produkt von Primzahlen.

Eindeutigkeit: Seien s, t ∈ N+ und p1,. . . , ps, q1,. . . , qt ∈ P mit p1 . . . ps = n = q1 . . . qt.
Wir müssen zeigen, dass s = t gilt, und dass nach eventueller Umnummerierung der qj
pi = qi, i = 1, . . . , s gilt.

Wir benutzen dazu wieder eine Induktion nach n, nehmen also an, dass die Aussage
für alle 2 ≤ m < n gilt.

1.Fall s = 1: Dann ist n = p1 = q1 . . . qt. Es folgt 1 6= q1 ∈ T (p1) = {1, p1}, also p1 = q1.
Dann folgt 1 = q2 . . . qt. Wegen qi ≥ 2 für alle i = 2, . . . t, folgt t − 1 = 0, also t = 1 und
wir sind fertig.

2.Fall s ≥ 2: Wegen p1 | p1 . . . ps = n = q1 . . . qt und 2.1.4, gibt es ein 1 ≤ j ≤ t
mit p1 | qj. Nach einer eventuellen Umnummerierung der qk, können wir j = 1, also
p1 | q1 annehmen. Dann folgt 1 6= p1 ∈ T (q1) = {1, q1}, also p1 = q1. Wir setzen nun
m = n/p1 = n/q1 = p2 . . . ps = q2 . . . qt. Dann ist m < n (wegen p1 > 1) und m ≥ 2
(wegen m = p2 . . . ps, p2 ≥ 2 und s ≥ 2). Nach Induktionsvoraussetzung (angewandt auf
m) folgt s − 1 = t − 1 (also s = t) und nach eventueller Umnummerierung der q2, . . . qs
pi = qi für i = 2, . . . s. �

2.2. Die Verteilung der Primzahlen.

Satz 2.2.1. Es gibt unendlich viele Primzahlen.

Beweis. Angenommen P sei endlich, etwa P = {p1, . . . , pk}. Wegen 2 ∈ P ist k ≥ 1. Setze
n = p1 . . . pk + 1. Wegen k ≥ 1 und pi ≥ 2, i = 1, . . . , k ist n ≥ 3. Nach 2.1.5 wird n daher
von einer Primzahl geteilt. Also gibt es 1 ≤ i ≤ k mit pi | n. Wegen pi | p1 . . . pk folgt
auch pi | n− p1 . . . pk = 1. Also ist pi = 1, Widerspruch. �

Definition 2.2.2. Sei n ∈ N mit n ≥ 2. Dann ist n ∈ T (n)\{1} und daher T (n)\{1} 6= ∅.
Wir setzen p(n) = min(T (n) \ {1}). p(n) ist also die kleinste natürliche Zahl, die n teilt
und grösser oder gleich 2 ist.

Lemma 2.2.3. Sei n ∈ N mit n ≥ 2. Dann gelten:

1. p(n) ist eine Primzahl. Insbesondere ist p(n) die kleinste Primzahl, die n teilt.
2. Ist n keine Primzahl, so gilt p(n) ≤

√
n.

3. Sei x ∈ R+ mit
√
x < n ≤ x. n ist genau dann eine Primzahl, wenn n von keiner

Primzahl ≤
√
x geteilt wird.

Beweis. 1. Angenommen p(n) ist keine Primzahl. Wegen p(n) ≥ 2, gibt es dann ein t ∈ N
mit 1 < t < p(n) und t | p(n). Wegen p(n) | n, folgt 2 ≤ t und t | n. Daher ist t ≥ p(n),
was t < p(n) widerspricht.
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2. Wegen p(n) | n ist n = p(n)m mit m ∈ N+. Nach Vorausetzung ist n keine Primzahl.
Aus 1 folgt m ≥ 2. Daher gilt m ∈ T (n) \ {1}. Inbesondere ist m ≥ p(n). Wir erhalten
n = p(n)m ≥ p(n)2, woraus p(n) ≤

√
n folgt.

3. Sei einmal n eine Primzahl. Wegen
√
x < n wird dann n von keiner Primzahl ≤

√
x

geteilt.
Gelte nun umgekehrt, dass n von keiner Primzahl ≤

√
x geteilt wird. Angenommen n

ist keine Primzahl. Nach Voraussetzung und wegen 1 gilt p(n) >
√
x. Aus 2 folgt aber:

p(n) ≤
√
n ≤
√
x, Widerspruch. �

2.2.4. Sei x ∈ R+. Wir erhalten nun folgendes Verfahren, alle Primzahlen in (
√
x, x] zu

bestimmen, falls die Primzahlen ≤
√
x schon bekannt sind: Wir schreiben alle n ∈ N

mit
√
x < n ≤ x auf. Aus dieser Liste streichen wir alle Zahlen der Form pk wobei p

eine Primzahl ≤
√
x ist und wobei k ∈ N mit k ≥ 2 ist (also alle echten Vielfachen aller

Primzahlen ≤
√
x). Nach 2.2.3.3 bleiben genau die Primzahlen in (

√
x, x] übrig (Sieb des

Eratosthenes).

Beispiel 2.2.5. Durch direktes Ausprobieren (oder Schulwissen) erhält man, dass 2, 3,
5, 7 genau die Menge Primzahlen ≤ 10 ist. Mit Hilfe des Siebs von Eratosthenes (mit
x = 100) können wir nun auch die Primzahlen ≤ 100 bestimmen. Wir schreiben zunächst
die natürlichen Zahlen in (10, 100] auf:

11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

und streichen dann alle echten Vielfachen von 2, 3, 5, 7. Übrig bleibt

11 13 17 19
23 29

31 37
41 43 47

53 59
61 67
71 73 79

83 89
97

Es folgt, dass

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}
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die Menge aller Primzahlen ≤ 100 ist.

2.2.6. Für x ∈ R+ sei π(x) die Anzahl aller Primzahlen ≤ x. Es ist also zum Beispiel
π(10) = 4 und π(100) = 25. Über π(x) gilt der folgende Satz, den wir hier nicht beweisen
können (einen Beweis findet man zum Beispiel in Kapitel 7 in P. Bundschuh, Einführung
in die Zahlentheorie, Springer).

Satz 2.2.7. π(x) ist asymptotisch gleich x/ log(x), d.h.

lim
x→∞

π(x)

x/ log(x)
= 1 .

Dabei ist log der natürliche Logarithmus.

Satz 2.2.8. Für alle k ∈ N+ gibt es ein N ∈ N+, sodass [N + 1, N + k] ∩ P = ∅ ist.
Interpretation: P hat beliebig lange Lücken.

Beweis. Sei also k ∈ N+. Wir setzen N = (k + 1)! + 1 und zeigen, dass jedes n ∈
N ∩ [N + 1, N + k] keine Primzahl ist. Sei dazu n ∈ N ∩ [N + 1, N + k]. Dann gilt
n = N + j = (k + 1)! + j + 1 mit einem 1 ≤ j ≤ k.

Wegen j ≤ k gilt j + 1 | (k + 1)!, also auch j + 1 | (k + 1)! + j + 1 = n. Wegen j ≥ 1
ist j + 1 > 1. Schließlich ist j + 1 < (k + 1)! + j + 1 = n. Also ist n keine Primzahl. �

2.2.9. Lange Lücken treten früher auf, als bei dem im Beweis von 2.2.8 konstruierten N .
Zum Beispiel folgen auf

p = 2614941710599 ∈ P
651 Nicht-Primzahlen. Aber N = 652! + 1 ∼ 3 · 101553.

2.2.10. Man kann auch nach möglichst kurzen Lücken fragen: Ein Paar (p, q) von Prim-
zahlen p, q heißt Primzahlzwilling, falls q = p+ 2 ist. Zum Beispiel sind

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43)

Primzahlzwillinge. Man vermutet, dass es unendlich viele Primzahlzwillinge gibt.

2.3. Teilbarkeit und Primfaktorzerlegung.

2.3.1. Sei z ∈ Z \ {0} und es sei |z| = p1 . . . pr die Primfaktorzerlegung von |z|, also
p1,. . . , pr ∈ P (dabei sei r = 0, falls |z| = 1 ist).

Für p ∈ P sei vp(z) die Mächtigkeit von {1 ≤ i ≤ r | pi = p}.

Beispiel 2.3.2. Sei z = −26936. Dann gilt

|z| = 26936 = 2 · 2 · 2 · 7 · 13 · 37 .

Also gelten:

v2(z) = 3, v7(z) = v13(z) = v37(z) = 1, vp(z) = 0 für p ∈ P \ {2, 7, 13, 37} .
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Satz 2.3.3. Sei z ∈ Z \ {0}. Dann gilt vp(z) = 0 für fast alle p ∈ P (d.h. bis auf endlich
viele p ∈ P) und es ist

z = sgn(z)
∏
p∈P

pvp(z) .

Dabei ist sgn(z) = 1, falls z > 0 und sgn(z) = −1 falls z < 0.
Bemerkung: Wegen vp(z) = 0 sind in dem obigen, zunächst unendlichen Produkt bis

auf endlich viele Faktoren alle 1. Daher ist dieses Produkt definiert.
Umgekehrt: Für p ∈ P sei vp ∈ N mit vp = 0 für fast alle p ∈ P und es sei ε ∈ {−1, 1}.

Setzt man
z = ε

∏
p∈P

pvp ,

so gilt vp(z) = vp für alle p ∈ P.

Beweis. Sei |z| = q1 . . . qr die Primfaktorzerlegung von |z|. Weiters seien p1, . . . , ps die
paarweise verschiedenen Primzahlen, die in (q1, . . . , qr) vorkommen. Dann ist

|z| = q1 . . . qr = p
vp1 (z)
1 . . . pvps (z)s =

∏
p∈{p1,...,ps}

pvp(z) .

Wegen vp(z) = 0 für p ∈ P \ {p1, . . . , ps} ist das letzte Produkt gleich∏
p∈P

pvp(z) .

Damit folgt

z = sgn(z)|z| = sgn(z)
∏
p∈P

pvp(z) .

Seien nun umgekehrt für p ∈ P vp ∈ N mit vp = 0 für fast alle p ∈ P und sei ε ∈ {−1, 1, }.
Wir setzen

z = ε
∏
p∈P

pvp .

Es seien p1,. . . , ps die paarweise verschiedenen Primzahlen p mit vp > 0. Dann gilt

|z| =
s∏
i=1

p
vpi
i =

vp1︷ ︸︸ ︷
p1 . . . p1 . . . . . .

vps︷ ︸︸ ︷
ps . . . ps ,

woraus die Behauptung folgt. �

Satz 2.3.4. Seien z, w ∈ Z \ {0}. Dann gelten:

1. vp(zw) = vp(z) + vp(w) für alle p ∈ P.
2. z | w ⇐⇒ vp(z) ≤ vp(w) für alle p ∈ P.
3. vp(z) = max{k ∈ N | pk | z} für alle p ∈ P. Insbesondere gilt vp(z) = 0 ⇐⇒ p - z

für alle p ∈ P.
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Beweis. 1. Ist klar.
2. Es gelte einmal z | w. Dann ist w = zu mit einem u ∈ Z. Wegen w 6= 0 ist auch

u 6= 0. Es folgt vp(w) = vp(zu) = vp(z) + vp(u) ≥ vp(z).
Umgekehrt gelte nun vp(z) ≤ vp(w) für alle p ∈ P. Wir setzen ap = vp(w) − vp(z) ∈ N

für alle p ∈ P. Wegen vp(z) ≥ 0 für alle p ∈ P, vp(w) = 0 für fast alle p ∈ P ist auch
ap = 0 für fast alle p ∈ P. Daher können wir

a :=
∏
p∈P

pap ∈ N+

definieren.
Es folgt

|w| =
∏
p∈P

pvp(w) =
∏
p∈P

pap+vp(z) =
∏
p∈P

pappvp(z) =
∏
p∈P

pap
∏
p∈P

pvp(z) = a|z| .

Also gilt |z| | |w| und damit auch z | w.
3. Sei p ∈ P. Für alle k ∈ N ist vp(p

k) = k und vq(p
k) = 0 für q ∈ P, q 6= p. Also gilt

nach 2 für alle k ∈ N: pk | z ⇐⇒ k = vp(p
k) ≤ vp(z). Die Behauptung folgt. �

Satz 2.3.5. Seien k ∈ N+ und a1,. . . , ak ∈ Z \ {0}. Für p ∈ P setzen wir

mp = min{vp(a1), . . . , vp(ak)}, Mp = max{vp(a1), . . . , vp(ak)} .

Dann ist mp = 0 für fast alle p ∈ P und auch Mp = 0 für fast alle p ∈ P und es gelten

ggT(a1, . . . , ak) =
∏
p∈P

pmp , kgV(a1, . . . , ak) =
∏
p∈P

pMp .

Beweis. Für i = 1, . . . , k sei Pi die Menge aller p ∈ P mit vp(ai) > 0 (d.h. p | ai). Dann
ist auch P1∪ . . .∪Pk endlich. Für p ∈ P\(P1∪ . . .∪Pk) ist dann vp(ai) = 0 für i = 1, . . . , k.
Es folgt Mp = mp = 0 für alle p ∈ P \ (P1 ∪ . . . ∪ Pk).

Wir setzen nun
d :=

∏
p∈P

pmp ∈ N+ .

und zeigen d = ggT(a1, . . . , ak). Wir zeigen dazu zunächst d | ai für alle i = 1, . . . , k. Sei
also 1 ≤ i ≤ k. Dann gilt für alle p ∈ P:

vp(d) = mp = min{vp(a1), . . . , vp(ak)} ≤ vp(ai) .

Aus 2.3.4.2 folgt d | ai. Daher gilt d | ggT(a1, . . . , ak).
Umgekehrt: Für alle p ∈ P und alle 1 ≤ i ≤ k gilt wegen ggT(a1, . . . , ak) | ai:

vp(ggT(a1, . . . , ak)) ≤ vp(ai) .

Also ist für jedes p ∈ P
vp(ggT(a1, . . . , ak)) ≤ min{vp(a1), . . . , vp(ak)} = mp = vp(d) .

Wiederum aus 2.3.4.2 folgt ggT(a1, . . . , ak) | d. Also gilt d = ggT(a1, . . . , ak).
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Schließlich setzen wir
w =

∏
p∈P

pMp

und zeigen ganz analog w = kgV(a1, . . . , ak). Sei 1 ≤ i ≤ k und p ∈ P. Wegen

vp(w) = Mp = max{vp(a1), . . . , vp(ak)} ≥ vp(ai)

folgt aus 2.3.4.2 ai | w für i = 1, . . . , k, also kgV(a1, . . . , ak) | w.
Umgekehrt: Für alle p ∈ P und alle i = 1, . . . , k gilt wegen ai | kgV(a1, . . . , ak):

vp(ai) ≤ vp(kgV(a1, . . . , ak)) .

Also ist für jedes p ∈ P:

vp(kgV(a1, . . . , ak)) ≥ max{vp(a1), . . . , vp(ak)} = Mp = vp(w) .

Es folgt w | kgV(a1, . . . , ak) und daher w = kgV(a1, . . . , ak). �

Beispiel 2.3.6. Wir bestimmen

ggT(26936, 27676, 1406) und kgV(26936, 27676, 1406)

mit Hilfe von Theorem 2.3.5. Es gelten

26936 = 23 · 7 · 13 · 37, 27676 = 22 · 11 · 17 · 37, 1406 = 2 · 19 · 37 .

In der Notation von 2.3.5 folgen

m2 = m37 = 1, mp = 0 p ∈ P \ {2, 37}
M2 = 3, M7 = M11 = M13 = M17 = M19 = M37 = 1,

Mp = 0 p ∈ P \ {2, 7, 11, 13, 17, 19, 37} .

Also erhalten wir

ggT(26936, 27676, 1406) = 2 · 37 = 74,

kgV(26936, 27676, 1406) = 23 · 7 · 11 · 13 · 17 · 19 · 37 = 95703608 .

3. Kongruenzen

3.1. Restklassen.

Definition 3.1.1. Es seien m ∈ N+ und a, b ∈ Z.

1. a heißt kongruent zu b modulo m (Schreibweise: a ≡ b mod m) genau dann, wenn
m | (a− b).

2. ā := [a] := [a]m := {b ∈ Z | b ≡ a mod m} = {b ∈ Z | ∃k ∈ Z : b − a = km} =
{a + km | k ∈ Z} heißt die Restklasse von a modulo m. Jedes c ∈ Z mit c̄ = ā
heißt ein Repräsentant von ā.

3. Z/mZ := {ā | a ∈ Z} heißt die Menge aller Restklassen modulo m.
4. Die Abbildung π = πm : Z→ Z/mZ, x 7→ x̄ heißt die Restklassenabbildung modulo
m.
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Beispiel 3.1.2. Wegen 2 - 3 = 7− 4 gilt nicht 7 ≡ 4 mod 2. Wegen 3 | 7− 4 gilt 7 ≡ 4
mod 3.

Wegen 13 | 27 − 1 ist 1 ≡ 27 mod 13. Daraus folgt modulo 13 (siehe 3.1.3.4) 27 = 1.
Also ist 27 ein Repräsentant von 1̄ (modulo 13).

Proposition 3.1.3. Seien m ∈ N+ und a, b ∈ Z.

1. Es gilt genau dann a ≡ b mod m, wenn a und b bei Division durch m den gleichen
Rest lassen.

2. Kongruenz modulo m ist eine Äquivalenzrelation auf Z, d.h. für alle x, y, z ∈ Z
gelten
• x ≡ x mod m,
• x ≡ y mod m⇒ y ≡ x mod m,
• x ≡ y mod m und y ≡ z mod m implizieren x ≡ z mod m.

3. ā = b̄ ⇐⇒ a ≡ b mod m.
4. Z/mZ = {0̄, 1̄, . . . ,m− 1} und ī 6= j̄ für alle 0 ≤ i 6= j ≤ m− 1. Insbesondere hat

Z/mZ genau m Elemente.

Beweis. 1. Es seien ra der Rest der Division von a durch m und entsprechend rb der Rest
der Division von b durch m. Dann gelten also a = km+ ra, b = lm+ rb mit k, l ∈ Z.

Es sei einmal a ≡ b mod m. Dann ist a − b = um mit u ∈ Z. Es folgt a = um + b =
um+ lm+ rb = (u+ l)m+ rb. Also ist rb auch der Rest der Division von a durch m.

Umgekehrt gelte jetzt ra = rb. Dann folgt a− b = km+ ra− (lm− rb) = (k− l)m, also
m | a− b, d.h. a ≡ b mod m.

2. Das folgt jetzt unmittelbar aus 1.
3. Es gelte einmal ā = b̄. Wegen b ≡ b mod m folgt b ∈ b̄ = ā, also b ≡ a mod m.
Umgekehrt gelte a ≡ b mod m. Wir zeigen ā = b̄, also die beiden Inklusionen ā ⊂ b̄

und ā ⊃ b̄.
⊂: Sei c ∈ ā. Dann gelten c ≡ a mod m und a ≡ b mod m. Anwendung von 2 liefert

c ≡ b mod m, also c ∈ b̄.
⊃: Sei c ∈ b̄. Dann gilt c ≡ b mod m. Wegen a ≡ b mod m gilt nach 2 auch b ≡ a

mod m. Aus c ≡ b mod m und b ≡ a mod m folgt nach 2 c ≡ a mod m, also c ∈ ā.
4. Die Inklusion ⊃ ist klar. Umgekehrt sei α ∈ Z/mZ, etwa α = c̄ mit c ∈ Z. Es sei

r ∈ {0, . . . ,m − 1} der Rest der Division von c durch m. Dann gilt m | c − r, also c ≡ r
mod m. Nach 3 folgt α = c̄ = r̄ ∈ {0̄, . . . ,m− 1}.

Seien nun 0 ≤ i, j ≤ m − 1 mit ī = j̄. Wir müssen i = j zeigen. Nach 3 gilt zunächst
i ≡ j mod m. Nach 1 lassen i und j bei Division durch m den gleichen Rest. Wegen
0 ≤ i, j ≤ m− 1 ist der Rest der Division von i (bzw. j) durch m gleich i (bzw. j). Also
ist i = j. �

Beispiel 3.1.4. Es ist Z/4Z = {0̄, 1̄, 2̄, 3̄}. Wegen (modulo 4) 3̄ = −1 ist auch Z/4Z =
{−1, 0̄, 1̄, 2̄}.
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Satz 3.1.5. Seien m ∈ N+ und a, a′, b, b′ ∈ Z mit a ≡ a′ mod m und b ≡ b′ mod m.
Dann gelten:

1. a± b ≡ a′ ± b′ mod m.
2. ab ≡ a′b′ mod m.
3. Für alle k ∈ N gilt ak ≡ a′k mod m.

Beweis. 1,2. Wegen m | a−a′ und m | b−b′ folgen nach 1.3.3.5 auch m | (a−a′)±(b−b′) =
(a± a′)− (b± b′), also a± a′ ≡ b± b′ mod m und

m | (a− a′)b+ a′(b− b′) = ab− a′b′ ,

also ab ≡ a′b′ mod m.
3. Wir benutzen Induktion nach k. Für k = 0 gilt ak = 1 = a′k also auch ak ≡ a′k

mod m. Sei jetzt k ∈ N mit ak ≡ a′k mod m. Wegen a ≡ a′ mod m folgt aus 2

ak+1 = ak · a ≡ a′k · a′ = a′k+1 mod m .

�

Beispiel 3.1.6. Wir bestimmen die Einerziffer von 2534·112345−14·65 . Die Einerziffer einer
Zahl ist der Rest der Division dieser Zahl durch 10. Wir berechnen zunächst kleine Zwei-
erpotenzen modulo 10:

21 = 2̄, 22 = 4̄, 23 = 8, 24 = 6, 25 = 2, 26 = 4̄, 27 = 8, 28 = 6, . . . .

Es ergibt sich die Vermutung, dass die Folge (2n)n∈N+ modulo 10 periodisch mit Peri-
odenlänge 4 ist, d.h. 2n+4 ≡ 2n mod 10 für alle n ∈ N+. Mit einer Iduktion beweisen
wir dies jetzt. Für n = 1 folgt die Behauptung aus obigen Rechnungen. Ist n ∈ N+ mit
2n+4 ≡ 2n mod 10, so folgt

2n+1+4 = 2n+4 · 2 ≡ 2n · 2 = 2n+1 mod 10 .

Es folgt jetzt 2a+4m ≡ 2a mod 10 für alle a ∈ N+ und alle m ∈ N (Induktion nach m).
Also gilt für alle a, b ∈ N+: a ≡ b mod 4⇒ 2a ≡ 2b mod 10.

Wegen
534 · 112345− 14 · 65 ≡ 2 · 1− 2 · 0 = 2 mod 4

folgt

2534·112345−14·65 ≡ 22 = 4 mod 10 .

Also ist die Einerziffer von 2534·112345−14·65 gleich 4.

Satz 3.1.7. Sei n ∈ N+ und n = (zkzk−1 . . . z0)10 die Dezimaldarstellung von n, also
n = zk10k + . . .+ 10z1 + z0. Dann gelten:

1. n ≡ zk + . . .+ z0 mod 9,
2. n ≡ z0 mod 10,
3. n ≡ 10z1 + z0 mod 100,
4. n ≡ zk(−1)k + . . .+ (−1)z1 + z0 mod 11.
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Beweis. 1. Es ist 10 ≡ 1 mod 9. Also gilt für alle m ∈ N: 10m ≡ 1m = 1 mod 9. Es
folgt

n =
k∑

m=0

zm10m ≡
k∑

m=0

zk mod 9 .

2. Für m ≥ 1 gilt 10m ≡ 0 mod 10. Also ist

n = z0 +
k∑

m=1

zk10m ≡ z0 +
m∑
k=1

zk · 0 = z0 mod 10 .

3. Für m ≥ 2 gilt 10m ≡ 0 mod 100. Also ist

n = z0 + 10z1 +
k∑

m=2

zk10m ≡ z0 + 10z1 +
m∑
k=2

zk · 0 = z0 + 10z1 mod 100 .

4. Es ist 10 ≡ −1 mod 11, also 10m ≡ (−1)m mod 11 für alle m ∈ N. Es folgt

n =
k∑

m=0

zk10m ≡
k∑

m=0

zk(−1)k mod 11 .

�

Korollar 3.1.8. Sei n ∈ N+ und n = (zkzk−1 . . . z0)10 die Dezimaldarstellung von n.
Dann gelten:

1. Für d ∈ {3, 9} gilt genau dann d | n, wenn d | z0 + . . .+ zk.
2. Für d ∈ {2, 5, 10} gilt genau dann d | n, wenn d | z0.
3. Für d ∈ {4, 25, 50, 100} gilt genau dann d | n, wenn d | 10z1 + z0.
4. 11 | n ⇐⇒ 11 | z0 − z1 + . . .+ (−1)kzk.

Beweis. Wir beginnen mit einer Beobachtung: Sind m, m′ ∈ N+ und a, b ∈ Z mit m′ | m
und a ≡ b mod m, so gilt auch a ≡ b mod m′. Denn m′ | m und m | a − b impliziert
m′ | a− b.

Sei nun d ∈ {3, 9}. Dann gilt d | 9 und aus 3.1.7.1 folgt n ≡ z0 + . . . + zk mod d. Aus
3.1.3.1 folgt die Behauptung.

Analog folgen 2–4 aus der Beobachtung, 3.1.7 und 3.1.3.1. �

3.2. Der Ring der Restklassen.

3.2.1. Seien m ∈ N+ und α, β ∈ Z/mZ. Wir wollen α+ β und α · β wie folgt definieren:
Wähle a, b ∈ Z mit α = ā und β = b̄ und setze

α + β := a+ b, α · β = ab .

Damit diese Definition sinnvoll ist, müssen wir uns aber überlegen, dass das Ergebnis
unabhängig von der Wahl von a und b ist.
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Angenommen es sind auch A, B ∈ Z mit α = Ā und β = B̄. Dann folgen ā = Ā und
b̄ = B̄, also a ≡ A mod m und b ≡ B mod m. Aus 3.1.5 folgen a + b ≡ A + B mod m
und ab ≡ AB mod m, also

a+ b = A+B und ab = AB .

Wir haben damit eine Addition + und eine Multiplikation · auf Z/mZ definiert.

Satz 3.2.2. Sei m ∈ N+. Dann gelten für alle α, β, γ ∈ Z/mZ:

1. α + β = β + α.
2. (α + β) + γ = α + (β + γ).
3. α + 0̄ = α.
4. Es gibt δ ∈ Z/mZ mit α + δ = 0̄.
5. αβ = βα.
6. (αβ)γ = α(βγ).
7. α · 1̄ = α.
8. α(β + γ) = αβ + αγ.

Daher ist (Z/mZ,+, ·) ein kommutativer Ring mit Einselement 1̄ und Nullelement 0̄.

Beweis. Seien a, b, c ∈ Z mit α = ā, β = b̄ und γ = c̄. Dann folgen

α
·

+ β = a
·

+ b = b
·

+ a = β
·

+ α ,

also 1 und 5. Weiters ist

(α
·

+ β)
·

+ γ = (ā
·

+ b̄)
·

+ c̄ = a
·

+ b
·

+ c̄ = (a
·

+ b)
·

+ c = a
·

+ (b
·

+ c) =

= ā
·

+ b
·

+ c = ā
·

+ (b̄
·

+ c̄) = α
·

+ (β
·

+ γ)

woraus 2 und 6 folgen.
Aus

α + 0̄ = ā+ 0̄ = a+ 0 = ā = α, α · 1̄ = ā · 1̄ = a · 1 = a = α

folgen 3 und 7. 8 folgt aus

α(β + γ) = ā(b̄+ c̄) = ā · b+ c = a(b+ c) = ab+ ac = ab+ ac = ab+ ac =

= αβ + αγ .

Zum Beweis von 4 setzen wir δ = −a. Dann gilt

α + δ = ā+−a = a+ (−a) = 0̄ .

�

3.2.3. Sei m ∈ N+. Dann ist insbesondere (Z/mZ,+) eine kommutative Gruppe. Wie
üblich bezeichnet man für α ∈ Z/mZ mit −α das (additive) Inverse von α. Der letzte
Beweis zeigt −ā = −a für alle a ∈ Z.
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3.2.4. Der letzte Satz zeigt, dass in Z/mZ ähnlich rechnen kann wie in Z. Es gibt aber
einen Unterschied: In Z kann durch Zahlen 6= 0 gekürzt werden. In Z/mZ geht das im
allgemeinen nicht mehr, wie das folgende Beispiel zeigt: In Z/15Z gelten

3̄ · 1̄0 = 3̄0 = 0̄ = 1̄5 = 3̄5̄ aber 1̄0 6= 5̄ .

Also kann 3̄ in Z/15Z nicht gekürzt werden.
Der nächste Satz gibt Auskunft, welche Elemente in Z/mZ gekürzt werden dürfen.

Satz 3.2.5. Seien m ∈ N+, α ∈ Z/mZ und a ∈ Z mit α = ā. Dann sind äquivalent:

1. α ist (multiplikativ) invertierbar, d.h. es gibt β ∈ Z/mZ mit αβ = 1̄.
2. α ist kürzbar, d.h. für alle γ, δ ∈ Z/mZ gilt: αγ = αδ ⇒ γ = δ.
3. ggT(a,m) = 1.
4. Es gibt x, y ∈ Z mit ax+my = 1.

Sind diese Bedingungen erfüllt, so gilt β = x̄.

Beweis. 1 ⇒ 2. Es sei β ∈ Z/mZ mit αβ = 1̄ und seien γ, δ ∈ Z/mZ mit αγ = αδ.
Multipliziert man die letzte Gleichung mit β so folgt βαγ = βαδ also γ = δ.

2 ⇒ 3. Es sei also α kürzbar. Wir setzen d = ggT(a,m). Dann gibt es a′ ∈ Z und
m′ ∈ N mit a = da′ und m = dm′. Dann folgt

αm′ = ām′ = am′ = a′dm′ = a′m = a′m̄ = a′0̄ = 0̄ = α0̄ .

Da α kürzbar ist, erhalten wir m′ = 0̄, also m′ ≡ 0 mod m und daher m | m′. Wegen
m = dm′ gilt auch m′ | m, also m = m′ (wegen m, m′ ∈ N). Aus dm = dm′ = m folgt
nun ggT(a,m) = d = 1.

3 ⇒ 4 folgt aus Satz 1.4.9.2.
4 ⇒ 1. Seien x, y ∈ Z mit ax+my = 1. Wir setzen β = x̄. Wegen m̄ = 0̄ folgt

1̄ = ax+my = āx̄+ m̄ȳ = āβ + 0̄ȳ = āβ + 0̄ = αβ .

�

Korollar 3.2.6. Sei m ∈ N+. Dann ist Z/mZ genau dann ein Körper, wenn m eine
Primzahl ist.

Beweis. Zunächst zur Erinnerung: Ein kommutativer RingR ist ein Körper, fallsR 6= {0}
gilt, und falls es zu jedem x ∈ R \ {0} ein y ∈ R mit xy = 1 gibt.

Sei nun einmal m eine Primzahl. Dann ist

|Z/mZ| = m ≥ 2

und daher Z/mZ 6= {0̄}. Sei nun α ∈ Z/mZ mit α 6= 0̄. Wir wählen a ∈ {0, 1, . . . ,m− 1}
mit α = ā. Wegen α 6= 0̄ ist a ∈ {1, . . . ,m− 1}. Dann gilt m - a. Da m eine Primzahl ist,
folgt daraus ggT(a,m) = 1. Nach 3.2.5 gibt es β ∈ Z/mZ mit αβ = 1̄.

Sei nun umgekehrt Z/mZ ein Körper. Dann ist Z/mZ 6= {0̄} und daher

m = |Z/mZ| ≥ 2 .
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Sei d ∈ N+ ein Teiler von m mit d 6= m. Wir müssen d = 1 zeigen. Wegen 1 ≤ d ≤ m−1 ist
d̄ 6= 0̄. Nach Voraussetzung gibt es β ∈ Z/mZ mit d̄β = 1̄. Aus 3.2.5 folgt 1 = ggT(d,m).
Wegen d | m ist aber d = ggT(d,m). Es folgt d = 1. �

Beispiel 3.2.7. Wir zeigen, dass für jedes n ∈ N gilt. 11 | 45n − 35n (siehe Aufgabe 9).
Es sei n ∈ N und wir rechnen in Z/11Z:

45n − 35n = 4̄5n − 3̄5n =
(

4
5
)n
−
(

3
5
)n

= 45
n − 35

n
= 16 · 16 · 4n − 9 · 9 · 3n =

= 5 · 5 · 4n − (−2) · (−2) · 3
n

= 25 · 4n − 12
n

= 3 · 4n − 12
n

= 12
n − 12

n
= 0̄ .

Es folgt 45n − 35n ≡ 0 mod 11 und daher 11 | 45n − 35n.

Beispiele 3.2.8. Wir lösen einige Gleichungen über Restklassenringen.

1. 4̄x+ 7̄ = 2̄ in Z/35Z: Zunächst gilt für jedes x ∈ Z/35Z:

4̄x+ 7̄ = 2̄ ⇐⇒ 4̄x = 2̄− 7̄ = −5 .

Nun wollen wir natürlich durch 4̄ dividieren. Nun bedeutet dividieren mit dem mul-
tiplikativ Inversen multiplizieren. Also müssen wir untersuchen ob 4̄ in Z/35Z multi-
plikativ invertierbar ist. Dazu können wir Satz 3.2.5 verwenden: Es ist ggT(4, 35) =
1 und daher ist 4̄ in Z/35Z multiplikativ invertierbar. Was ist das Inverse von 4̄?
Wiederum nach 3.2.5 müssen wir dazu 1 als Linearkombination von 4 und 35 dar-
stellen: 1 = 9 · 4 + (−1) · 35. Es folgt 1̄ = 9̄ · 4̄ und daher ist 9̄ das multiplikativ
Inverse von 4̄. Wir erhalten daher für alle x ∈ Z/35Z:

4̄x = −5 ⇐⇒ x = 9̄ · 4̄x = 9̄ · −5 = −45 = 25 .

Also ist x = 25 die einzige Lösung unserer Gleichung.
2. Wir betrachten die Gleichung 5̄x + 3̄ = 7̄ in Z/30Z. Zunächst gilt für jedes x ∈

Z/30Z:

5̄x+ 3̄ = 7̄ ⇐⇒ 5̄x = 7̄− 3̄ = 4̄ .

Wir wollen wieder durch 5̄ dividieren. Diesmal ist aber ggT(5, 30) = 5 und daher
ist 5̄ in Z/30Z nicht invertierbar, sodass wir nicht dividieren können. Tatsächlich
hat unsere Gleichung keine Lösung: Angenommen es ist x ∈ Z/30Z mit 5̄x = 4̄.
Wähle y ∈ Z mit x = ȳ. Dann folgt

4̄ = 5̄x = 5̄ȳ = 5y .

Daher gilt 4 ≡ 5y mod 30 und daher 30 | 4− 5y. Wegen 5 | 30 folgt auch 5 | 4− 5y
und daher 5 | 4, Widerspruch.

3. Wir betrachten die Gleichung 3̄x − 7̄ = 29 in Z/33Z. Zunächst ist wieder für alle
x ∈ Z/33Z:

3̄x− 7̄ = 29 ⇐⇒ 3̄x = 29 + 7̄ = 36 = 3̄ .



34

Wegen ggT(3, 33) = 3 > 1 können wir nicht durch 3̄ dividieren. Wir sehen aber,
dass 1̄ eine Lösung ist. Wie bekommen wir alle Lösungen?. Wähle dazu y ∈ Z mit
x = ȳ. Dann erhalten wir

3̄x = 3̄ ⇐⇒ 3y = 3̄ ⇐⇒ 3y ≡ 3 mod 33 ⇐⇒ 3 · 11 | 3(y − 1) ⇐⇒
⇐⇒ 11 | y − 1 ⇐⇒ y = 1 + 11z für ein z ∈ Z .

Schreiben wir noch jedes z ∈ Z in der Form z = 3w+ r mit w ∈ Z und r ∈ {0, 1, 2}
so folgt

3̄x = 3̄ ⇐⇒ y = 1 + 11(3w + r) = 33w + 11r + 1 ⇐⇒ x̄ = ȳ = 11r + 1 .

Also sind 1̄, 12 und 23 die Lösungen unserer Gleichung.
4. Wir betrachten die Gleichung x2 + 4̄x − 12 = 0 in Z/37Z. Wie bei quadratischen

Gleichungen üblich verwenden wir quadratische Ergänzung:

x2 + 4̄x− 12 = x2 + 4̄x+ 4̄− 16 = (x+ 2̄)
2 − 16 = (x+ 2̄)

2 − 4
2

=

=
(
x+ 2̄− 4

)
(x+ 2̄ + 4̄) = (x− 2̄)(x+ 6̄) .

Da 37 eine Primzahl ist, ist Z/37 ein Körper und daher ist ein Produkt in Z/37Z
genau dann Null, wenn ein Faktor Null ist. Also sind 2̄ und −6̄ = 31 die Lösungen
unserer Gleichungen.

5. Wir lösen x2 + x + 6̄ = 0̄ in Z/34Z. Wir können nicht unmittelbar quadratisch
ergänzen: dazu bräuchten wir einen Faktor 2 bei x, sodass wir durch 2 dividieren
müssten. Aber wegen ggT(2, 34) = 2 dürfen wir das nicht.

Es sei x ∈ Z/34Z und y ∈ Z mit x = ȳ. Dann folgt

x2 + x+ 6̄ = 0̄ ⇐⇒ 34 | y2 + y + 6 .

Wegen 34 = 2 · 17 ist dies äquivalent zu 2 | y2 + y + 6 und 17 | y2 + y + 6. Nun ist
y2 + y = y(y + 1) immer gerade und daher gilt immer 2 | y2 + y + 6. Wir müssen
also alle y ∈ Z mit 17 | y2 + y + 6 finden. Dies ist äquivalent zu ȳ2 + ȳ + 6̄ = 0̄
in Z/17Z. Nun ist ggT(2, 17) = 1, sodass wir in Z/17Z durch 2̄ dividieren können.
Wegen 1 = 17 + (−8) · 2 ist −8̄ = 9̄ das multiplikativ Inverse von 2̄. Es folgt

ȳ2 + ȳ + 6̄ = ȳ2 + 2 · 9ȳ + 6̄ = ȳ2 + 2̄ · 9ȳ + 9
2 − 9̄2 + 6̄ = (ȳ + 9̄)2 + 10 .

Damit ist ȳ2 + ȳ+ 6̄ = 0 äquivalent zu (ȳ+ 9)2 = −10 = 7 (in Z/17Z). Durch Aus-
probieren aller möglichen Fälle sieht man, dass die Gleichung z2 = 7̄ keine Lösung
in Z/17Z besitzt. Also hat auch unsere ursprüngliche Gleichung keine Lösung.

6. x2 = 0̄ in Z/16Z. Es sei x ∈ Z̄ und y ∈ {0, 1, 2 . . . , 15} mit ȳ = x. Dann gilt

x2 = 0 ⇐⇒ 16 | y2 ⇐⇒ 4 = v2(16) ≤ v2(y
2) = 2v2(y) ⇐⇒ 2 ≤ v2(y) ⇐⇒

⇐⇒ 4 = 22 | y ⇐⇒ y ∈ {0, 4, 8, 12} .

Also sind 0̄, 4̄, 8̄, 12 die Lösungen von x2 = 0̄ in Z/16Z.
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Definition 3.2.9. Für m ∈ N+ setzen wir (wie für jeden Ring)

(Z/mZ)× = {α ∈ Z/mZ | α ist (multiplikativ) invertierbar } =

= {x̄ | x ∈ {0, . . . ,m− 1} und x̄ ist (multiplikativ) invertierbar } =

= {x̄ | x ∈ {0, . . . ,m− 1} und ggT(x,m) = 1} .

Dann ist (Z/mZ)× zusammen mit der Multiplikation eine kommutative Gruppe. Wir
setzen

ϕ(m) = #(Z/mZ)× = #{x ∈ {0, . . . ,m− 1} | ggT(x,m) = 1} .

Die Funktion ϕ : N+ → N+ heißt Eulersche Phi–Funktion.

Beispiel 3.2.10. Es ist ϕ(1) = #{x ∈ {0} | ggT(x, 1) = 1} = #{0} = 1. Es sei nun p
eine Primzahl. Dann gilt

ϕ(p) = #{x ∈ {0, . . . , p− 1} | ggT(x, p) = 1} = #{1, . . . , p− 1} = p− 1 .

Satz 3.2.11. Es seien m ∈ N+ und a ∈ Z mit ggT(a,m) = 1. Dann folgt aϕ(m) ≡ 1
mod m (Satz von Euler).

Beweis. Wir setzen α = ā ∈ Z/mZ. Wegen ggT(a,m) = 1 gilt α ∈ (Z/mZ)×. Wir setzen

γ =
∏

β∈(Z/mZ)×
β ∈ (Z/mZ)× .

Die Abbildung (Z/mZ)× → (Z/mZ)×, γ 7→ αγ ist injektiv, da α kürzbar ist. Wegen
γ = α(α−1γ) für alle γ ∈ (Z/mZ)× ist sie auch surjektiv, also bijektiv. Es folgt

γ · 1̄ = γ =
∏

β∈(Z/mZ)×
β =

∏
β∈(Z/mZ)×

(αβ) = αϕ(m)
∏

β∈(Z/mZ)×
β = αϕ(m)γ .

Da γ kürzbar ist folgt αϕ(m) = 1̄ und daher aϕ(m) ≡ 1 mod m. �

Korollar 3.2.12. Es seien a ∈ Z und p ∈ P. Dann gelten

1. p - a⇒ ap−1 ≡ 1 mod p.
2. ap ≡ a mod p.

Beweis. 1. Gilt p - a, so folgt ggT(a, p) = 1 (wegen p ∈ P). Nach Beispiel 3.2.10 gilt
ϕ(p) = p− 1 und die Behauptung folgt aus 3.2.11.

2. Gilt p - a so folgt aus 1:

ap = a · ap−1 ≡ a · 1 = a mod p .

Gilt aber p | a, so so gilt auch p | ap und daher ist ap ≡ 0 ≡ a mod p. �

Definition 3.2.13. Es seien X eine Menge und (xn)n∈N+ ein Folge in X. (xn)n∈N+ heißt
periodisch, falls es ein p ∈ N+ und ein n0 ∈ N+ gibt, sodass gilt: Für alle n ∈ N+ mit
n ≥ n0 ist xn+p = xn. Kann man hier n0 = 1 nehmen, so heißt (xn)n∈N+ rein periodisch.
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Satz 3.2.14. Es seien m ∈ Z/mZ und α ∈ Z/mZ. Dann ist die Folge (αn−1)n∈N+ peri-
odisch. Sie ist genau dann rein periodisch, wenn α (multiplikativ) invertierbar ist.

Beweis. Wir betrachten die Abbildung f : N+ → Z/mZ, n 7→ αn−1. Da N+ unendlich
und Z/mZ endlich ist, kann f nicht injektiv sein. Also gibt es u, v ∈ N+ mit u 6= v und
αu−1 = αv−1. Wir können u < v annehmen. Wir setzen n0 = u ∈ N+ und p = v−u ∈ N+.
Dann folgt

αn0−1 = αu−1 = αv−1 = αu+p−1 = αn0−1+p .

Damit folgt für alle n ≥ n0:

αn−1 = αn0−1αn−n0 = αn0−1+pαn−n0 = αn−1+p .

Also ist (αn−1)n∈N+ periodisch.
Sei nun einmal α multiplikativ invertierbar. Aus 3.2.11 folgt

αϕ(m)+1−1 = αϕ(m) = 1̄ = α1−1 .

Wir können daher oben n0 = u = 1 nehmen. Daher ist (αn−1)n∈N+ rein periodisch.
Sei nun umgekehrt diese Folge rein periodisch. Dann gibt es ein p ∈ N+ mit αn−1 =

αn+p−1 für alle n ∈ N+. Speziell für n = 1 folgt

1̄ = αp = α · αp−1 .

Also ist α multiplikativ invertierbar. �

3.2.15. Wir nennen ein Folge (zn)n∈N+ in {0, 1 . . . , 9} zulässig, falls sie nicht ab einem
bestimmten n0 konstant gleich 9 ist, d.h. wenn es für alle n0 ∈ N+ ein n > n0 mit xn 6= 9
gibt.

Zur Erinnerung: Zu jedem x ∈ [0, 1) gibt es eine eindeutig bestimmte zulässige Folge
(zn)n∈N+ in {0, . . . , 9} mit

x = 0.z1z2z3 . . . =
∞∑
n=1

zn10−n .

Satz 3.2.16. Es sei x ∈ [0, 1) und x =
∑∞

n=1 zn10−n mit einer zulässigen Folge (zn)n∈N+

in {0, . . . , 9}. Dann ist (xn)n∈N+ genau dann periodisch, wenn x ∈ Q gilt.
Es sei x = k/m mit m ∈ N+, k ∈ {0, . . . ,m−1} und ggT(k,m) = 1. Dann ist (zn)n∈N+

genau dann rein periodisch, wenn ggT(10,m) = 1 gilt.

Beweis. Es sei einmal (zn)n∈N+ periodisch. Wähle n0, p ∈ N+ mit zn+p = zn für alle
n ≥ n0. Dann folgt (wir haben es mit positiven, also absolut konvergenten Reihen zu tun



37

und daher können wir beliebig umordnen)

x =
∞∑
n=1

zn10−n =

=:z∈N︷ ︸︸ ︷
n0−1∑
n=1

zn10−n + zn010−n0 + . . .+ zn0+p−110−(n0+p−1)+

+ zn010(−n0−p) + . . .+ zn0+p−110−(n0+2p−1)+

+ zn010(−n0−2p) + . . .+ zn0+p−110−(n0+3p−1) + . . . =

= z +

p−1∑
l=0

zn0+l

∞∑
k=0

10−(n0+l+kp) = z +

p−1∑
l=0

zn0+l10−n0−l
∞∑
k=0

(
10−p

)k
=

= z +

p−1∑
l=0

zn0+l10−n0−l 1

1− 10−p
∈ Q .

Sei nun (zn) rein periodisch. Dann können wir n0 = 1 wählen und erhalten

x =

p−1∑
l=0

zl+110−1−l
1

1− 10−p
=

p−1∑
l=0

zl+110p−1−l
1

10p − 1
=

∑p−1
l=0 zl+110p−1−l

10p − 1
.

Wir setzen

k′ =

p−1∑
l=0

zl+110p−1−l ∈ N, m′ = 10p − 1 ∈ N+ .

Dann gelten ggT(m′, 10) = 1 (wegen p ≥ 1) und x = k′/m′. Setze nun d = ggT(k′,m′)
und k = k′/d, m = m′/d. Dann ist x = k/m, ggT(k,m) = 1 und wegen ggT(10,m) |
ggT(10,m′) = 1 gilt auch ggT(10,m) = 1.

Sei nun x ∈ Q und schreibe x = k/m mit m ∈ N+, k ∈ {0, . . . ,m−1} (wegen 0 ≤ x < 1)
und ggT(k,m) = 1. Nach 3.2.14 gibt es n0, p ∈ N+ mit 10n0−1 ≡ 10n0+p−1 mod m, also
auch k10n0−1 ≡ k10n0+p−1 mod m. Es gibt daher ein u ∈ Z mit k10n0+p−1 = k10n0−1+um.

Es sei nun l = n0 oder l = n0 + p. Dann folgt

k10l−1 = mx10l−1 = m10l−1
∞∑
n=1

zn10−n = m

=:yl∈Z︷ ︸︸ ︷
l−1∑
n=0

zn10l−1−n +m
∞∑
n=l

zn10l−1−n =

= myl +m

∞∑
n=1

zn+l−110−n︸ ︷︷ ︸
=:xl∈[0,1)

.

Wir erhalten damit

myn0+p +mxn0+p = k10n0+p−1 = k10n0−1 + um = um+myn0 +mxn0 .
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Es folgt xn0+p−xn0 = u+yn0−yn0+p ∈ Z. Aber wegen xn0+p, xn0 ∈ [0, 1) gilt xn0+p−xn0 ∈
(−1, 1) und wir erhalten xn0+p = xn0 , also

∞∑
n=1

zn+n0+p−110−n =
∞∑
n=1

zn+n0−110−n .

Da die Folgen (zn+n0+p−1)n∈N+ und (zn+n0−1)n∈N+ zulässig sind, folgt zn+n0+p−1 = zn+n0−1
für alle n ∈ N+. Daher gilt zn+p = zn für alle n ≥ n0, d.h. die Folge (zn)n∈N+ ist periodisch.

Gilt ggT(m, 10) = 1 so können wir nach 3.2.14 n0 = 1 wählen und daher ist (zn)n∈N+

rein periodisch. �

3.3. Das RSA Verschlüsselungsverfahren.

3.3.1. Gegenstand der Kryptographie sind Verschlüsselungsverfahren, die man braucht,
wenn man Nachrichten geheim übertragen will. Wir definieren zunächst was wir unter
einem Verschlüsselungsverfahren verstehen:

Ein Verschlüsselungsverfahren oder Kryptosystem ist ein Fünftupel (P,C,K,E,D) mit
folgenden Eigenschaften:

1. P ist eine Menge. Sie heißt Klartextraum und ihre Elemente Klartexte. (englisch:
plaintext).

2. C ist eine Menge. Sie heißt Chiffretextraum und ihre Elemente Chiffretexte (eng-
lisch: ciphertext).

3. K ist eine Menge. Sie heißt Schlüsselraum und ihre Elemente Schlüssel (englisch
key).

4. E = (Ek)k∈K ist eine Familie von Funktionen Ek : P → C. Diese Funktionen heißen
Verschlüsselungsfunktionen (englisch: encryption function).

5. D = (Dk)k∈K ist eine Familie von Funktionen Dk : C → P . Diese Funktionen heißen
Entschlüsselungsfunktionen (englisch: decryption function).

6. Für jedes e ∈ K gibt es ein d ∈ K mit Dd(Ee(p)) = p für jedes p ∈ P , also mit
Dd ◦ Ee = IdP .

Ein Verschlüsselungsverfahren (P,C,K,E,D) heißt symmetrisch, wenn für jedes e ∈ K,
dasjenige d ∈ K mit Dd ◦ Ee = IdP leicht zu bestimmen ist (unter der Voraussetzung,
dass die einzige verfügbare Information das Verschlüsselungsverfahren selbst ist). Sonst
heißt es asymmetrisch.

In den meisten asymmetrischen Verfahren wird der Schlüssel e, der zum Verschlüsseln
verwendet wird, öffentlich gemacht, d.h. es wird nicht versucht diesen Schlüssel geheim
zu halten. Daher nennt man solche Verfahren auch Public Key Verfahren.

Gängige Public Key Verfahren sind ineffizient (langsam), wenn man lange Nachrichten
geheim halten will. Daher geht man in der Praxis meist folgendermaßen vor: Es wird ein
symmetrisches Verschlüsselungsverfahren gewählt, mit dessen Hilfe man Informationen



39

ver– und entschlüsselt. Dafür wird jedoch eine Methode benötigt, den Schlüssel geheim
wählen zu können. Zu diesem Zweck werden Public Key Verfahren verwendet.

Eines davon ist das RSA–Verfahren. Es beruht auf dem folgenden Resultat.

Lemma 3.3.2. Seien p, q zwei verschiedene Primzahlen und e ∈ N+ mit der Eigenschaft
ggT((p− 1)(q − 1), e) = 1. Dann ist die Abbildung

Z/pqZ→ Z/pqZ, α 7→ αe

bijektiv. Ihre Umkehrabbildung wird gegeben durch α 7→ αd, wobei d ∈ N mit ed ≡ 1
mod (p− 1)(q− 1) ist (da e und (p− 1)(q− 1) teilerfremd sind, gibt es so ein d nach Satz
3.2.5).

Beweis. Es genügt αde = α für jedes α ∈ Z/pqZ zu zeigen. Es sei also α ∈ Z/pqZ. Wir
wählen a ∈ Z mit α = ā. Also müssen wir uns jetzt ade ≡ a mod pq, d.h. pq | ade − a
überlegen. Da p und q verschieden sind (also teilerfremd sind) ist dies äquivalent zu

p | ade − a und q | ade − a .

für alle a ∈ Z. Es genügt die linke Teilbarkeit zu zeigen. Gilt p | a, so auch p | ade und
damit p | ade−a. Gilt jedoch p - a so gilt ap−1 ≡ 1 mod p (kleiner Fermat, siehe Aufgabe
39 von Übungsblatt 8 oder 3.2.12). Wegen de ≡ 1 mod (p− 1)(q − 1) gibt es k ∈ Z mit
de = 1 + k(p− 1)(q − 1). Wegen de, (p− 1)(q − 1) ∈ N+ ist k ∈ N. Es folgt

ade = a · (ap−1)k(q−1) ≡ a · 1k(q−1) = a mod p ,

also p | ade − a. �

Wenn nun zwei Partner etwa Alice und Bob mit Hilfe des RSA Verfahrens einen
Schlüssel bestimmen wollen, gehen sie so vor: Alice wählt zwei verschiedene Primzah-
len p und q und eine natürliche Zahl e mit ggT((p− 1)(q − 1), e) = 1. Weiters berechnet
sie N = pq und ein d ∈ N mit ed ≡ 1 mod (p− 1)(q − 1). Das kann sie bekanntlich mit
dem erweiterten euklidischen Algorithmus. Sie veröffentlicht nun (N, e) als öffentlichen
Schlüssel.

Will nun Bob einen geheimen Schlüssel x ∈ Z/NZ an Alice senden, so berechnet er
c = xe und schickt c an Alice, welche x aus x = cd erhält.

Die Sicherheit des RSA Verfahren beruht auf zwei Tatsachen:

• Zur Zeit ist die einzige bekannte Methode, Kongruenzen der Form xe ≡ a mod N =
pq zu lösen, das d mit ed ≡ 1 mod (p− 1)(q − 1) zu bestimmen.
• Um dieses d zu bestimmen, benötigt man zur Zeit noch (p− 1)(q − 1), also p und
q. Man muss also die Primfaktorzerlegung von N bestimmen können. Dafür gibt es
noch kein Verfahren mit vernünftiger Laufzeit.

Um die Sicherheit des RSA Verfahrens zu gewährleisten wird momentan empfohlen die
Primzahlen p und q in der Größenordnung von 22048 zu wählen. Zur Wahl von e: die kleinst
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mögliche Wahl für e ist e = 3. Die Wahl von einem kleinem e birgt aber Unsicherheiten.
Es wird daher empfohlen e ∼ 216 + 1 zu wählen.


