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Hinweise (auf sicherlich vorhandene) (Tipp-)Fehler sind willkommen und erwiinscht.



Wir verwenden die iiblichen Bezeichnungen der Mengenlehre:

e Fiir zwei Mengen A und B schreiben wir A C B, falls A eine Teilmenge von B ist.
A C B bedeutet A C B und A # B.
e Ist A eine Menge so sei #A € {0,1,2,...} U{oo} ihre Anzahl.
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1. TEILBARKEIT
1.1. Die ganzen Zahlen.

1.1.1. Wir setzen
e N={0,1,2,3,...} die Menge der natiirlichen Zahlen (inklusive 0)
e N =N\ {0} die Menge der strikt positiven natiirlichen Zahlen.
e Z=NU(-N)={...,-3,-2,-1,0,1,2,3,...} die Menge aller ganzen Zahlen.
Dann gilt
NfCcNCZ
Vorsicht: In manchen Biichern wird

N=1{1,23,4,...}, ,Ny=1{0,1,2,3,4,...}
gesetzt.

1.1.2. Ganze Zahlen kénnen addiert und multipliziert werden, d.h. wir haben zwei Ab-
bildungen

+:ZX7Z—7Z,(a,b)—a+b, -:ZXxXZ—Z,(a,b)— ab

In der Sprache der Algebra sind 4+ und - Verkniipfungen auf Z.

Es gelten dann fiir a, b, ¢ € Z folgende Rechengesetze:

Kommutativgesetze: a + 0 = b+ a, ab = ba.

Assoziativgesezte: a + (b+c¢) = (a +b) + ¢, a(bc) = (ab)c.

Existenz der Null: Es gibt genau einn € Z mit n+x =x +n =z fir alle x € Z
(ndmlich n = 0).

Existenz von additiven Inversen: Fiir jedes x € Z gibt es ein y € Z mit z +y =
0 =y + « (ndmlich y = —x).

Existenz der Eins: Es gibt genau ein e € Z mit ex = ze = z fiir alle z € Z (ndmlich
e=1).

Distributivgesetz: a(b+ ¢) = ab+ ac (und dann natiirlich auch (b+ ¢)a = ba + ca).

Kiirzungsregel: Ist ¢ # 0 und ac = bc so folgt a = b.

In der Sprache der Algebra bedeutet dies: (Z, +, -) ist ein kommutativer Ring ohne Nullteiler, d.h. ein
Integritatsbereich.

Die Teilmengen N*, N von Z sind beziiglich + und - abgeschlossen, d.h. enthalten mit
a, b auch a + b und ab.
Wie iiblich setzen wir fir a, b € Z: a — b = a + (—=b). Fiir a, b, ¢ € Z gelten dann:
e a(b—c)=ab— ac.
e —(ab) = (—a)b = a(-D).
e ab = (—a)(-D).
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1.1.3. Ganze Zahlen (und damit natiirliche Zahlen) kénnen auch ihrer Gréfie nach ver-
glichen werden. Wie iiblich schreiben wir a < b, falls a kleiner oder gleich b ist. Ebenso
habe a < b, a > b, a > b die {ibliche Bedeutung. Dann gelten fiir a, b, ¢ € Z folgende
Regeln:

e a<a

e (a<b)AN(b<a)=a=0b.
(a<b)AN(b<c)=a<ec
a<boderb<a.
a<b=a+c<b+c,a<b=a+c<b+ec
a<bc>0=ac<bc,a<b c>0= ac<bc.
a<b c<0=ac>bc,a<b c<0= ac> bc.

In der Sprache der Algebra: (Z,+,-, <) ist ein total geordneter Ring.

a a>0
la| =
—a a<0

Dann ist |a] > 0, |a] =0 <= a =0 und fiir b € N gelten

Wir setzen noch fiir a € Z:

la| <b <= —-b<a<b, |a|<b<+= -b<a<b
Weiters ist |ab| = |al|b] fiir alle a, b € Z.

1.1.4. In N haben wir das folgende Induktionsprinzip: Sei A C N. Gelten dann
e 0 € A;
eVneN:neA=n+1€A,
so ist A = N. Wie bekannt, beruht darauf das Beweisprinzip der vollstdndigen Induktion.

Das Induktionsprinzip hat folgende logisch dquivalente Fassung: Jede nicht leere Teil-
menge von N hat ein kleinstes Element.

1.2. Division mit Rest.

1.2.1. Schon in der Volksschule lernen wir mit Rest zu dividieren. Das schaut dann zum
Beispiel so aus:

13578 : 11 = 1234

Dies ist also ein Rechenverfahren, das fiir (a,b) € Z x N (hier a = 13578, b = 11) ein
Ergebnis (q,r) € Z x Z liefert (hier ¢ = 1234, r = 4). Wie héngen nun (a,b) und (q,b)
zusammen? Antwort: a = ¢b + r, im Beispiel also 13578 = 1234 - 11 + 4.



6

Satz 1.2.2. Seiena € Z, b € N*. Dann gibt es eindeutig bestimmte g € Z, r € {0,1,...b—
1} mit a = gb+ r. Zusatz: Gilt a € N so ist auch ¢ € N.

Beweis. Existenz von ¢ und r: Wir setzen
T={a+kb| keZ}={a,atba£?2b,...}.
Dann ist a + |a|b € T'. Wegen

= alb b21’>|a\20 +al 2a fallsa >0
a+|a a+ |a| =
- 0 fallsa<0
gilt sogar
a+lalbe TNN
Daher ist die Menge T'N N nicht leer und hat somit ein kleinstes Element. Sei dieses r.
Wegen r € T gibt es k € Z mit r = a + kb. Setzen wir ¢ = —k, so folgt a = ¢b + r. Es
bleibt r € {0,...,b — 1} zu zeigen. Wegen r € N ist r > 0. Angenommen es ist r > b.
Dann ist r — b € N und wegen
r—b=a+kb—b=a+(k—1)b

ist auchr —beT,alsor —be T NN und damit r — b > r. Es folgt b < 0, Widerspruch.

Eindeutigkeit von g und r: Seien ¢, ¢ € Z, r,r' € {0,1,...,b—1} mit a = ¢gb+r = ¢'b+r’.
Wir zeigen r =7’ und ¢ = ¢’. Aus gb+r = ¢'b+ 1’ folgt

r—r'=(¢ —q)b, und damit |r —7'| =|¢ —q|b
Wegen r, ' € {0,1,...,b— 1} ist
0<r<bund —b< —1" <0
woraus
—b<r—r'<balso|r—7r|<b
folgt. Wir erhalten damit
" = qlb=1|r—7"| <b

woraus wegen b > 0, |¢' — ¢q| < 1 folgt. Also ist |¢ — ¢| = 0, d.h. ¢ — ¢ = 0 und daher
¢ =¢q. Dann ist auchr =a—g¢b=a—¢b=1r".

Zusatz: Seien a € N. Angenommen es ist ¢ ¢ N. Dann ist ¢ < —1 und damit a =
gb+r < —b-+r <0, Widerspruch. O

Definition 1.2.3. Seien @ € Z und b € N*. Sind ¢ € Z und r € {0,1,...,b — 1} mit
a = gb+ r, so heifit ¢ der Quotient und r der Rest der Division von a durch b. Man sagt
auch, dass a bei der Division durch b den Rest r laf3t.

Beispiele 1.2.4.

1. Wir haben gesehen, dass 13578 = 1234 - 11 + 4 ist. Es folgt —13578 = (—1234) -
11-4=(-1234)- 11 —11+11 -4 = (—1235) - 11 + 7.
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2. Wir zeigen, dass jede Quadratzahl in N bei der Division durch 4 den Rest 0 oder
1 1aB8t. Sei also n? (n € N) eine Quadratzahl. Wir dividieren zuerst n durch 4:
n =4q+r mit r € {0,1,2,3}. Dann folgt

n? = (4q +1)* = 16¢* + 8qr + r? = 4(4¢* + 2qr) +r* =

4(4¢* + 2qr) + 0 falls r = 0

4(4q® 4+ 2qr) + 1 falls r =1

4(4¢* +2qr +1)+0 fallsr =2

4(4¢* +2qr +2)+1 fallsr=3
Die Behauptung folgt.

Eine Anwendung: In der Folge (11,111,1111,11111,...) kommt keine Quadrat-
zahl vor. Denn, jedes Folgenglied a hat die Form a = 100n + 11 mit n € N. Es
folgt

a=4-25n+2-4+3=4-(25n+2)+3
Also 148t jedes Folgenglied bei der Division durch 4 den Rest 3, kann also keine
Quadratzahl sein.

1.3. Teiler und Vielfache.

Definition 1.3.1. Seien a, b € Z. Gibt es ein k € Z mit bk = a, so schreibt man b | a
und sagt

e b teilt a;

e ¢ ist durch b teilbar;

e ) ist ein Teiler von a.

e ¢ ist ein Vielfaches von b.

Ist b kein Teiler von a so schreibt man b1 a.
1.3.2. Seien b € Nt und a € Z. Aus der Eindeutigkeitsaussage im Satz iiber die Division
mit Rest (1.2.2) folgt sofort: b ist genau dann ein Teiler von a, wenn a bei der Division

durch b den Rest 0 1a8t. Mit Hilfe der Division mit Rest kann also rechnerisch entschieden
werden, ob eine Zahl ein Teiler einer anderen ist.

Satz 1.3.3 (Eigenschaften der Teilerrelation). Seien a, b, ¢ € Z. Dann gelten:

1.1|b,6]0,0]b.

2.0|a < a=0.

3.bla < |b]||a] <= +b]| +a.

4. (bla)A(alc)=b]c.

5. Sind n € N und x1, y1,..., Tn, Yo € Z und gilt b | x;, i = 1,...,n, so gilt b |

Yoy zy;. Insbesondere gelten: Aus b | a folgt b | ac und aus b | a und b | ¢ folgt
b|la+te.



In der Sprache der Algebra bedeutet dies: die Menge aller ganzen Zahlen, die von b geteilt
werden, also die Menge bZ = {0, +b, +2b, £3b, ...} aller Vielfachen von b ist ein Ideal des Ringes
Z.

6. b|a=bc|ac. Ist c#0 so gilt auch die Umkehrung: [(c # 0) A (be | ac)] = b | a.
7. Ist a # 0 und gilt b | a, so ist |b] < |al.
8. (a|b)A(b]a) <> |a| = |b|.

Beweis. 1. 1-b=b=b-1=1|bAb|b.0=0-0=10]0.
2. Ist a = 0 so gilt 0 = a | a nach 1. Gelte umgekehrt 0 | a. Dann gibt es k € Z mit
a = k0 und es folgt a = 0.
3. Seien e, f € {—1,1} mit a = e|a| und b = f|b]. Wegen e* = f? =1 gelten dann auch
la| = ea und |b| = fb.
Wir nehmen zunéchst b | @ an. Dann gibt es k € Z mit a = kb. Es folgt
la| = ea = ekb = (ek f)|b]

also |b| | |al.

Gelte nun umgekehrt |b| | |a|. Dann gibt es k € Z mit |a| = k|b|. Es folgt

a = ela| = ek|b| = (ekf)b

also b | a.

Wegen |+a| = |a|, |£b| = |b| folgt damit auch |b| | |a] <= =+b | +a.

4. Es gelte also b | a und a | ¢. Dann gibt es k, | € Z mit a = kb und ¢ = la. Dann ist
c=(lk)b, also b | c.

5.Esgelteb | x;, firi =1,...,n. Dann gibt es ky,... k, € Zmit x; = k;bfiri=1,...,n.

Es folgt
S miyi =Y kibyi =bY ki
i=1 i—1 i—1

also b | > 0, ziy;.

6. Ist b | a, so gilt a = kb mit k € Z. Es folgt ac = kbe, also be | ac. Gelte nun be | ac
und ¢ # 0. Dann ist ac = kbc mit k € Z. Wegen ¢ # 0 konnen wir ¢ in dieser Gleichung
kiirzen und erhalten a = kb, und daher b | a.

7. Wir nehmen a # 0 und b | @ an. Dann gilt a = kb mit k € Z. Wegen a # 0 ist auch
k # 0 und damit |k| > 1. Es folgt

lal = [K[[b] = 0]

8. Es gelte also a | b und b | a. Ist a = 0, so folgt aus a | b nach 2. auch b = 0. Analog
folgt aus b | @ und b = 0 auch a = 0.
Wir konnen daher a # 0 und b # 0 annehmen. Wir wenden nun zweimal Teil 7. an:

a|lb=la| <1b|, bla=1b] <lal
Also ist |a| = [b].
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Gelte nun umgekehrt |a| = |b|. Nach 1. gelten dann |a| | |b] und |b] | |a|. Anwendung
von 3. liefert a | b und b | a. O

Beispiel 1.3.4. Als Anwendung dieser Regeln 16sen wir folgende Aufgabe der Mathema-
tikolympiade in Grofbritannien aus dem Jahr 2001/2002:
Bestimmen Sie alle (z,y) € Z x Z, die der Gleichung

(1.3.4.1) 1+ 2%y =a’4+2zy+2x+vy

geniigen.

Bemerkung: Gleichungen, in denen die Variablen auf ganze Zahlen beschrénkt sind,
nennt man diophantische Gleichungen (nach dem griechischen Mathematiker Diophantos
von Alexandria, ca. 250 n. Chr.).

Wir nehmen nun an, dass (z,y) € Z? eine Losung der Gleichung (1.3.4.1) ist und formen
um:

vy —2ry—y=a2"+2r—1, also (2°—20—1)y=2"+22—-1
Daher ist 22 — 22 — 1 ein Teiler von 2% + 2z — 1. Wir wollen ausnutzen, dass Teiler einer
Zahl z ungleich Null betragsméfig kleiner als z sein miissen. Fiir grofle positive x ist
aber 22 — 2x — 1 sowieso betragsmiBig kleiner als 2% + 2z — 1, dies wird also direkt nichts
bringen. Wir miissen also 22+ 2x — 1 irgendwie kleiner machen. Wir benutzen dazu unsere
Regeln:

(2 —2r—1|2*+20 - 1D)A(@*—22 12> - 20 —1) =
2?2 —1|(@*+2r—1)— (2°—22—1) =4z

Also erhalten wir jetzt z = 0 oder |22 — 2z — 1| < 4]z|.

Wir nehmen also x # 0 an und wir untersuchen zunichst wann z? — 2z —1 < 0 ist. Dies
ist dquivalent zu (z —1)> —2 < 0, also zu x — 1 € {—1,0,1} also zu (z # 0) z € {1,2}.

Wir nehmen daher jetzt an, dass « ¢ {0, 1,2} gilt. Ist > 3 so folgt, dass

22— 2 — 1< 4x
gilt. Wir erhalten daher
22— 6z —-1<0 also (r—3)*—10=2"—6x—1<0.

Wegen x > 3 folgt daraus = € {3,4,5,6}.
Sei nun z < 0. Dann gilt also

2 —2r—1< -4z also (z+1)2*—-2=2+20r—-1<0

Es folgt + +1 € {—1,0,1} also (z < 0) z € {—2,—1}.

Damit haben wir nun gezeigt: Ist (z,y) € Z? eine Losung unserer Gleichung, so muss
re€{-2,-1,0,1,2,3,4,5,6} gelten. Wir erhalten daher fiir jeden dieser moglichen Werte
von z eine lineare Gleichung in y, die wie iiblich gelost werden kann. Vorsicht: Wir haben
die Bedingung y € Z. Es kann also vorkommen, dass diese lineare Gleichung keine Lésung
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(in Z) hat; dies passiert genau wenn = € {—2,4,5,6} gilt. Als Losungsmenge ergibt sich
damit

{(=1,-1),(0,1),(1,-1),(2,=7),(3,7)}
1.4. Der grofte gemeinsame Teiler.
Definition 1.4.1. Sei a € Z. Wir bezeichnen mit
T(a)={teN" | t]|a}
die Menge aller echt positiven Teiler von a.

Beispiele 1.4.2.

1. Seien @ € Z und t € N*. Nach 1.3.33 gilt t | a <= t | —a. Es folgt T'(a) =
T(—a) =T(lal).
2. Nach 1.3.3.1 gilt T(0) = N*.
3. T(1) = {1}.
4. In der folgenden Tabelle sind fiir manche natiirliche Zahlen n die Anzahl der Ele-
mente von 7'(n) eingetragen
w [4]5]6]7|8]9]16]25]26]36 ]|
| #T(m)[3]2[4]2[4]3][5[3[4]9]

Was fallt auf? Antwort: In der Tabelle ist #7'(n) nur dann ungerade, wenn n eine
Quadratzahl ist.

Welche Vermutung koénnte man aufstellen? Antwort: Fiir alle n € Nt gilt: #7'(n)
ist genau dann ungerade, wenn n eine Quadratzahl ist.

Lemma 1.4.3. Fiir a, b, k € Z gelten:

1. 1 € T'(a). Inbesondere ist T'(a) nicht leer.
2. Ista # 0, so gilt
{1 lal} € T(@) € {12, Jal}

Insbesondere ist T'(a) endlich fir a # 0.
3.a|b < T(a) C T(b).
4. T(a)NT () =T(a) NT(b+ ka).

Beweis. 1 folgt aus 1.3.3.1 und 2 folgt aus 1.3.3.1,3,7.

3. Gilt a | b so folgt T'(a) C T'(b) aus 1.3.3.4. Gelte nun umgekehrt T'(a) C T'(b). Ist
a =0, so folgt N =T(0) C T'(b). Aus Teil 2 erhalten wir damit auch b = 0 und es folgt
a|b.

Sei nun a # 0. Wegen |a| € T'(a) (nach Teil 2) folgt |a| € T'(b) also |a| | b, also auch
alb(1.3.3.3).

4. Wir zeigen zuerst T'(a) N T(b + ka) C T'(a) N T'(b) fir alle a, b, k € Z. Seien also a,
b, k € Zund t € T(a) NT(b+ ka). Dann ist nach Definition ¢ € Nt und ¢ | a, t | b+ ka.
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Wir miissen also nur noch ¢ | b zeigen. Dies folgt aber aus 1.3.3.5:
tlant|b+ka=t|b+ka—ka=b

Wir zeigen nun T'(a)NT'(b) C T(a)NT'(b+ka) fiir alle a, b, k € Z. Seien also a, b, k € Z.
Wir setzen o' = a, ¥ = b+ ka, ¥ = —k und erhalten mit Hilfe der schon bewiesenen
Inklusion:

T@)NTO) =T@)NTYW +kd)CcT@)NTO)="T(a)NT(+ kb)

1.4.4. Seien k € N* und a4,..., a; € Z. Dann ist nach Definition
T(ay)N...NT(ax)

die Menge aller echt positive Zahlen, die alle a; teilen, also die Menge der echt positiven,
gemeinsamen Teiler der a;. Wegen 1 | a; fiir ¢ = 1,..., k ist diese Menge nicht leer.
Sind alle a; = 0, so gilt nach Beispiel 1.4.2.2

T(ap)N...NT(ay) =N*
Seien nun nicht alle a; gleich Null, etwa a; # 0 mit 1 <[ < k. Dann ist wegen
T(al) N...N T(ak) C T(al)

und Lemma 1.4.3.2 T'(a;) N ... N T (ag) endlich und besitzt daher ein grofites Element.
Daher ist folgende Definition sinnvoll.

Definition 1.4.5. Seien k € N* und ay,. .., a; € Z nicht alle Null. Dann heif3t
geT(ay,...,a;) = max(T(a)N...NT(ay))
der grofite gemeinsame Teiler von ay,. .., a.

Beispiele 1.4.6. Es seien aq,..., ai € Z nicht alle Null.
1. Ist k =1 so gilt ggT(a1) = |ay|.
2. Es gilt
geT(ay,...,ar) = ggT(£ay,...,+x) = ggT(lay],...,|ax|)
(wegen T'(a;) = T(—a;) = T(|a;])).
3. ggT(ay,...,ar) hingt nicht von der Reihenfolge der a; ab, d.h.: Ist o eine Permu-
tation der Menge {1,...,k} so gilt
ggT(as, ..., ar) = 88T (as(); - - - Go(r))
Denn:
T(al) N...N T(ak) = T(ag(l)) N...N T(aa(k)).
4. Ist a € Z \ {0} so gilt ggT(a,0) = |al.
5. Seien a, b € Z nicht beide Null und k € Z. Wegen Lemma 1.4.3.4 gilt dann
ggT(a,b) = max(T(a) NT (b)) = max(T(a) NT(b+ ka)) = ggT(a,b+ ka)
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6. Wir benutzen Beispiel 5 um d = ggT (123456789, 432) zu bestimmen. Wir dividieren
dazu 123456789 mit Rest durch 432 und erhalten

123456789 = 285779 - 432 + 261

Es folgt
d = ggT(123456789, 432) = ggT (123456789 — 28779 - 432,432) =
= ggT(261,432)
Analog geht es weiter. Wir dividieren 432 mit Rest usw. Wir erhalten
d = ggT(261,432) = ggT(261,261 + 171) = ggT(261,171) =
=ggT(171 4+ 90,171) = ggT(90, 171).
Nun kénnte man analog fortfahren, aber es lohnt sich genau hinzuschauen: Dividiert
man 171 mit Rest durch 90 so erhélt man 171 = 90 + 81. Es gilt aber auch 171 =
2-90 — 9. Beachte, dass —9 betragsméflig viel kleiner als 81 ist. Es folgt
d = ggT(90,171) = ggT(90,2-90 — 9) = ggT(90, —9) = ggT(90,9) =9
Diese Methode funktioniert nun nicht nur fiir die zwei Zahlen 123456789 und 432,
sondern ganz allgemein.
Satz 1.4.7. Seien a, b € N mit a > b. Wir definieren induktiv eine Folge (ry,)nen natirli-
cher Zahlen wie folgt:
ro =a, 1 =0b,
0 fallsr,—1 =10

Rest der Division von r,_o durch r,,_1 falls r,_1 # 0

und firn > 2:r, = {

Dann gibt es n € NT mit r, = 0. Ist n € NT so klein wie mdglich mit r, = 0, so gilt
rno1 = ggT(a,b) (Euklidische Algorithmus zur Bestimmung des grifiten gemeinsamen
Teilers).

Beweis. Angenommen es ist r,, # 0 fiir alle n € N*. Da fiir n > 2, r,, der Rest einer
Division durch r,,_; ist, folgt r,, < r,_1 fir n > 2. Also ist (r,)n,en+ eine streng monoton
fallende Folge natiirlicher Zahlen. So eine kann aber nicht existieren. Also ist r, = 0 fiir
mindestens ein n € Nt (und dann nach Definition r, = 0 fiir alle & > n).

Sei nun n € NT minimal mit r,, = 0. Wir zeigen

ggT(a,b) = ggT(rs, rit1)
fir i = 0,...,n — 1. Wir benutzen dazu Induktion nach i. Wegen ro = a, r; = b, ist die
Aussage fiir i = 0 klar. Sei jetzt 0 < ¢ < n — 2 und es gelte ggT(a,b) = ggT(r;, ri11). Wir
miissen ggT(a,b) = ggT (141, 7i12) zeigen.
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Wegen i +1 < n —1 < n ist ;41 # 0. Daher ist nach Definition 7;,5 der Rest der
Division von r; durch r;,1. Also gibt es k € Z mit r; = kr; 1 + r;12. Es folgt

1.4.6.4

ggT(a,b) = ggT(ri, riv1) = 8T (kriss + riva, 1) "= 88T(rig2, 1) = g8T(rip1, riga).
Beispiel 1.4.8. Zur Illustration noch ein Beispiel dazu. Wir bestimmen ggT(—352,106).
Zunéchst ist ggT(—352,106) = ggT(352,106). Nun dividieren wir laufend mit Rest und
erhalten:

352 =3-106+ 34 = ry = 34,
106 =3-34+14 = r3 =4,
34=8-4+2 =1y =2,
4=2-240 =1r5=0

Also ist ggT(—352,106) = 2.
0]

Satz 1.4.9. Seien k € NT, ay,..., ap € Z nicht alle Null und d € NT. Dann sind
dquivalent:
1. d =ggT(ay,... ak).
2. d|a;,i=1,...,k und es gibt x1,..., v, € Z mit d = x1a1 + ...+ T0%.
3.d|aj,i=1,....,k und ist d € Nt mit d' | a; fiir allei=1,...,k, so gilt d' | d.

Beweis. 1 = 2. Es sei also d = ggT(ay, ..., a;). Nach Definition des ggT gilt dann d | a;
fir alles = 1, ..., k. Wir miissen also noch z1,..., ) € Z mit d = x1a1+. ..+ xra; finden.
Wir setzen dazu

L:{x1a1+...+xkak ’ azl,...,xkEZ}CZ
Sei 1 < j <k mit a; # 0. Dann ist
O<CLJZ:O'CL1+...+O‘CLJ',1+CLJ"aj+0‘aj+1+...+0'akEL

Daher ist LNNT # 0. Wir bezeichnen mit d’ das kleinste Element von L NN* und zeigen
d =d (dann ist d = d’ € L). Wir wihlen dazu z1,..., ) € Z mit d' = x1a1 + ... + xpay.

Wegen d | a;, i = 1,...k, gilt auch d | d’ nach 1.3.3.5. Anwendung von 1.3.3.7 liefert
d=1|d| < |d'| =d. Es bleibt d < d zu zeigen. Nach Definition des ggT geniigt es dazu
d | a; fir alle i = 1,...,k zu zeigen. Angenommen, dies ist falsch. Dann koénen wir ein
1 < j < k mit d { a; wihlen. Wir dividieren nun a; durch d’ mit Rest: a; = qd’ + r.
Wegen d' {a; ist 0 <7 < d'.

Nun gilt

r=a;—qd =a; — q(xia1 + ... + xpay) =

= (—gqr1)ar + ...+ (—qzj—1)aj + (L — qzj)a; + (—qzja)ajm + ... + (—que)ar € L.
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Wegen r > 0 folgt sogar r € LN N*. Da d’ das kleinste Element von L N N7 ist, folgt
r > d', was r < d’ widerspricht.

2 = 3. Es gelte also d | a; fir alle ¢ = 1,...,k und es seien xy,..., x € Z mit
d = x1a1+. ..+ xpa,. Wir miissen noch zeigen: Ist d € Nt mit d’ | a; fir allei = 1,..., k,
so gilt d' | d. Dies folgt aber aus 1.3.3.5

3 = 1. Wir nehmen also an, dass die Aussage in 3 wahr ist. Es sei d' = ggT(aq, ..., ax)
und zeigen d = d'. Wegen d’ | a;, fiir alle i = 1,... k gilt nach Voraussetzung d’ | d.

Wegen d' = ggT(ay, ..., a;) konnen wir die schon bewiesene Implikation 1 = 2 verwen-

den: Es gibt x1,...,2x € Z mit d' = zya1 + ... + agxy. Wegen d | a; fur allei =1,...,k
gilt wieder nach 1.3.3.5 d | d'.

Wir wissen also jetzt d’ | d und d | d’. Anwendung von 1.3.3.8 liefert jetzt d = |d| =
|d'| =d. O

Korollar 1.4.10. Es seien k € Nt und ay,. .., ai € Z nicht alle Null. Istd = ggT(aq, ..., ax)
so gilt

T(a)N...NT(ax) =T(d)

Beweis. Essei d’ € T(d). Dann folgen d’ € Nt und d' | d. Wegen d | @; firallei = 1,... k
gilt dann auch d' | a;, i = 1,... k. Es folgt ' € T(a;) N ...T(ax). Damit haben wir D
gezeigt.

Es sei nun umgekehrt d' € T'(a;) N ... N T (ag). Nach 1.4.9.3 gilt dann d' | d, also

d eT(d). O
1.4.11. Seien k € N, aq, ...a, € Z nicht alle Null und d = ggT(ay,...,a;). Nach 1.4.9
gibt es x1,..., xp € Z mit d = x1a1 + ... + apxy. Wie findet man solche z;?

Wir behandeln zunéchst den Fall £ = 2 an einem Beispiel. Wir hatten schon berechnet

(siche Beispiel 1.4.8):

(1.4.11.1) 352 = 3 - 106 + 34,
(1.4.11.2) 106 =3-34+4
(1.4.11.3) 34 =8 442
(1.4.11.4) 4=2-240

Es folgt 2 = ggT(352,106). Nun rechnen wir zuriick:

(1.4.11.3 1.4.11.2

geT(106,352) =2 "2 34 8. 4 P 34 9. (106 — 3 34) =

(1.4.11.1)

=25-34—-8-106
= 25-352 — 83 - 106

25- (352 —3-106) — 8- 106

Der folgende Satz zeigt, wie man den Fall £ > 3 auf den Fall & = 2 zuriickfiihrt.
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Satz 1.4.12. Seien k € N3, a1,..., ay € Z, sodass von den k — 1 Zahlen ay,. .., ar_1
nicht alle Null sind. Wir setzen d = ggT(ay,...,ax_1). Dann gilt

geT(ar, ... ax) = ggT(d, ar)
(rekursive Berechnung des ggT ).

Sind u, v, x1,..., vpg_1 € Z mit ggT(d,ar) = ud + vay und d = ria; + ... + Tp_1a5_1

so gilt

geT(ay, ... ar) = (uxi)a; + ... + (uxp_1)ax_1 + vag
Beweis. Wir beweisen zunéchst ggT(d,ar) = ggT(ai,...,ax). Wir setzen dazu d' =
ggT(d,ar). Um d' = ggT(ay,...,a) zu zeigen, benutzen wir die Aquivalenz 1 <= 3 in
1.4.9. Wegen d' = ggT(d,ay) gilt d' | d und d' | ay. Fiiri =1,...,k — 1 gilt d | a;. Aus
d | dund d | a; folgt nun d' | a; fir i =1,...,k — 1.

Seinun e € Nt mit e | a;, i =1,..., k. Wir miissen e | d’ zeigen. Wegen e | aq, ..., a1
und d = ggT(ay,...,ar-1) gilt e | d (1.4.9). Wegen e | d und e | a; gilt wiederum nach
149 ¢ | ggT(d,ar) =d'.

SchliefSlich gilt

geT(ay,...,a;) = ggT(d,ar) = ud + vay = u(r1a1 + ... + Tp_1a5_1) + vy =
= (uxy)ay + ...+ (urgp_1)ag_1 + vag
0

Beispiel 1.4.13. Wir bestimmen d = ggT(2107, 1848, —1554) und z, y, z € Z mit d =
2107x + 1848y — 1554=.
Dazu berechnen wir zunéchst ggT (1848, 1554). Laufende Division mit Rest liefert:

(1.4.13.1) 1848 = 1- 1554 + 294,
(1.4.13.2) 1554 = 5 - 204 + 84,
(1.4.13.3) 294 = 3. 84 4 42,
(1.4.13.4) 84=12.4240

Also erhalten wir ggT(1848, —1554) = 42. Nun bestimmen wir z,y € Z mit 42 = 1848z —
1554y. Dazu rechnen wir wieder zuriick:

42 MY 094 3.4 T 994 3. (1554 — 5. 204) =

—16-294 — 31554 "2 16 (1848 — 1554) — 3 1554 =

=—19-1554 4+ 16 - 1848 = 19 - (—1554) + 16 - 1848
Nach 1.4.12 ist nun ggT (2107, 1848, —1554) = ggT(2107,42). Um diesen zu bestimmen,

dividieren wir wieder laufend mit Rest:
2107 =50-42+7
42=6-7+0
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Es folgt 7 = ggT(2107,42) = 1-2107 + (—50) - 42. Insgesamt erhalten wir nun
7 = goT(2107, 1848, —1554) = 1 - 2107 + (—50)42
= 12107 + (=50)(16 - 1848 + 19 - (—1554)) =
= 1-2107 — 800 - 1848 + (—950) - (—1554)

Definition 1.4.14. Seien a, b € Z. a und b heilen teilerfremd, falls (a, b) # (0,0) ist und
falls ggT(a,b) = 1 gilt.

Satz 1.4.15. Seien k € N*, aq,..., ar € Z nicht alle Null und a, b, ¢ € Z. Dann gelten:
1. Ist ¢ # 0 so gilt

ggT(Ca‘b s JCak) = ’C| ggT(CLl? s Jak)

Insbesondere: Ist d = ggT(ay, ..., ax) so ist ggT(ai/d, ... ax/d) = 1.

Sind a und b teilerfremd, so folgt aus a | bc auch a | c.

Sind a und b teilerfremd, so folgt aus a | ¢ und b | ¢ auch ab | c.

Sind firi=1,...,k c und a; teilerfremd, so sind auch c und ay-. . .-ay teilerfremd.
Sind a und b teilerfremd so auch a™ und b"™ fiir alle m, n € NT,

Ol W

Beweis. 1. Wir machen eine Induktion nach k. Fiir k£ = 1 ist die Aussage trivial und fiir
k = 2 siehe Aufgabe 18. Es sei nun k£ > 2 und die Aussage gelte fiir k. Wir zeigen, dass

sie auch fiir k4 1 gilt. Seien also ay,...,ax1 € Z.
1.Fall: a; = as... = a; = 0. Dann folgt
geT(car, ..., car1) = ggT(0,...,0,car1) = |car| = |ef|ar1| =

= |c|ggT(0,...,0, ars1) = || ggT(ay, . .., ars1)
2.Fall: ay,..., a sind nicht alle gleich Null. Dann folgt

1.4.12 IV
geT(car, ... cap) =" geT(geT(car, . .., cay), caryr) = ggT(|c| ggT(ar, . .., ar), cap) =

4.6. k=
" lagi) = el ggT(geT(ay, .. ., ar), arsr) =

2
ggT(’C‘ ggT(ab s 7ak)7
e clggT(ar, ..., ar1)

Die Insbesondere—Aussage folgt jetzt aus
a a a a
d=ggT(ay,. .. a) = ggT(d- j,---,df) déodggT(j,---,gk)
Bemerkung: Die Insbesondere—Aussage folgt auch direkt aus der Definition des ggT.

2. Da a und b teilerfremd sind, gibt es nach 1.4.9 z, y € Z mit az + yb = ggT(a,b) = 1.
Durch Multiplikation mit ¢ folgt ¢ = aze + ybe. Wegen a | axc und a | ybe (da ja a | be)
folgt auch a | axec + ybc = c.

3. Wegen a | ¢ gibt es k € Z mit ¢ = ak. Es folgt b | ¢ = ak. Da a und b teilerfremd
sind, folgt b | k aus 2. Anwendung von 1.3.3.6 liefert ab | ak = c.
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4. Wir benutzen Induktion nach k. Fiir £k = 1 ist die Aussage trivial. Wir betrachten
nun den Fall £ = 2. Wir iiberlegen uns als erstes (¢, ajas) # (0,0). Ist ¢ # 0 so ist dies klar.
Ist aber ¢ = 0, so gilt nach Voraussetzung a; # 0, ¢ = 1,...,2 (da ¢ und q; teilerfremd
sind). Also ist auch ajas # 0. Wir setzen nun d = ggT(c,a1az2), di = ggT(d,a;) und
dy = ggT(d,as). Sei i = 1 oder ¢ = 2. Dann gilt d; | d und d; | a;. Wegen d | ¢ gilt
nach 1.3.3.4 auch d; | ¢ und d; | a;. Wegen ggT(c,a;) = 1 folgt nach 1.4.9 d; | 1, also

Aus d | ayas und ggT(d,a;) =1 folt aus Teil 2 d | ay. Wir erhalten

1 =ggT(d,ay) = d

Sei jetzt £ > 2 und es seien ¢ und ay ...a,_; teilerfremd. Der Fall £ = 2 zeigt dann
auch, dass c und (ay ...ax_1)ar = a .. .ay teilerfremd sind.

5. Wir verwenden Teil 4 mit ¢ = b, k = m und a; = ... = a5 = a. Es folgt, dass a™
und b teilerfremd sind. Nun verwenden wir wieder Teil 4, diesmal mit ¢ = o™, kK = n und
a; = ...=ag =b. Also sind auch a™ und b" teilerfremd. O

Satz 1.4.16. Es sei ¢ € Q. Dann gibt es eindeutig bestimmte a € Z, b € NT mit ¢ = a/b
und ggT(a,b) =1 (gekiirzte Bruchdarstellung von q).

Beweis. Existenz von a, b: Zunéchst gibt es a’, b/ € Z, b’ # 0 mit ¢ = a'/b'. Ist ¥’ < 0
so ersetzen wir a’ durch —a’ und ¢ durch —¥. Wir kénnen daher " € Nt annehmen.
Wir setzen nun d = ggT(a/,0’). Dann gelten d | @’ und d | ¥'. Also gibt es a, b € Z mit
a = ad und b = bd. Wegen d, b’ € N7 ist dann auch b € N*. Nach 1.4.15.1 gilt dann
ggT(a,b) = ggT(a'/d, b /d) = 1. Weiters ist ¢ = o’ /b’ = (ad)/(bd) = a/b.

Eindeutigkeit von a und b: Seien a, ' € Z, b, V¥ € Nt mit a/b = ¢ = /b und
ggT(a,b) = 1 = ggT(a’, V). Wir zeigen a = o’ und b = b'. Aus a/b = q = d'/V folgt
ab' = a'b. Inbesondere gelten b | ab’ und b | a’b. Wegen ggT(a,b) = 1 = ggT(d, V)
erhalten wir nach 1.4.15.2 b | ¥ und ' | b. Es folgt |b| = |V/| aus 1.3.3.8. Wegen b, b’ € N*
erhalten wir b = 0. Aus ab = ab’ = a'b folgt nun auch a = d'. O

Satz 1.4.17. Seien n € N*, ag,..., a, € Z mit a, # 0. Sei ¢ € Q eine Nullstelle des
Polynoms a, X™+ ...+ a1 X +ag und ¢ = a/b die gekiirzte Bruchdarstellung von q. Dann
gelten b | a,, und a | ayp.

Beweis. Wir multiplizieren die Gleichung

mit b und erhalten
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Nun folgt aus

n n—1 n—1
0= E apa®t"F = a,a" + g apaft"F = a,a” + b g apatp 1k
k=0 k=0 k=0

b | ana™ Nach 1.4.15.5 gilt ggT'(a", b) = 1, woraus nach 1.4.15.2 b | a,, folgt.
Analog zeigen wir a | ag. Aus

0= Z apatb" R = qob" + Z apa®b"F = agb” + a Z aga® 1ok

k=0 k=1 k=1
folgt a | apb™. Wegen ggT(a,b") =1 (1.4.15.5) folgt a | ap (1.4.15.2). O

Beispiel 1.4.18. Wir bestimmen alle ¢ € Q, die Nullstellen des Polynoms P = 3X3 +
4X? —5X — 2 sind. Sei dazu ¢ € Q eine Nullstelle von P und sei ¢ = a/b die gekiirzte
Bruchdarstellung von ¢. Anwendung von 1.4.17 liefert a | —2 und b | 3. Es folgt a €
{£1,£2} und b € {1,3} und damit

1 2
e{£l, £2,+ -, +—
Wir haben also nur mehr endlich viele Méglichkeiten fiir . Einsetzen liefert
1
P(1)=P(-2) = P(—g) =0

Wegen grad(P) = 3, sind also 1, —2, —1/3 alle Nullstellen von P.

Satz 1.4.19. Seien m € Nt und n € NT, sodass m keine n-te Potenz in 7 ist (also
m # 0" fir alle b € 7). Dann ist /m irrational.

Beweis. Angenommen {/m € Q. Es sei {/m = a/b die gekiirzte Bruchdarstellung von
/m. Nun ist {/m Nullstelle von X™ — m. Nach 1.4.17 folgt b | 1, also b = 1 (wegen
b € N*). Es folgt {/m = a € Z, also m = a™, Widerspruch. O

1.5. Das kleinste gemeinsame Vielfache.
Definition 1.5.1. Sei a € Z \ {0}. Wir bezeichnen mit
Via)={veN"|a|v}
die Menge aller echt positiven Vielfachen von a. Es ist dann also
V(a) =NT|a| = {kla| | k € N}

1.5.2. Seien k € N* und ay,..., ar € Z\{0}. Firallei = 1,... &k gilt dann a; | |ay . .. ag|.
Also ist |ag ...ag| € V(a) N ... N V(ax). Inbesondere ist V(a;) N ... NV (ag) # 0. Daher
besitzt V(a;)N...NV(ax) ein kleinstes Element. Die folgende Definition ist also sinnvoll.
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Definition 1.5.3. Seien k € N* und ay,..., ar € Z \ {0}. Dann heifit
kgV(ay,...,ax) :=min(V(ay) N...NV(ag))
das kleinste gemeinsame Vielfache von aq,. .., as.

1.5.4. Wie bestimmt man nun das kleinste gemeinsame Vielfache von k ganzen Zahlen
ungleich Null? Wir beweisen dazu drei Sdtze. Der erste entspricht Satz 1.4.9 fiir den
grofften gemeinsamen Teiler.

Dies benutzen wir dann um eine rekursive Darstellung des kgV zu geben (1.5.6). Dies
entspricht 1.4.12 fiir den ggT. Dieser Satz fiihrt das Problem darauf zuriick, das kgV von
zwei ganzen Zahlen zu berechnen. Dieses Problem wird dann in 1.5.7 auf die Bestimmung
des ggT’s zweier Zahlen zuriick gefiihrt.

Satz 1.5.5. Seien k € Nt ay,..., ap € Z\ {0} und v € NT. Dann sind dquivalent:
1. v =kgV(ay,...,a).

2. Fiir allei =1,...,k gilt a; | v und ist w € NT mit a; | w fir allei =1,...,k, so
gilt v | w.

Beweis. 1 = 2. Sei also v = kgV(ay, ..., a;). Dann ist v nach Definition ein Vielfaches

aller a;, also gilt a; | v fir alle s = 1,... k. Sei nun w € N* mit a; | w fiirallei = 1,... k.

Wir miissen v | w zeigen. Angenommen dies ist falsch. Wir dividieren w mit Rest durch
viw =kv+rmitr € {l,...,v—1}. Sei 1 < i < k. Aus a; | v und a; | w folgt
a; | w— kv = r aus 1.3.3.5. Also ist r € NT ein gemeinsames Vielfaches der a;. Da v
das kleinste gemeinsame Vielfache der a; ist, erhalten wir v < r. Dies widerspricht aber
r<wov-—1.

2 = 1. Habe nun v die Eigenschaft 2. Es sei v/ = kgV(ay, . .., ax). Da wir die Implikation
1 = 2 schon bewiesen haben, wissen wir, dass auch v" die Eigenschaft 2 hat (wenn wir in
2 v durch v ersetzen). Wegen a; | v fir alle t = 1,.. ., k folgt v' | v, da v’ die Eigenschaft 2
hat. Wegen a; | ¢’ fir allei = 1,. .., k folgt v | v/, da v nach Voraussetzung die Eigenschaft
2 hat. Also ist |v| = [v| und damit v = o', O

Satz 1.5.6. Seien k € N>y, ay,..., ar € Z\ {0} und v' = kgV(ay,...,ax_1). Dann gilt
kgV(ay,...,ar) = kegV(v', ax).

Beweis. Wir setzen v = kgV (v, ax,) und zeigen, dass v die Eigenschaft 2 aus 1.5.5 besitzt.
Nach Definition gilt zunéchst a; | v. Sei 1 < i < k — 1. Dann gelten a; | v/ und ¢’ | v,
woraus a; | v folgt.

Sei nun w € N* mit a; | w fiir alle ¢ = 1,..., k. Wir miissen v | w zeigen. Wegen
v =kgV(ay,...,ap_1) und a; | w, i = 1,...k — 1 gilt v' | w nach 1.5.5. Also gilt v/ | w
und ay | w. Nochmalige Anwendung von 1.5.5 liefert v | w. O

Satz 1.5.7. Seien a, b € Z\ {0}. Dann gilt
|ad)

keV(a,b) = —
8V(a,0) ggT(a,b)
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Beweis. Wir setzen d = ggT(a,b) € NT. Wegen d | a (also auch d | |a|) gilt
v :=|ab|/d = (Ja]/d)|b] € N*

Wir zeigen, dass v die Eigenschaft 2 aus 1.5.5 besitzt.
Wegen d | a und d | b gelten |a|/d € Z und |b|/d € Z. Aus

_ ladl _
==

folgen a | v und b | v. Sei nun w € Nt mit a | w und b | w. Wegen d | a, d | b gilt auch
d | w und daher gelten a/d, w/d, b/d € Z. Aus (a/d)d = a | w = (w/d)d folgt nach 1.3.3.6
a/d | w/d. Ersetzt man in dieser Uberlegung a durch b, so folgt auch b/d | w/d. Nach
1.4.15.1 gilt ggT(a/d,b/d) = 1. Wegen a/d | w/d und b/d | w/d, folgt aus 1.4.15.3 auch
(a/d)(b/d) | w/d. Wir wenden nocheinmal 1.3.3.6 an und erhalten (ab)/d | w, also auch
v =lab|/d | w. O

Beispiel 1.5.8. Wir bestimmen kgV (102, 153, 136). Dazu bestimmen wir mit Hilfe von
1.5.7 kgV (102, 153). Wir berechnen zunéchst ggT (102, 153). Es ist

153 =1-102+51, 102=2-5140
Also ist 51 = ggT(102,153) und damit

bl lal
2 gp 2L
ol = o115

102 - 153
kgV(102,153) = —— =2 153 = 306

Nun miissen wir nur noch kgV (306, 136) bestimmen. Aus
306 =2-136+34, 136=4-34+0
folgt 34 = ggT(306, 136) und damit

306 - 136
kgV(102,153, 136) = keV (306, 136) = “— —— = 306 - 4 = 1224

2. PRIMZAHLEN

2.1. Der Fundamentalsatz der Arithmetik.

Definition 2.1.1. p € NT heifit Primzahl, falls p # 1 ist und falls T'(p) = {1,p} gilt
(Erinnerung: fir a € Z ist T(a) = {t € N* | t | a}, siehe 1.4.1).
Wir bezeichnen mit P die Menge aller Primzahlen.

Lemma 2.1.2. Seien p € P und a € Z. Dann gilt

p fallspla
T p—
geT(a,p) {1 falls pta
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Beweis. Gelte einmal p | a. Dann folgt

T(p) ={1,p} CT(a) NT(p) C T(p)

Also ist T'(a) NT(p) = {1, p} und daher ggT(a,p) = p.
Es gelte nun p t a. Wegen

{1} cT(a)NT(p) cT(p) = {1,p}
und p ¢ T'(a) NT(p) folgt T'(a) N T(p) = {1} und daher ist ggT(a,p) = 1. O

Satz 2.1.3. Seip € N mit p > 2. Dann ist p genau dann eine Primzahl, wenn fir alle a,
beZgilt:p|ab=p|a oderp|b.

Beweis. Sei einmal p eine Primzahl und a, b € Z mit p | ab. Wir zeigen p | a oder p | b.
Falls p | a gilt, sind wir fertig. Wir kénnen daher p f ¢ annehmen und miissen nun p | b
zeigen. Nach Lemma 2.1.2 gilt aber

plab und ggT(p,a) =1

Daher folgt p | b aus 1.4.15.2.

Gelte nun umgekehrt p | ab = p | a oder p | b fiir alle a, b € Z. Wir zeigen, dass p eine
Primzahl ist. Wegen p > 2 ist p # 1. Sei nun ¢t € T'(p). Dann gibt es v € N* mit p = tu.
Es folgt p | p = tu. Nach Voraussetzung folgt p | t oder p | u.

1. Fall: p | t. Dann gilt p | ¢t und ¢ | p, woraus (beachte ¢, p € N*) ¢ = p folgt.

2. Fall: p | u. Wegen tu = p, gilt v | p. Wie eben folgt jetzt u = p. Aus tp = tu = p
erhalten wir ¢t = 1.

Wir haben nun 7'(p) C {1, p} gezeigt. Da die inverse Inklusion trivial ist, folgt T'(p) =
{1,p}. Daher ist p eine Primzahl. O

Korollar 2.1.4. Seien p € Pk € N und ay,..., ar € Z mit p | ay...a,. Dann gibt es
eini€{l,....k} mitp|a;.

Beweis. Wir machen eine Induktion nach k. Fiir £ = 1 ist die Aussage trivial. Sei nun
k > 2 und die Aussage gelte fiir k£ — 1. Wir zeigen, dass sie dann auch fiir k£ zutrifft. Seien
also ay,..., ay € Zmit p | ay...ar = (ay...ax_1)ag. Nach Satz 2.1.3 folgt p | ay ... ax_1
oder p | ax. Gilt p | ax so sind wir fertig. Wir kénnen daher p | a;...ax_; annehmen.
Dann gibt es nach Induktionsvoraussetzung ein i € {1,...,k — 1} mit p | a; und wir sind
ebenfalls fertig. O

Satz 2.1.5. Sein € N mit n > 2. Dann ist n ein Produkt (eventuell mit nur einem
Faktor) von Primzahlen und diese Darstellung von n als Produkt von Primzahlen ist bis
auf die Reihenfolge der Faktoren eindeutig (Fundamentalsatz der Arithmetik).

Beweis. Wir zeigen zunéchst die Existenz. Wir benutzen dazu eine Induktion. Wir neh-
men also an, dass jedes m € N mit 2 < m < n ein Produkt von Primzahlen ist, und
zeigen, dass dies auch fiir n zutrifft.
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Ist n schon selbst eine Primzahl, so ist die Aussage klar. Wir konnen also annehmen,
dass n keine Primzahl ist. Dann gibt es ¢t € T'(n) mit 1 < ¢ < n. Sei v € NT mit tu = n.
Wegen 1 <t <mnist 2 <t <n Ausl <t <nundn = tu folgt 1 < u < n, also
2 < u < n. Nach Induktionsvoraussetzung sind daher ¢ und u Produkte von Primzahlen.
Wegen n = tu ist auch n ein Produkt von Primzahlen.

Eindeutigkeit: Seien s, t € NT und py,..., ps, q1,..., ¢ EPmit p1...ps=n=q ...q.
Wir miissen zeigen, dass s = ¢ gilt, und dass nach eventueller Umnummerierung der g;
pi=¢q,t=1,..., s gilt.

Wir benutzen dazu wieder eine Induktion nach n, nehmen also an, dass die Aussage
fiir alle 2 < m < n gilt.

L.Fall s =1: Dannist n =p; = q...q. Es folgt 1 # ¢1 € T'(p1) = {1, p1}, also p1 = ¢1.
Dann folgt 1 = ¢5...q. Wegen ¢; > 2 fiir alle : = 2,...¢, folgt t — 1 =0, also t = 1 und
wir sind fertig.

2.Fall s > 2: Wegen p; | p1...ps = n = q...¢q und 2.1.4, gibt es ein 1 < j < ¢
mit p; | g;. Nach einer eventuellen Umnummerierung der g, kénnen wir j = 1, also
p1 | 1 annehmen. Dann folgt 1 # p; € T(q1) = {1,q1}, also p; = ¢;. Wir setzen nun
m =mn/py =n/q = pa...Ds = ¢2...q. Dann ist m < n (wegen p; > 1) und m > 2
(wegen m = ps...ps, p2 > 2 und s > 2). Nach Induktionsvoraussetzung (angewandt auf
m) folgt s — 1 =t —1 (also s = t) und nach eventueller Umnummerierung der gs, . . . gs
pi=q; firi=2,...s. O

2.2. Die Verteilung der Primzahlen.

Satz 2.2.1. Es gibt unendlich viele Primzahlen.

Beweis. Angenommen P sei endlich, etwa P = {p;,...,pp}. Wegen 2 € Pist k > 1. Setze
n=p...pp+1. Wegenk>1und p; >2,i=1,...,kist n > 3. Nach 2.1.5 wird n daher
von einer Primzahl geteilt. Also gibt es 1 < i < k mit p; | n. Wegen p; | p1...p folgt
auch p; | n —py...pr = 1. Also ist p; = 1, Widerspruch. U

Definition 2.2.2. Sein € Nmit n > 2. Dann ist n € T'(n)\ {1} und daher T'(n)\ {1} # 0.
Wir setzen p(n) = min(7'(n) \ {1}). p(n) ist also die kleinste natiirliche Zahl, die n teilt
und grosser oder gleich 2 ist.

Lemma 2.2.3. Sein € N mit n > 2. Dann gelten:

1. p(n) ist eine Primzahl. Insbesondere ist p(n) die kleinste Primzahl, die n teilt.

2. Ist n keine Primzahl, so gilt p(n) < \/n.

3. Sei x € RY mit \/r <n < z.n ist genau dann eine Primzahl, wenn n von keiner
Primzahl < \/x geteilt wird.

Beweis. 1. Angenommen p(n) ist keine Primzahl. Wegen p(n) > 2, gibt es dann ein ¢ € N
mit 1 <t < p(n) und ¢ | p(n). Wegen p(n) | n, folgt 2 < ¢ und ¢ | n. Daher ist ¢ > p(n),
was t < p(n) widerspricht.
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2. Wegen p(n) | nist n = p(n)m mit m € N*. Nach Vorausetzung ist n keine Primzahl.
Aus 1 folgt m > 2. Daher gilt m € T'(n) \ {1}. Inbesondere ist m > p(n). Wir erhalten
n = p(n)m > p(n)?, woraus p(n) < /n folgt.

3. Sei einmal n eine Primzahl. Wegen /x < n wird dann n von keiner Primzahl < \/x
geteilt.

Gelte nun umgekehrt, dass n von keiner Primzahl < \/x geteilt wird. Angenommen n
ist keine Primzahl. Nach Voraussetzung und wegen 1 gilt p(n) > /z. Aus 2 folgt aber:
p(n) < v/n < /z, Widerspruch. O

2.2.4. Sei x € R™. Wir erhalten nun folgendes Verfahren, alle Primzahlen in (y/x,x] zu
bestimmen, falls die Primzahlen < /z schon bekannt sind: Wir schreiben alle n € N
mit \/r < n < x auf. Aus dieser Liste streichen wir alle Zahlen der Form pk wobei p
eine Primzahl < /z ist und wobei k € N mit k& > 2 ist (also alle echten Vielfachen aller
Primzahlen < /z). Nach 2.2.3.3 bleiben genau die Primzahlen in (y/x, x] iibrig (Sieb des
Eratosthenes).

Beispiel 2.2.5. Durch direktes Ausprobieren (oder Schulwissen) erhilt man, dass 2, 3,
5, 7 genau die Menge Primzahlen < 10 ist. Mit Hilfe des Siebs von Eratosthenes (mit
x = 100) kénnen wir nun auch die Primzahlen < 100 bestimmen. Wir schreiben zunéchst
die natiirlichen Zahlen in (10, 100] auf:

11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
7172 73 74 75 76 77 78 79 80
81 82 83 84 8 &8 &7 83 89 90
91 92 93 94 95 96 97 98 99 100

und streichen dann alle echten Vielfachen von 2, 3, 5, 7. Ubrig bleibt

11 13 17 19
23 29

31 37

41 43 47
23 99

61 67
7173 79
83 89

97

Es folgt, dass
{2,3,5,7,11,13,17,19, 23,29, 31, 37,41, 43,47, 53,59, 61,67, 71, 73,79, 83,89,97}
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die Menge aller Primzahlen < 100 ist.

2.2.6. Fiir z € R sei 7(z) die Anzahl aller Primzahlen < z. Es ist also zum Beispiel
7(10) = 4 und 7(100) = 25. Uber 7(x) gilt der folgende Satz, den wir hier nicht beweisen
konnen (einen Beweis findet man zum Beispiel in Kapitel 7 in P. Bundschuh, Einfithrung
in die Zahlentheorie, Springer).

Satz 2.2.7. w(x) ist asymptotisch gleich z/log(x), d.h.

7(x)

lim =1

3 2 Tog()
Dabei ist log der natiirliche Logarithmus.

Satz 2.2.8. Fiir alle k € Nt gibt es ein N € Nt sodass [N + 1, N + k] NP = 0 ist.
Interpretation: P hat beliebig lange Liicken.

Beweis. Sei also £ € N*. Wir setzen N = (k + 1)! + 1 und zeigen, dass jedes n €
NN [N + 1, N + k] keine Primzahl ist. Sei dazu n € NN [N + 1, N + k|. Dann gilt
n=N+j=(k+1)!+j+1miteinem 1 < j <k

Wegen j < kgilt j+ 1| (k+1)!,alsoauch j+ 1| (k+1)!+j+1=n. Wegenj>1
ist j + 1 > 1. Schliefllich ist j +1 < (k + 1)! + j + 1 = n. Also ist n keine Primzahl. [

2.2.9. Lange Liicken treten frither auf, als bei dem im Beweis von 2.2.8 konstruierten N.
Zum Beispiel folgen auf

p = 2614941710599 € P
651 Nicht-Primzahlen. Aber N = 652! +1 ~ 3 - 10'%%3,

2.2.10. Man kann auch nach moglichst kurzen Liicken fragen: Ein Paar (p,q) von Prim-
zahlen p, g heilit Primzahlzwilling, falls ¢ = p + 2 ist. Zum Beispiel sind

(3,5),(5,7),(11,13),(17,19), (29, 31), (41, 43)
Primzahlzwillinge. Man vermutet, dass es unendlich viele Primzahlzwillinge gibt.
2.3. Teilbarkeit und Primfaktorzerlegung.

2.3.1. Sei z € Z \ {0} und es sei |z| = p;...p, die Primfaktorzerlegung von |z|, also
P1y- -+, pr € P (dabei sei r = 0, falls |z| =1 ist).
Fiir p € P sei v,(2) die Méchtigkeit von {1 <i <7r | p, = p}.

Beispiel 2.3.2. Sei z = —26936. Dann gilt
|2| =26936 =2-2-2-7-13-37
Also gelten:
va(2) = 3, v7(2) = v13(2) = var(2) = 1, v(2) =0 fiir peP\{2,7, 13,37}
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Satz 2.3.3. Sei z € Z\ {0}. Dann gilt v,(2) =0 fiir fast alle p € P (d.h. bis auf endlich

viele p € P) und es ist
z = sgn(z) Hp“”(z)

peP
Dabei ist sgn(z) =1, falls z > 0 und sgn(z) = —1 falls z < 0.
Bemerkung: Wegen v,(2) = 0 sind in dem obigen, zundchst unendlichen Produkt bis
auf endlich viele Faktoren alle 1. Daher ist dieses Produkt definiert.
Umgekehrt: Fir p € P sei v, € N mit v, = 0 fiir fast alle p € P und es sei e € {—1,1}.

Setzt man
z=¢€ Hp”” ,

peP
so gilt v,(z) = v, fir alle p € P.
Beweis. Sei |z| = ¢; ... ¢, die Primfaktorzerlegung von |z|. Weiters seien py, ..., ps die
paarweise verschiedenen Primzahlen, die in (qi, ..., ¢,) vorkommen. Dann ist
‘Z’ =q...q p11’171 (Z) .pgps (2) — H pvp(z)

pE{p1,....Ds }
Wegen v,(z) =0 fiir p € P\ {p1,...,ps} ist das letzte Produkt gleich
H pvp(z)
peP
Damit folgt
z = sgn(z)|z| = sgn(z Hp”"(z

peP
Seien nun umgekehrt fiir p € P v, € Nmit v, = 0 fiir fast allep € Pundseie € {—1,1, }.

Wir setzen
z=¢c H PP

peEP
Es seien py,. .., ps die paarweise verschiedenen Primzahlen p mit v, > 0. Dann gilt

Upy Ups

f—/\‘ —N—
H D, =01 pre Ds...Ps

woraus die Behauptung folgt. O

Satz 2.3.4. Seien z, w € Z \ {0}. Dann gelten:
L. v,(2w) = v,(2) + v, (w) fir alle p € P.
2. z|w <= vy(2) < v,(w) fir alle p € P.
3. vy(z) = max{k € N | p* | 2} fiir alle p € P. Insbesondere gilt v,(z) =0 < p{z
fiir alle p € P.



26

Beweis. 1. Ist klar.

2. Es gelte einmal 2z | w. Dann ist w = zu mit einem u € Z. Wegen w # 0 ist auch
u # 0. Es folgt v,(w) = vp(zu) = vp(2) + v,(u) > v,(2).

Umgekehrt gelte nun v,(z) < v,(w) fir alle p € P. Wir setzen a, = v,(w) — v,(2) € N
fur alle p € P. Wegen v,(z) > 0 fiir alle p € P, v,(w) = 0 fiir fast alle p € P ist auch
a, = 0 fiir fast alle p € P. Daher kénnen wir

a::Hp“P € N

peP
definieren.
Es folgt
w = [ [p = ][ pm® = [T o0 =[] o™ [ [ 9 = al2|
pEP peP peP peP peP

Also gilt |z] | |w| und damit auch z | w.
3. Sei p € P. Fiir alle k € N ist v,(p*) = k und v,(p*) = 0 fiir ¢ € P, ¢ # p. Also gilt

nach 2 fiir alle k € N: p* | 2 <= k = v,(p") < v,(2). Die Behauptung folgt. O
Satz 2.3.5. Seien k € Nt und ay,..., ar, € Z\ {0}. Fiir p € P setzen wir
m, = min{v,(a1),...,vp(ax)}, M, =max{v,(a1),...,v,(ax)}

Dann ist m, = 0 fiir fast alle p € P und auch M, = 0 fiir fast alle p € P und es gelten
geT(ay, ..., ax) ZHpm”, kegV(aq, ..., ax) :HpMp
peP peP

Beweis. Fir i =1,...,k sei P, die Menge aller p € P mit v,(a;) > 0 (d.h. p | ;). Dann
ist auch P U...UP; endlich. Firp € P\ (PU...UP;) ist dann v,(a;) =0firi =1,... k.
Es folgt M, =m, =0firallep e P\ (P U...UPF).

Wir setzen nun
d:=]]p™ eN*
peP
und zeigen d = ggT(ay, ..., a;). Wir zeigen dazu zunéchst d | a; fiir alle i = 1,..., k. Sei
also 1 <14 < k. Dann gilt fiir alle p € IP:
up(d) = my = min{vy(ar), ..., vp(ar)} < vplas)

Aus 2.3.4.2 folgt d | a;. Daher gilt d | ggT(ay,...,ax).

Umgekehrt: Fiir alle p € P und alle 1 < i < k gilt wegen ggT(ay,...,ax) | a;:

Up<ggT<a1, s 7ak)) S Up(ai)
Also ist fiir jedes p € P
vp(geT(ar, ... ax)) < min{v,(ar),...,v,(ar)} = m, = v,(d)

Wiederum aus 2.3.4.2 folgt ggT(ay,...,ax) | d. Also gilt d = ggT(ay, ..., ax).
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Schliefllich setzen wir

w = HpMP

peP
und zeigen ganz analog w = kgV(ay,...,ax). Sei 1 <i < k und p € P. Wegen
vp(w) = M, = max{uv,(ar), ..., vp(ak)} = vp(a;)

folgt aus 2.3.4.2 a; | w fir i = 1,..., k, also kgV(ay,...,ax) | w.
Umgekehrt: Fiir alle p € P und alle i = 1,..., k gilt wegen a; | kgV(ay, ..., a):

vp(a;) < wy(kgV(ag,. .., ax))
Also ist fiir jedes p € P:
vp(kgV(ay, ..., ar)) > max{vy(a),...,vp(ar)} = M, = v,(w)
Es folgt w | kgV(ay,...,a;) und daher w = kgV(ay,...,ax). O
Beispiel 2.3.6. Wir bestimmen
ggT(26936,27676,1406) und kgV(26936,27676, 1406)
mit Hilfe von Theorem 2.3.5. Es gelten
26936 =2°-7-13-37, 27676 =2%-11-17-37, 1406 =2-19-37
In der Notation von 2.3.5 folgen
my=mgr=1,m,=0 pelP\ {237}
My =3, My = My = M3 = Mz = Mg = M3z =1,
M,=0 peP\{2,7,11,13,17,19,37}
Also erhalten wir
ggT (26936, 27676, 1406) = 2 - 37 = 74,
kgV (26936, 27676, 1406) = 2* - 7-11-13 - 17- 19 - 37 = 95703608

3. KONGRUENZEN
3.1. Restklassen.
Definition 3.1.1. Es seien m € Nt und a, b € Z.

1. a heifit kongruent zu b modulo m (Schreibweise: @ = b mod m) genau dann, wenn
m | (a — D).

2.a:=a):=a]y ={b€Z | b=a modm} ={beZ | Ik €Z:b—a=km} =
{a +km | k € Z} heifit die Restklasse von a modulo m. Jedes ¢ € Z mit ¢ = a
heifit ein Reprasentant von a.

3. Z/mZ = {a | a € Z} heiBt die Menge aller Restklassen modulo m.

4. Die Abbildung 7 = m,,,: Z — Z/mZ, x — T heifit die Restklassenabbildung modulo
m.
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Beispiel 3.1.2. Wegen 243 =7 —4 gilt nicht 7=4 mod 2. Wegen 3 | 7—4 gilt 7 = 4
mod 3.

Wegen 13 | 27 — 1 ist 1 = 27 mod 13. Daraus folgt modulo 13 (siehe 3.1.3.4) 27 = 1.
Also ist 27 ein Reprisentant von 1 (modulo 13).

Proposition 3.1.3. Seien m € Nt und a, b € Z.

1. Es qilt genau dann a = b mod m, wenn a und b bei Division durch m den gleichen
Rest lassen.
2. Kongruenz modulo m ist eine Aquivalenzrelation auf Z, d.h. fir alle x, y, z € Z
gelten
e zr =z mod m,
e r=y modm=y=x modm,
e r =y modm undy =z mod m implizieren x = z mod m.
3.a=b < a=b modm.
4. Z)mZ = {0,1,...,m — 1} und i # j fiir alle 0 < i # j < m — 1. Insbesondere hat
Z]mZ genau m Elemente.

Beweis. 1. Es seien r, der Rest der Division von a durch m und entsprechend 7, der Rest
der Division von b durch m. Dann gelten also a = km +r,, b =Im + r, mit k, [ € Z.

Es sei einmal a = b mod m. Dann ist a — b = um mit u € Z. Es folgt a = um + b =
um + Im + ry, = (u+ )m + ry,. Also ist 7, auch der Rest der Division von a durch m.

Umgekehrt gelte jetzt r, = 1. Dann folgt a — b= km+r, — (Im — 1) = (k —[)m, also
m|a—b, dh.a=b mod m.

2. Das folgt jetzt unmittelbar aus 1.

3. Es gelte einmal @ = b. Wegen b=b mod m folgt b € b= a, also b =a mod m.

Umgekehrt gelte @ = b mod m. Wir zeigen @ = b, also die beiden Inklusionen @ C b
und @ D b.

C: Sei ¢ € a. Dann gelten ¢ = a mod m und ¢ = b mod m. Anwendung von 2 liefert
c=b mod m, also ¢ € b.

O: Sei ¢ € b. Dann gilt ¢ = b mod m. Wegen a = b mod m gilt nach 2 auch b = a
mod m. Aus ¢ =b mod m und b = a mod m folgt nach 2 ¢ = a mod m, also ¢ € a.

4. Die Inklusion D ist klar. Umgekehrt sei o € Z/mZ, etwa o« = ¢ mit ¢ € Z. Es sei
r € 40,...,m — 1} der Rest der Division von ¢ durch m. Dann gilt m | ¢ —r, also c =r
mod m. Nach 3 folgt a =¢c=7€ {0,...,m — 1}.

Seien nun 0 < i,5 < m — 1 mit 7+ = j. Wir miissen ¢ = j zeigen. Nach 3 gilt zunéchst
¢t = 7 mod m. Nach 1 lassen ¢ und j bei Division durch m den gleichen Rest. Wegen
0 <14, 5 <m —1ist der Rest der Division von ¢ (bzw. j) durch m gleich i (bzw. j). Also
ist i = 7. O

Beispiel 3.1.4. Es ist Z/4Z = {0, 1,2,3}. Wegen (modulo 4) 3 = —1 ist auch Z/4Z =
{-1,0,1,2}.
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Satz 3.1.5. Seien m € NT und a, a/, b, b/ € Z mit a = a mod m und b =V mod m.
Dann gelten:

l.axb=d £V mod m.

2. ab=a'y mod m.

3. Fiir alle k € N gilt a* = a’* mod m.

Beweis. 1,2. Wegen m | a—a’ und m | b—b' folgen nach 1.3.3.5 auch m | (a—a’)£(b—0") =
(atad)—(bL?d), alsoata =b+d mod m und
m|(a—ad)b+d(O-V)=ab—db |,
also ab = a’b’ mod m.
3. Wir benutzen Induktion nach k. Fiir £ = 0 gilt a* = 1 = a’* also auch a* = o’

mod m. Sei jetzt k € N mit a* = a’* mod m. Wegen a = ¢’ mod m folgt aus 2

k+1 _ Kk _ Ik I _ a/k-ﬁ-l

a =a"-a=d"-a mod m

0

Beispiel 3.1.6. Wir bestimmen die Einerziffer von 2%34112345-146° Dyie Einerziffer einer
Zahl ist der Rest der Division dieser Zahl durch 10. Wir berechnen zunéchst kleine Zwei-
erpotenzen modulo 10:

20 =222=423=820=6,20=2,26=427=8 28=6,...

Es ergibt sich die Vermutung, dass die Folge (2"),cn+ modulo 10 periodisch mit Peri-
odenlinge 4 ist, d.h. 2"** = 2" mod 10 fiir alle n € N*. Mit einer Iduktion beweisen
wir dies jetzt. Fiir n = 1 folgt die Behauptung aus obigen Rechnungen. Ist n € N* mit
2n+4 = 2" mod 10, so folgt
2n+1+4 — 2n+4 .9 =9 .9 — 2n+1 mod 10
Es folgt jetzt 297%™ = 2% mod 10 fiir alle a € N* und alle m € N (Induktion nach m).
Also gilt fiir alle a, b € N*: a = b mod 4 = 2% = 2° mod 10.
Wegen
534-112345—-14-6°=2-1—-2-0=2 mod 4
folgt
2534~112345—14-65 =92—-4 mod 10

. . . . . —_ . 5 :
Also ist die Einerziffer von 2534112345-146" oleich 4,

Satz 3.1.7. Sein € Nt und n = (zp25_1...20)10 die Dezimaldarstellung von n, also
n = 210"+ ...+ 102, + 2. Dann gelten:

l.n=z+...4+2 mod9,

2. n = zy mod 10,

3. n =10z 4+ 29 mod 100,
4.n=z,(=1)*+...+(=1)z; + 20 mod 11.
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Beweis. 1. Es ist 10 = 1 mod 9. Also gilt fiir alle m € N: 10™ = 1™ =1 mod 9. Es

folgt
k k

n:szlomEsz mod 9

2. Fiir m > 1 gilt 10™ =0 mod 10. Also ist

k m
n:zo+sz10mEzo+sz-0:zo mod 10
m=1 k=1

3. Fiir m > 2 gilt 10™ =0 mod 100. Also ist

k m
n=2zy+ 10z + szmm =zy+ 10z —i—sz'O:zo—l—lOzl mod 100
k=2

m=2

4. Esist 10 = —1 mod 11, also 10™ = (—1)" mod 11 fiir alle m € N. Es folgt

k
n = Z 2, 10™ =
m=0

k
2,(=1)* mod 11
m=0

O

Korollar 3.1.8. Sei n € Nt und n = (zxzk_1...20)10 die Dezimaldarstellung von n.
Dann gelten:

1. Fird e {3,9} gilt genau dann d | n, wenn d | zo + ... + 2.

2. Fird € {2,5,10} gilt genau dann d | n, wenn d | z.

3. Fiir d € {4,25,50,100} gilt genau dann d | n, wenn d | 102y + z.
4.11|n <= 11| 20— 21+ ...+ (=1)Fz.

Beweis. Wir beginnen mit einer Beobachtung: Sind m, m’ € Nt und a, b € Z mit m’ | m
und a = b mod m, so gilt auch a = b mod m’. Denn m/ | m und m | a — b impliziert
m' | a—0b.

Sei nun d € {3,9}. Dann gilt d | 9 und aus 3.1.7.1 folgt n = 2o+ ... + 2z mod d. Aus
3.1.3.1 folgt die Behauptung.

Analog folgen 24 aus der Beobachtung, 3.1.7 und 3.1.3.1. O

3.2. Der Ring der Restklassen.

3.2.1. Seien m € N und o, § € Z/mZ. Wir wollen a +  und « - 3 wie folgt definieren:
Wiéhle a, b € Z mit « = a und § = b und setze

a+p:=a+b, oa-B=ab

Damit diese Definition sinnvoll ist, miissen wir uns aber iiberlegen, dass das Ergebnis
unabhéngig von der Wahl von a und b ist.
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~ Angenommen es sind auch A, B € Z mit a = A und f = B. Dann folgen @ = A und
b= B,alsoa=A mod mund b= B mod m. Aus 3.1.5 folgen a + b= A+ B mod m
und ab = AB mod m, also

a+b=A+B und ab= AB
Wir haben damit eine Addition + und eine Multiplikation - auf Z/mZ definiert.
Satz 3.2.2. Sei m € N*. Dann gelten fir alle o, 8, v € Z/mZ:

l.a+p=0+a.

2. (a+B)+y=a+(B+7).

3. a+0=a.

4. Es gibt 6 € Z/mZ mit a+ 6 = 0.
5. aff = fa.

6. (af)y = a(B).

7. a-1=a.

8. a(B+7) =aB+ay.
Dabher ist (Z/mZ,+,-) ein kommutativer Ring mit Einselement 1 und Nullelement 0.

Beweis. Seien a, b, ¢ € Z mit a = a, # = b und ~ = ¢. Dann folgen

a—i—ﬁza—i—b:b%azﬁ—i—a ,
also 1 und 5. Weiters ist

(044"@4‘7:(@4-5)4—6:@4-64—6:(a—Fb)—Fc:a—i—(b—i-c):

—atbte=at(G+d=—a+(B+n)

woraus 2 und 6 folgen.

Aus
a+0=a+0=a+0=a=0a, a-l=a-1=a-1=a=a«
folgen 3 und 7. 8 folgt aus
a(f+v)=alb+e)=a-b+c=alb+c)=ab+ac=ab+ac=ab+ac=
=af +ay
Zum Beweis von 4 setzen wir 6 = —a. Dann gilt

a+d=a+—-a=a+ (—a)=0
0

3.2.3. Sei m € N*. Dann ist insbesondere (Z/mZ,+) eine kommutative Gruppe. Wie
tiblich bezeichnet man fir « € Z/mZ mit —a das (additive) Inverse von a. Der letzte
Beweis zeigt —a = —a fiir alle a € Z.
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3.2.4. Der letzte Satz zeigt, dass in Z/mZ dhnlich rechnen kann wie in Z. Es gibt aber
einen Unterschied: In Z kann durch Zahlen # 0 gekiirzt werden. In Z/mZ geht das im
allgemeinen nicht mehr, wie das folgende Beispiel zeigt: In Z/157Z gelten

3.10=30=0=15=235 aber 10#5

Also kann 3 in Z/157Z nicht gekiirzt werden.
Der néchste Satz gibt Auskunft, welche Elemente in Z/mZ gekiirzt werden diirfen.

Satz 3.2.5. Seien m € Nt, o € Z/mZ und a € Z mit o« = a. Dann sind dquivalent:
1. « ist (multiplikativ) invertierbar, d.h. es gibt 8 € Z/mZ mit aff = 1.
2. « st kirzbar, d.h. fir alle v, 6 € Z/mZ gilt: ay = ad = v = 4.
3. ggT(a,m) = 1.
4. Fs qibt x, y € Z mit ax +my = 1.
Sind diese Bedingungen erfillt, so gilt § = Z.

Beweis. 1 = 2. Es sei 8 € Z/mZ mit a3 = 1 und seien v, § € Z/mZ mit ay = ad.
Multipliziert man die letzte Gleichung mit £ so folgt Say = Bad also v = 4.

2 = 3. Es sei also « kiirzbar. Wir setzen d = ggT(a,m). Dann gibt es ' € Z und
m’ € N mit a = da’ und m = dm’. Dann folgt

am/ = am’ = am’ = d'dm’ = a'm = dm = a0 =0=al

Da « kiirzbar ist, erhalten wir m/ = 0, also m’ = 0 mod m und daher m | m’. Wegen
m = dm’ gilt auch m’ | m, also m = m’ (wegen m, m’ € N). Aus dm = dm’ = m folgt
nun ggT(a,m) =d = 1.

3 = 4 folgt aus Satz 1.4.9.2.

4 = 1. Seien x, y € Z mit ax + my = 1. Wir setzen 3 = 7. Wegen m = 0 folgt

l=ar+my=az+my=aB+0y=apf+0=ap
0

Korollar 3.2.6. Sei m € N*. Dann ist Z/mZ genau dann ein Kérper, wenn m eine
Primzahl ist.

Beweis. Zunichst zur Erinnerung: Ein kommutativer Ring R ist ein Korper, falls R # {0}
gilt, und falls es zu jedem z € R\ {0} ein y € R mit xy = 1 gibt.

Sei nun einmal m eine Primzahl. Dann ist

|Z/mZ| =m > 2

und daher Z/mZ # {0}. Sei nun o € Z/mZ mit « # 0. Wir wihlen a € {0,1,...,m — 1}
mit a = a. Wegen o # 0 ist a € {1,...,m — 1}. Dann gilt m { a. Da m eine Primzahl ist,
folgt daraus ggT(a, m) = 1. Nach 3.2.5 gibt es 8 € Z/mZ mit aff = 1.

Sei nun umgekehrt Z/mZ ein Korper. Dann ist Z/mZ # {0} und daher

m = |Z/mZ| > 2
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Seid € N* ein Teiler von m mit d # m. Wir miissen d = 1 zeigen. Wegen 1 < d < m—11st
d # 0. Nach Voraussetzung gibt es € Z/mZ mit df = 1. Aus 3.2.5 folgt 1 = ggT(d, m).
Wegen d | m ist aber d = ggT(d, m). Es folgt d = 1. O

Beispiel 3.2.7. Wir zeigen, dass fiir jedes n € N gilt. 11 | 4° — 3% (siehe Aufgabe 9).
Es sei n € N und wir rechnen in Z/117Z:

450 — 3Bn — 450 _ 350 — <Zs>n_<3s>n=ﬁ”—3_5”:16-16-4’”‘—9-9-3”:

" U

=5-5.4"—(-2)-(-2)- 3" =2 4" -12"=34"-12"=12"-12" =0
Es folgt 4" — 3°" =0 mod 11 und daher 11 | 45" — 35",

Beispiele 3.2.8. Wir 16sen einige Gleichungen iiber Restklassenringen.
1. 4z + 7 =2 in Z/35Z: Zunichst gilt fiir jedes z € Z/35Z:

dr+T7=2 < 4dr=2—-T7T=-5
Nun wollen wir natiirlich durch 4 dividieren. Nun bedeutet dividieren mit dem mul-
tiplikativ Inversen multiplizieren. Also miissen wir untersuchen ob 4 in Z/35Z multi-
plikativ invertierbar ist. Dazu kénnen wir Satz 3.2.5 verwenden: Es ist ggT (4, 35) =
1 und daher ist 4 in Z/35Z multiplikativ invertierbar. Was ist das Inverse von 47
Wiederum nach 3.2.5 miissen wir dazu 1 als Linearkombination von 4 und 35 dar-
stellen: 1 = 9 -4+ (—1) - 35. Es folgt 1 = 9 -4 und daher ist 9 das multiplikativ
Inverse von 4. Wir erhalten daher fiir alle x € Z/35Z:

dr=-5 < 2=9-40=9--5=—-45=25
Also ist z = 25 die einzige Losung unserer Gleichung.
2. Wir betrachten die Gleichung 5z + 3 = 7 in Z/30Z. Zunichst gilt fir jedes z €
Z/30Z:
br+3=7 < br=7-3=14
Wir wollen wieder durch 5 dividieren. Diesmal ist aber ggT(5,30) = 5 und daher
ist 5 in Z/30Z nicht invertierbar, sodass wir nicht dividieren koénnen. Tatséichlich

hat unsere Gleichung keine Losung: Angenommen es ist x € Z/30Z mit 5z = 4.
Wiéhle y € Z mit z = y. Dann folgt

1—Fx—55="5y

Daher gilt 4 = 5y mod 30 und daher 30 | 4 — 5y. Wegen 5 | 30 folgt auch 5 | 4 — 5y
und daher 5 | 4, Widerspruch.

3. Wir betrachten die Gleichung 3z — 7 = 29 in Z/33Z. Zuniichst ist wieder fiir alle
x € 7/33Z:

3r—7=29 «— 3:r=204+7=36=3
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Wegen ggT(3,33) = 3 > 1 kénnen wir nicht durch 3 dividieren. Wir sehen aber,
dass 1 eine Losung ist. Wie bekommen wir alle Losungen?. Wahle dazu y € Z mit
x = y. Dann erhalten wir

Jr=3 « 3y=3 < 3y=3 mod33 — 3-11|3(y—1) <
— 1ll|y—1 <= y=1+1lzfireinz€Z

Schreiben wir noch jedes z € Z in der Form z = 3w +r mit w € Z und r € {0, 1,2}
so folgt

3r=3 < y=14+110Bw+r)=33w+1lr+1 < z=gy=11r +1

Also sind 1, 12 und 23 die Losungen unserer Gleichung.

. Wir betrachten die Gleichung 22 + 4z — 12 = 0 in Z/377Z. Wie bei quadratischen

Gleichungen iiblich verwenden wir quadratische Ergénzung:
P4y -T2 =2?+42+4-T6=(2+2°-T6=(2+2)°-1 =
=(z+2-4)(z+2+4) = (z—2)(z+6)

Da 37 eine Primzahl ist, ist Z/37 ein Korper und daher ist ein Produkt in Z/37Z
genau dann Null, wenn ein Faktor Null ist. Also sind 2 und —6 = 31 die Losungen
unserer Gleichungen.

. Wir 16sen 22 +  + 6 = 0 in Z/34Z. Wir kénnen nicht unmittelbar quadratisch

erginzen: dazu brauchten wir einen Faktor 2 bei z, sodass wir durch 2 dividieren
miissten. Aber wegen ggT(2,34) = 2 diirfen wir das nicht.
Es sei x € Z/347 und y € Z mit x = y. Dann folgt

P +2+6=0 < 34|y +y+6

Wegen 34 = 2 - 17 ist dies dquivalent zu 2 | y?> +y + 6 und 17 | y*> +y + 6. Nun ist
v +y = y(y + 1) immer gerade und daher gilt immer 2 | y* + y + 6. Wir miissen
also alle y € Z mit 17 | y? + y + 6 finden. Dies ist dquivalent zu 5> + 7+ 6 = 0
in Z/17Z. Nun ist ggT(2,17) = 1, sodass wir in Z/17Z durch 2 dividieren kénnen.
Wegen 1 = 17 4 (—8) - 2 ist —8 = 9 das multiplikativ Inverse von 2. Es folgt

PHi+6=0+2-0+6=5"+2-95+0 -9 +6=(5+9)°+10
Damit ist 4* + 7 + 6 = 0 dquivalent zu (y + 9)* = —10 = 7 (in Z/17Z). Durch Aus-

probieren aller moglichen Félle sieht man, dass die Gleichung 22 = 7 keine Losung
in Z/17Z besitzt. Also hat auch unsere urspriingliche Gleichung keine Losung,.

6. 12 =0in Z/16Z. Es sei # € Z und y € {0,1,2...,15} mit § = x. Dann gilt

=0 <= 16| y* <= 4 =15(16) < 0p(y?) = 2ua(y) <= 2 < y(y) <
= 4=2|y < yc{0,4,8,12}
Also sind 0, 4, 8, 12 die Losungen von x2 = 0 in Z/16Z.
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Definition 3.2.9. Fiir m € NT setzen wir (wie fiir jeden Ring)
(Z/mZ)* ={a € Z/mZ | « ist (multiplikativ) invertierbar } =
={z | v €{0,...,m — 1} und Z ist (multiplikativ) invertierbar } =
={z | 2€{0,...,m—1} und ggT(x,m) =1}

Dann ist (Z/mZ)* zusammen mit der Multiplikation eine kommutative Gruppe. Wir
setzen

p(m) = #(Z/mZ)" = ##{x € {0,....,m =1} | ggT(z,m) =1}
Die Funktion ¢: Nt — NT heiit Eulersche Phi-Funktion.
Beispiel 3.2.10. Es ist p(1) = #{xz € {0} | ggT(x,1) = 1} = #{0} = 1. Es sei nun p
eine Primzahl. Dann gilt
p(p) = #{r €{0,....p—1} | ggT(z,p) =1} =#{1,....p—1} =p—1
Satz 3.2.11. Es seien m € Nt und a € Z mit ggT(a,m) = 1. Dann folgt a?™ = 1

mod m (Satz von Euler).
Beweis. Wir setzen o = a € Z/mZ. Wegen ggT(a,m) = 1 gilt a € (Z/mZ)*. Wir setzen
v= 11 »Be@/mz)
BE(Z/mZ)*

Die Abbildung (Z/mZ)* — (Z/mZ)*, v — « ist injektiv, da « kiirzbar ist. Wegen
v = a(aly) fir alle v € (Z/mZ)* ist sie auch surjektiv, also bijektiv. Es folgt

v-iz'y: II 5= ]I (aﬁ)za”m) I[1 B=ao
€(Z/mz)* BE(Z/mZ)* €(Z/m7z)*
Da v kiirzbar ist folgt a?™ =1 und daher a?™ =1 mod m. U

Korollar 3.2.12. Es seien a € Z und p € P. Dann gelten

1. pta=a’'=1 mod p.
2. a? =a mod p.

Beweis. 1. Gilt p { a, so folgt ggT(a,p) = 1 (wegen p € P). Nach Beispiel 3.2.10 gilt
¢©(p) = p — 1 und die Behauptung folgt aus 3.2.11.
2. Gilt p1 a so folgt aus 1:
?=a-a"'=a-1=a modp
Gilt aber p | a, so so gilt auch p | a? und daher ist a? =0 = a mod p. O
Definition 3.2.13. Es seien X eine Menge und (z,),en+ ein Folge in X. (z,,),en+ heifit

periodisch, falls es ein p € NT und ein ng € NT gibt, sodass gilt: Fiir alle n € NT mit
n > ng ist T,4p = 2,. Kann man hier ng = 1 nehmen, so heilt (z,,),en+ rein periodisch.
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Satz 3.2.14. Es seien m € Z/mZ und o € Z/mZ. Dann ist die Folge (o™ 1), en+ peri-
odisch. Sie ist genau dann rein periodisch, wenn o« (multiplikativ) invertierbar ist.

Beweis. Wir betrachten die Abbildung f: N* — Z/mZ, n — o™ '. Da N* unendlich
und Z/mZ endlich ist, kann f nicht injektiv sein. Also gibt es u, v € N* mit u # v und

a* ! = ¥~ Wir kénnen u < v annehmen. Wir setzen ng = v € NT und p = v —u € N*.
Dann folgt
ang—l — Oéu_l _ av—l — au+p—1 _ an0—1+p
Damit folgt fiir alle n > ny:
an—l — a/no—lan—no _ ano—l+pan—no _ C]{n—l—i-p

Also ist (@™ '), en+ periodisch.
Sei nun einmal o multiplikativ invertierbar. Aus 3.2.11 folgt

ofm+1-1 _ pe(m) _ 7 — ,1-1

Wir kénnen daher oben ng = v = 1 nehmen. Daher ist (o™ 1), cn+ rein periodisch.
Sei nun umgekehrt diese Folge rein periodisch. Dann gibt es ein p € Nt mit o™ =
o™~ fiir alle n € NT. Speziell fiir n = 1 folgt

Il=a?=a- -o”!
Also ist o multiplikativ invertierbar. O

3.2.15. Wir nennen ein Folge (2,,)nen+ in {0,1...,9} zuléssig, falls sie nicht ab einem
bestimmten ny konstant gleich 9 ist, d.h. wenn es fiir alle ng € Nt ein n > ny mit x,, # 9
gibt.

Zur Erinnerung: Zu jedem x € [0,1) gibt es eine eindeutig bestimmte zuléssige Folge
(2n)nen+ in {0,...,9} mit

o
Tz =0.212923... = E zp 1077
n=1

Satz 3.2.16. Es seix € [0,1) und x =Y~ | 2,107 mit einer zulissigen Folge (z,)nen+
in {0,...,9}. Dann ist (x,)nen+ genau dann periodisch, wenn x € Q gilt.

Es seix = k/m mitm € N, k€ {0,...,m—1} und ggT(k,m) = 1. Dann ist (z,)nen+
genau dann rein periodisch, wenn ggT(10,m) =1 gilt.

Beweis. Es sei einmal (2,)n,en+ periodisch. Wéhle ng, p € Nt mit z,,, = z, fiir alle
n > ng. Dann folgt (wir haben es mit positiven, also absolut konvergenten Reihen zu tun
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und daher kénnen wir beliebig umordnen)

=:zeN

—
o] no—1
=3 210" =3 2,107 + 2,107 oo Zngip 1070
n=1 n=1

2, 10007, 107 (e
+ 25100072 107

p—1 0o p—1 [e's)
=2t Y g D070 = N 107y (1077) " =
1=0 k=0 1=0 k=0

p—1

1
= ngr1107"0 T ——— €
Z+12(;Zo+l 1—10-» Q
Sei nun (z,) rein periodisch. Dann kénnen wir ng = 1 wéhlen und erhalten

p—1 p—1 -1 11—

1 1 Sy zie 10P7
— 10—1—l _ 10p—1—l — =0 ~l+
! ; SR P Te lz_; e 10r — 1 10r — 1
Wir setzen
p—1

=) 210" eN, m =10"-1eN*
1=0
Dann gelten ggT(m’,10) = 1 (wegen p > 1) und & = k'/m/. Setze nun d = ggT(k', m’)
und k& = k'/d, m = m//d. Dann ist x = k/m, ggT(k,m) = 1 und wegen ggT(10,m) |
ggT(10,m') = 1 gilt auch ggT(10,m) = 1.

Seinun x € Q und schreibe z = k/m mitm € N*, k € {0,...,m—1} (wegen 0 < x < 1)
und ggT(k,m) = 1. Nach 3.2.14 gibt es ng, p € NT mit 10"~ = 10"*~1 mod m, also
auch k10™~1 = k10" +P~1 mod m. Es gibt daher ein v € Z mit k107~ = k10"~ 4-um.

Es sei nun [ = ngy oder [ = ng + p. Dann folgt

=y €L
0 -1 0
k1071 = mz109' = m10! Z 2, 107" =m Z 2,100 m Z 2, 10071 =
n=1 n=0 n=l
=my;+m Z Zn1-1107"
n=1
::xle[o,l)

Wir erhalten damit

0n0+17—1

MYngtp + MTpgyp = k1 = k10" 4 um = um + my,, + ma,,
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Es folgt ©ny4p—Tng = U+ Yng — Yng+p € Z. Aber wegen 1y, Ty € [0, 1) gilt 2py1p — T, €
(—1,1) und wir erhalten @+, = 2y, also

00 00

E : -n § —-n
Zn+no+p—1 10 = Zn+ng—1 10

n=1 n=1

Da die Folgen (z,1ng+p—1)nen+ Und (2n1ng—1)nen+ zuldssig sind, folgt 2 4ng1p—1 = Zntng—1
fir alle n € N*. Daher gilt 2,4, = z, fiir alle n > ng, d.h. die Folge (z,,),en+ ist periodisch.

Gilt ggT(m, 10) = 1 so konnen wir nach 3.2.14 ng = 1 wihlen und daher ist (2,),en+
rein periodisch. 0

3.3. Das RSA Verschliisselungsverfahren.

3.3.1. Gegenstand der Kryptographie sind Verschliisselungsverfahren, die man braucht,
wenn man Nachrichten geheim iibertragen will. Wir definieren zunéchst was wir unter
einem Verschliisselungsverfahren verstehen:

Ein Verschliisselungsverfahren oder Kryptosystem ist ein Fiinftupel (P, C, K, E, D) mit
folgenden Eigenschaften:

1. P ist eine Menge. Sie heifit Klartextraum und ihre Elemente Klartexte. (englisch:
plaintext).

2. C ist eine Menge. Sie heifit Chiffretextraum und ihre Elemente Chiffretexte (eng-
lisch: ciphertext).

3. K ist eine Menge. Sie heifit Schliisselraum und ihre Elemente Schliissel (englisch
key).

4. E = (Ey)kek ist eine Familie von Funktionen Ej: P — C'. Diese Funktionen heiflen
Verschliisselungsfunktionen (englisch: encryption function).

5. D = (Dy)rex ist eine Familie von Funktionen Dy : C' — P. Diese Funktionen heiflen
Entschliisselungsfunktionen (englisch: decryption function).

6. Fiir jedes e € K gibt es ein d € K mit Dy(E.(p)) = p fiir jedes p € P, also mit
Dd (©] Ee = Idp

Ein Verschliisselungsverfahren (P, C, K, E, D) heifit symmetrisch, wenn fiir jedes e € K,
dasjenige d € K mit D, o E, = Idp leicht zu bestimmen ist (unter der Voraussetzung,
dass die einzige verfiigbare Information das Verschliisselungsverfahren selbst ist). Sonst
heifit es asymmetrisch.

In den meisten asymmetrischen Verfahren wird der Schliissel e, der zum Verschliisseln
verwendet wird, 6ffentlich gemacht, d.h. es wird nicht versucht diesen Schliissel geheim
zu halten. Daher nennt man solche Verfahren auch Public Key Verfahren.

Géngige Public Key Verfahren sind ineffizient (langsam), wenn man lange Nachrichten
geheim halten will. Daher geht man in der Praxis meist folgendermafien vor: Es wird ein
symmetrisches Verschliisselungsverfahren gewéhlt, mit dessen Hilfe man Informationen
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ver— und entschliisselt. Dafiir wird jedoch eine Methode benétigt, den Schliissel geheim
wéhlen zu konnen. Zu diesem Zweck werden Public Key Verfahren verwendet.
Eines davon ist das RSA—Verfahren. Es beruht auf dem folgenden Resultat.

Lemma 3.3.2. Seien p, q zwei verschiedene Primzahlen und e € NT mit der Figenschaft
ggT((p—1)(¢ —1),e) = 1. Dann ist die Abbildung

Z/pgZ — Z)pqZ, o+ af

bijektiv. Ihre Umkehrabbildung wird gegeben durch o w— o, wobei d € N mit ed = 1
mod (p—1)(¢—1) ist (da e und (p—1)(q—1) teilerfremd sind, gibt es so ein d nach Satz
3.2.5).

Beweis. Es geniigt a% = o fiir jedes a € Z/pqZ zu zeigen. Es sei also a € Z/pqZ. Wir
wihlen a € Z mit o = a. Also miissen wir uns jetzt a® = a mod pq, d.h. pq | a® — a
tiberlegen. Da p und ¢ verschieden sind (also teilerfremd sind) ist dies dquivalent zu

pla®—aundq|a® —a

fiir alle a € Z. Es geniigt die linke Teilbarkeit zu zeigen. Gilt p | a, so auch p | a® und
damit p | a? — a. Gilt jedoch p ta so gilt ! =1 mod p (kleiner Fermat, siche Aufgabe
39 von Ubungsblatt 8 oder 3.2.12). Wegen de = 1 mod (p — 1)(¢ — 1) gibt es k € Z mit
de=1+k(p—1)(g—1). Wegen de, (p —1)(q—1) € N* ist k € N. Es folgt

a® =a- (a1 =g . 1@ = modp
also p | a% — a. O

Wenn nun zwei Partner etwa Alice und Bob mit Hilfe des RSA Verfahrens einen
Schliissel bestimmen wollen, gehen sie so vor: Alice wihlt zwei verschiedene Primzah-
len p und ¢ und eine natiirliche Zahl e mit ggT((p — 1)(¢ — 1), e) = 1. Weiters berechnet
sie N = pq und ein d € N mit ed =1 mod (p — 1)(¢ — 1). Das kann sie bekanntlich mit
dem erweiterten euklidischen Algorithmus. Sie verdffentlicht nun (N, e) als offentlichen
Schliissel.

Will nun Bob einen geheimen Schliissel x € Z/NZ an Alice senden, so berechnet er
¢ = 2¢ und schickt ¢ an Alice, welche z aus z = ¢? erhilt.

Die Sicherheit des RSA Verfahren beruht auf zwei Tatsachen:

e Zur Zeit ist die einzige bekannte Methode, Kongruenzen der Form ¢ = a mod N =
pq zu losen, das d mit ed =1 mod (p — 1)(¢ — 1) zu bestimmen.

e Um dieses d zu bestimmen, bendtigt man zur Zeit noch (p — 1)(¢ — 1), also p und
q. Man muss also die Primfaktorzerlegung von N bestimmen konnen. Dafiir gibt es
noch kein Verfahren mit verniinftiger Laufzeit.

Um die Sicherheit des RSA Verfahrens zu gewéhrleisten wird momentan empfohlen die
Primzahlen p und ¢ in der Gréflenordnung von 22%® zu wihlen. Zur Wahl von e: die kleinst
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mogliche Wahl fiir e ist e = 3. Die Wahl von einem kleinem e birgt aber Unsicherheiten.
Es wird daher empfohlen e ~ 2'¢ 4+ 1 zu wihlen.



