Unsplittable minimal zero-sum subsequences over *Cⁿ*

Pingzhi Yuan

South China Normal University

January 5, 2016

Pingzhi Yuan (South China Normal University) [Inverse Zero-sum Problems](#page-46-0) January 5, 2016 1 / 47

4 0 8

 \sim

1961 EGZ Theorem:

Given a sequence *S* in *Cⁿ* of length 2*n* − 1, we can extract a zero subsequence of length *n* in *Cn*.

Two examples:

In C_5 , let $S = 0^3$ 1²23²4, then 0³14, 01234 are two zero subsequences of length 5. Let $S=0^4$ 1⁴, then there is no zero subsequences of length 5.

The Davenport constant

D(*G*) of a group *G* is defined as the smallest integer *l* ∈ N such that every sequence *S* in *G* with length |*S*| ≥ *l* contains a zero-sum subsequence.

 Ω

重す

Sumset

Let *G* be an abelian group and *A*, *B* ⊂ *G* finite non-empty subsets. We denote by

$$
A+B=\{a+b,a\in A,b\in B\}
$$

the **sumset** of *A* and *B*.

Free Monoid, Sequence

Let $\mathcal{F}(G)$ (multiplicatively written) be the free abelian monoid with basis *G*. An element $S \in \mathcal{F}(G)$ is called a **sequence** (in *G*) and will be written in the form

$$
\mathcal{S}=\prod_{g\in G}g^{\mathsf{v}_g(S)}=\prod_{i=1}^l g_i\in \mathcal{F}(G).
$$

4 ଲ ⊧

∋⇒

"sysulogo"

Subsequence

A sequence $T \in \mathcal{F}(G)$ is called a **subsequence** of *S*, if there exists some $W\in \mathcal{F}(G)$ such that $W\mathcal{T}=S.$ If this holds, then $W=ST^{-1}.$

Sum

$$
\sigma(S)=\sum_{\nu=1}^l g_\nu=\sum_{g\in G} \mathsf v_g(S)g\in G
$$

denotes the **sum** of *S*

Length

$$
|S|=\sum_{g\in G}v_g(S)=I
$$

the **length** of *S*

イロト イ押 トイラト イラト

 $\overline{}$

Subsums

$$
\sum(S) = \{\sum_{i \in I} g_i | \emptyset \neq I \subseteq [1, I]\} \subseteq G
$$

the set of all possible subsums of *S*.

Zero-sumfree

We say that the sequence *S* is **zero-sumfree** , if 0 $\not\in \sum(\mathcal{S});$ **a zero-sum sequence**, if $\sigma(S) = 0$; **a minimal zero-sum sequences**, if it is zero-sum sequence and each proper subsequence is zero-sumfree.

Splitable, unsplitable

Let *S* be a minimal zero-sum (resp. zero-sumfree) sequence of elements in an abelian group *G*, we say that $a \in S$ is **splitable** if there exist two elements *x*, $y \in G$ such that $x + y = a$ and $Sa^{-1}xy$ is minimal zero-sum (resp. zero-sumfree) sequence as well, otherwise we say that $a \in S$ is **unsplitable**.

we say that a sequence *S* is **splitable** if there exists an element $a \in S$ such that *a* is splitable ; *S* is **unsplitable** if every $a \in S$ is unsplitable.

g-norm

Let *G* be an abelian group. Let $g \in G$ be a nonzero element with ord(g) = $n > 1$. For a sequence $S = (n_1 g) \cdots (n_l g)$, where $l \in \mathbb{N}_0$ and $n_1, \dots, n_l \in [1, n]$, we define

$$
||S||_g = \frac{n_1 + \cdots + n_l}{n}
$$

to be the *g***-norm** of *S*. If $S = \emptyset$, then set $||S||_q = 0$.

Index

The index of a sequence is a crucial invariant in the investigation of (minimal) zero-sum sequences (resp. of zero-sum free sequences) over cyclic groups. The notion of the index of a sequence was introduced by Chapman, Freeze and Smith in 1999. It was first addressed by Kleitman-Lemke (in the conjecture in 1989), used as a key tool by Geroldinger in 1987, and then investigated by Gao in 2000 in a systematical way.

Definition

Let *S* be a nonzero sequence for which $\langle \text{supp}(S) \rangle \subset G$ is a nontrivial finite cyclic group. Then we call

index(*S*) = min{ $||S||_q$ |*g* ∈ *G* with < supp(*S*) >=< *g* > } ∈ N₀,

where $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, the *index* of S.

化重压 化重

4 ロト 4 何 ト

 $\overline{}$

Let **I**(*Cn*) be the minimal integer *t* such that every minimal zero-sum sequence *S* of at least *t* elements in C_n satisfies *index*(*S*) = 1.

f(*S*)

Let $f(S)$ denote $|\sum(S)|.$

$f(G_0, k)$

Let *G* be a finite abelian group, $G_0(\neq \emptyset) \subseteq G$ a subset and $k \in \mathbb{N}$. Define

$$
f(G_0,k)=min\{f(S)\},
$$

where $S \in \mathcal{F}(G_0)$ is a squarefree, zero-sum free sequence with $|S| = k$, and set $f(G_0, k) = \infty$, if there are no sequences in G_0 of the above form.

K ロ ト K 個 ト K 君 ト K 君 ト 一君

 $-$

 QQQ

B(*G*)

We denote by $\mathfrak{B}(G) = \{S \in \mathfrak{F}(G) : \sigma(S) = 0\}$ the set of all zero-sum sequences, by $\mathfrak{A}(G)$ the set of all minimal zero-sum sequences.

Remark:

Obviously, a zero-sum sequence can be decomposed into a product of some minimal zero-sum sequences (usually the decompositions are not unique). Every minimal zero-sum sequences can be derived from some unsplittable minimal zero-sum sequences. Therefore, we will study unsplittable minimal zero-sum sequences over finite groups.

Lemke, Kleitman, 1989

Problem LK: Every sequence of *n* elements in *Cⁿ* contains a non-empty subsequence *T* such that $Index(T) = 1$?

Pingzhi Yuan (South China Normal University **[Inverse Zero-sum Problems](#page-0-0)** January 5, 2016 13/47

Gao, 2000 Integer

Definition The maximum index of minimal zero-sum sequences over *Cⁿ* is defined as follow:

 $M(C_n) = \max_S \{ind(S)\},\$

where *S* runs over all minimal zero sequences of elements in *Cn*. Gao proposed an upper bound for *MI*(*Cn*) as follows. **Conjecture 4.2** $MI(C_n) \leq clnn$ for some absolute constant *c*.

Gao, 2000 Integer

Problem

Determine the value of **I**(*Cn*)? Gao obtained the bounds as: $\lfloor \frac{n+1}{2} \rfloor$ $\frac{+1}{2}$ \rfloor + **1** \leq **I**(C_n) \leq **n** $\lfloor \frac{n+1}{3} \rfloor$ + **1** for all $n > 8$, and **I** $(C_n) = 1$ for $n = 1, 2, 3, 4, 5, 7$, **I** $(C_6) = 5$.

 Ω

AD > 3 B > 3 B

Four Zero-sum Conjecture, 2000 Forklore

Conjecture Let *n* be a positive integer with $gcd(n, 6) = 1$. Suppose *S* is a minimal zero-sum sequence over C_n with $|S|=4$, then $index(S) = 1$.

 Ω

化重压 不重

A R

Zhuang and Yuan, 2008

I(C_n) ≤ $\lfloor \frac{n}{2} \rfloor$ + 2 for *n* ≥ 8. For every integer *k* in [1, *MI*(C_n)], there exists a minimal zero sequence *S* with $index(S) = k$.

Savechev-Chen (Discrete Math), Yuan(JCTA), 2007

 $\mathbf{I}(C_n) = \lfloor \frac{n}{2} \rfloor$ $\frac{n}{2}$] + 2 for $n \ge 8$; **I**(C_n) = 1 for $n = 1, 2, 3, 4, 5, 7$ and **I**(C_6) = 5.

Main idea: Determine *S* and *a* ∈ *Cⁿ* with

$$
|\sum(\textit{Sa})\backslash\sum(\textit{S})|=0,1.
$$

Pingzhi Yuan (South China Normal University) [Inverse Zero-sum Problems](#page-0-0) January 5, 2016 17 / 47

 Ω

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B} \rightarrow \mathcal{B} \supseteq \mathcal{B}$

Savchev-Chen

Let *G* be cyclic of order $n \geq 3$ and $S \in \mathcal{F}(G)$ a sequence of length |*S*| ≥ ³*n*−¹ 2 . Then the following statements are equivalent: (a) *S* has no zero-sum sequence of length *n* and $h(S) = v_0(S)$; (b) $S = S_1 S_2$, where $S_1, S_2 \in \mathcal{F}(G)$ with $||S_1||_q < 1$ and $||g - S_2||_q < 1$ for some $q \in G$ with $\text{ord}(q) = n$.

Gao and Gerldinger 2008

Definition Let *H* be an atomic monoid and $k \in \mathbb{N}$. 1. Let V_k denote the set of all $m \in \mathbb{N}$ for which there exist $u_1, \ldots, u_k; v_1, \ldots, v_m \in \mathfrak{A}(H)$ with $u_1 \cdots u_k = v_1 \cdots v_m$. 2. If $H = H^\times$, we set $\rho_k = \lambda_k = k,$ and if $H \neq H^\times$, then we define

$$
\rho_k = \sup V_k(H), \quad \lambda_k = \min V_k(H).
$$

Theorem

Let H be a Krull monoid with cyclic class group G of order $|G| \geq 3$. *Then for every k* ∈ N *we have*

$$
\rho_{2k}(H) \leq k|G| \quad \text{and} \quad \rho_{2k+1}(H) \leq k|G|+1
$$

Moreover, if every class contains a prime, then equality holds.

Pingzhi Yuan (South China Normal University) [Inverse Zero-sum Problems](#page-0-0) January 5, 2016 19 / 47

"sysulogo"

Gao, Li, Peng, Plyley, Wang2010

Let *G* be a cyclic group of order $n \ge 2$, where $n = 4k + 2$ for some $k \geq 5$, and let $g \in G$ with $ord(g) = n$. Then the sequence

$$
S=g^{n/2-3}\left(\frac{n}{2}g\right)\left((\frac{n}{2}+1)g\right)^{n/2-1}\left((\frac{n}{2}+2)g\right)^{\lfloor\frac{n}{4}\rfloor-2}
$$

has no subsequence *T* with $ind(T) = 1$.

Zeng and Yuan 2011 EUJC

If S is a zero-sum sequence, we denote by $\mathfrak{L}(S)$ the maximum of all *l* such that $S = S_1 \cdot \cdot \cdot \cdot S_l$ with $S_i \in \mathfrak{A}(G)$ for all $i \in [1, l]$. In particular, we have $\mathfrak{L}(S) = 1$ for any minimal zero-sum sequence *S*.

Theorem

. Let G be a cyclic group of order n and $S \in \mathfrak{F}(G)$ *a zero-sum* $\textit{sequence with } \mathfrak{L}(\mathcal{S}) = k \geq 2 \textit{ and } |\mathcal{S}| \geq k \frac{n}{2} + 2.$ Then there exists *some* $g \in G$ with ord $(g) = n$ such that $||S||_g = k$.

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{B}

Yuan and Li 2015 Inter J. Number Theory

Theorem

Let n be a positive integer with $\lfloor \sqrt[3]{n} \rfloor \geq 4$, let d be a positive integer $\frac{3}{2}$ *with* $\frac{3}{2}$ $\left[\frac{\sqrt{n}}{2}\right] \ge d \ge 2$, and set $n = dm - s$, where $m \ge 8d^2, 0 \le s < d$. *Then*

$$
S = g^{m-d-1}((n-m+2)g)^d((m-1)g)^{d-1}
$$

is an unsplittable minimal zero-sum sequence over $G = C_n = \langle q \rangle$ *and* $ind(S) = d$. In particular, we may take $d = \lfloor \sqrt[3]{n}/2 \rfloor$, so M *I*(*C*_n) \geq *ind*(*S*) = $\lfloor \sqrt[3]{n}/2 \rfloor$ *.*

$$
|S|=m+d-2.
$$

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{B}

4 D.K.

"sysulogo"

Some Results

Zeng, Li and Yuan 2015, Acta Arith.

Theorem

Let $n, d \geq 3$ be positive integers with d $|n \rangle$ and $n > d^3$. Let $\frac{n}{d} = d^2t + r, 0 \leq r < d^2$. Then the sequence

$$
S = \left(\frac{n}{d}g\right)^{d-1}g^{dt+r}\prod_{i=1}^{d-1}\left((1+\frac{in}{d})g\right)^{dt}
$$

is an unsplittable minimal zero-sum sequence over Cⁿ . Moreover,

$$
ind(S) = \frac{n}{2d} - \frac{dt + r}{2} + 1,
$$

$$
|S| = \frac{n}{d} + d - 1.
$$

Pingzhi Yuan (South China Normal University [Inverse Zero-sum Problems](#page-0-0) January 5, 2016 23/47

"sysulogo"

Zeng, Li and Yuan 2015, Acta Arith.

Theorem

Let $G = C_n = \langle g \rangle$ *be a cyclic group of order n such that* $2 \le d|n$ *and* $n > d^2(d^3 - d^2 + d + 1)$. Then the sequence

$$
S = \left(\frac{n}{d}g\right)^{d-1} \left(\left(\frac{n}{d} + d\right)g\right)^{\lfloor \frac{n}{d^2}\rfloor - d} \prod_{i=0}^{d-1} \left(\left(1 + \frac{in}{d}\right)g\right)^i,
$$

where l = $\frac{n}{d}$ – *d*(*d* – 1) – 1, has no subsequence T with ind(T) = 1 *and* $|S| > n$.

AD > 4 B > 4 B

Some Results

Zeng, Li and Yuan 2015 submitted, Acta Arith.

Let *n* > 1 be an odd integer and *G* an abelian group of order *n*. Let *S* be an unsplittable minimal zero-sum sequence of length $|S| \geq \lfloor \frac{n}{3} \rfloor + 3$ $\mathsf{over}\ G$. Then G is cyclic and either $\mathcal{S}=g^n$ or

$$
S=g^{\frac{n-r}{2}-1-tr}\cdot\left(\frac{n+r}{2}g\right)^{2(t+1)}\cdot\left((\frac{n-r}{2}+1)g\right),\,
$$

where *g* is a generator of *G*, *r*, $t \in \mathbb{N}_0$ with *r* odd and $3 \leq r \leq \frac{n-r}{2}-1-tr.$ Moreover, $\textit{ind}(S)=2$ in the latter case.

Remark:

"sysulogo" Xia and Yuan 2010 (Discrete Math) determined all unsplittable minimal zero-sum sequence of length $|S| = \lfloor \frac{n}{2} \rfloor$ $\frac{n}{2} \rfloor +$ 1. Peng and Sun 2014 determined all unsplittable minimal zero-sum sequence of length $|S| = \frac{n}{2}$ $\frac{n}{2}$], $\lfloor \frac{n}{2}$ $\frac{n}{2}$] – 1 for prime *n*

Definition

Let G be a finite abelian group and $S = a^rb^tT$ be a sequence over G . If $ua = vb$ with 1 $\le u \le r$ and 0 $<$ 2 $v \le t$, then we can replace b^v by a^{μ} and thus obtain a new sequence $S' = a^{r+\mu}b^{t-\nu}$ *T*. This operation is called **Replacement operation** on *S*.

1. The Replacement operation is an equivalent relation.

$$
2. supp(S) = supp(S')
$$

3. *S* is unsplittable if and only if *S'* is unsplittable.

Determine *S* and $a \in C_n$ with

$$
|\sum(Sa)\backslash\sum(S)|=2.
$$

 $\overline{}$

Some Results on Four Zero-sum Conjecture

Li, Plyley,Yuan, Zeng 2010(JNT) for prime power *n*; Li, Peng 2013; Xia, Li 2013 have had some works on the conjecture

Shen, Xia, Li, 2014 Colloq Math

Let *n* be a positive integer with $gcd(n, 6) = 1$. Suppose $S = (n_1 g)(n_2 g)(n_3 g)(n_4 g)$, $\lt g$ $\gt = C_n$ is a minimal zero-sum sequence over C_n with $gcd(n, n_1 n_2 n_3 n_4) > 1$, then *index*(*S*) = 1.

Zeng, 2015

 $\overline{}$ Let *n* be a positive integer with $gcd(n, 30) = 1$. Suppose *S* is a minimal zero-sum sequence over C_n with $|S| = 4$, then *index*(S) = 1. **Zhiwei Sun 2015.12.20** told to me that the method of Zeng cannot solve the case with 5|*n*.

 Ω

イロト イ押 トイラト イラト

sunset sums; Let *S* be a zero-sum free sequence of elements in an abelian group, and let S_1, S_2, \cdots, S_k be disjoint subsequences of S (i.e. $S_i \cap S_j = \emptyset$ if $i \neq j$). Then $|\sum(S)| \geq |\sum_{i=1}^k (S_i)|$.

• techniques from combinatorics

Lemma

(Gao 2008)*Let G be a cyclic group of order n* ≥ 3*. If S is a zero-sum free sequence over G of length*

$$
|S|\geq \frac{6n+28}{19},
$$

then S contains an element $q \in G$ *with multiplicity*

$$
v_g(S)\geq \frac{6|S|-n+1}{17}.
$$

Pingzhi Yuan (South China Normal University) [Inverse Zero-sum Problems](#page-0-0) January 5, 2016 29 / 47

4 0 8

A F э.

Lemma

(Xia, Yuan 2010) *Let S be a minimal zero-sum sequence in an abelian group of order n and S*1, *S*2, . . . , *S^k be non-empty subsequences such that* $S = S_1 S_2 \cdots S_k$ *. Then* $|\sum(\mathcal{S}_1)|+\cdots+|\sum(\mathcal{S}_{k-1})|+|\sum(\mathcal{S}_k)\backslash\{\sigma(\mathcal{S}_k)\}|< n.$

Lemma

(Yuan :2007) *Let S be an unsplittable minimal zero-sum sequence. If a*, *ta* ∈ *supp*(*S*) *with t* ∈ [2, *n* − 1], *then t* ≥ $v_a(S) + 2$ *.*

4 E X 4 E X 1

4 ଲ ⊧

Lemma

(Xia, Yuan [Lemma 2.14],2010) *Let S be a minimal zero-sum sequence in a finite abelian group G. Then an element a in S is unsplittable if* and only if $\sum(Sa^{-1}) = G\backslash\{0\}$. Thus S is unsplittable if and only if for e very element $a \in supp(S)$, we have $\sum(Sa^{-1}) = G\backslash\{0\}.$

Lemma

(Xia, Yuan [Lemma 2.15] 2010) *Let S be a minimal zero-sum sequence consisting of two distinct elements. Then S is splittable.*

 Ω

化重压 化重

 \leftarrow \leftarrow \leftarrow

Lemma

(1) We have
$$
f(k) \geq 2k
$$
 for $k \geq 4$, and $f(k) \geq \frac{1}{9}k^2$.

(2) If p is prime, then
$$
f_p(k) \ge \binom{k+1}{2} - \delta
$$
, where $\delta = \begin{cases} 0, & k \equiv 0 \pmod{2}; \\ 1, & k \equiv 1 \pmod{2}. \end{cases}$

重

 299

イロトメ 倒 トメ 差 トメ 差

Lemma

(Bhowmik, Halupczok, Schlage-Puchta Math Comp. [Page 2254])

- (1) $f_n(3) \geq 6$ when $n \geq 7$.
- (2) $f_n(4) \ge 10$ when $n \ge 11$ and $gcd(n, 6) = 1$.
- (3) $f_n(5) \ge 15$ when $n \ge 16$ and gcd(n, 30) = 1.
- (4) $f_n(k) > 3k$ when $k > 5$ and gcd(n, 30) = 1.

 Ω

A + + = + + = +

Let $S = (a_1 g)^{l_1} (a_2 g)^{l_2} \cdots (a_r g)^{l_r}$ be an unsplittable minimal zero-sum sequence of length $|S| \geq \lfloor \frac{n}{3} \rfloor + 3$ over C_n such that $h(S) = l_1 \ge l_2 \ge \cdots \ge l_r \ge 1$, a_1g, a_2g, \ldots, a_rg are distinct nonzero elements of C_n , and $index(S) \geq 2$. $|supp(S)| \geq 3$. Let $h = h(S)$, $a \in \mathsf{supp}(\mathcal{S})$ with $\mathsf{v}_a(\mathcal{S}) = h$ and $\mathcal{T} = \mathcal{S}a^{-h}.$ **Step 1:** $h > \frac{n}{17}$ provided $n \ge 8$.

Step 2: $h(T) \le 31$. **Proof of Claim 2:** Suppose to the contrary that there is $b \in \text{supp}(T)$ with $v_b(T) \geq 32$. By Lemma, there is $k \in [1, t_n]$ and $s \in [-h, h]$ such that $kb = sa$, where $t_n = \left\lceil \frac{n - h}{h + 1} \right\rceil$ $\left[\frac{n-h}{h+1}\right] \leq \left[\frac{n-n/17}{n/17+1}\right]$ $\left\lceil \frac{n-n/17}{n/17+1} \right\rceil \leq$ 16 by Claim 1. Since *S* is minimal zero-sum, *s* cannot be in [−*h*, 0]. Hence *s* ∈ [1, *h*]. If *s* > *k*, then we can do the replacement operation: replacing b^k by a^s , and obtain a longer sequence $S' = Sa^s b^{-k}$, a contradiction with the definition of *S*. If $s = k$, then we can do the replacement operation: replacing b^k by a^s , and obtain a new sequence $S' = Sa^s b^{-k}$, which has the same length with S but larger height, that is $h(S') > h$, also a contradiction. Finally we consider the case *s* < *k*. Note that $h > v_b(T) > 32 > 2k > 2s$. We can do the replacement operation: replacing a^s by b^k , and obtain a longer sequence $S' = Sa^{-s}b^k$, a contradiction. This completes the proof of Claim 2.

4 0 8 4 4 9 8 4 9 8 4 9 8

 $\hspace{0.1mm}$

"sysulogo" **Step 3:** *h* > *n* $\frac{n}{4}$ provided *n* \geq 2232. **Proof of Claim 3:** Suppose to the contrary that $h \leq \frac{n}{4}$ $\frac{11}{4}$. Suppose first there is a length 2 subsequence *U* of *T* such that $|\sum (a^hU)| \geq 3h+2.$ Since $|\mathcal{T}U^{-1}|\geq \lfloor n/3\rfloor + 3 - n/4 - 2 > n/12 \geq 6\max\{31,7\}$ provided $n \geq$ 2232, by Lemma $\mathcal{T}U^{-1} = \mathcal{T}_1 \cdots \mathcal{T}_t,$ where each \mathcal{T}_i is a square free and zero-sum free sequence of length 6 or 7. By Parts (2) and (3) of Theorem, $|\sum(\mathcal{T}_i)|\geq 3|\mathcal{T}_i|$ for $i\in[1,t].$ Hence by Lemma $\sum(\mathcal{S}) \geq |\sum(a^hU)| + \sum_{i=1}^t |\sum(T_i)| \geq 3h+2+3(|\mathcal{T}|-2)=3|\mathcal{S}|-4 \geq$ $3(|n/3| + 3) - 4 > n$, a contradiction. Next suppose that $|\sum (a^hU)| < 3h+2$ for any length 2 subsequence U of *T*. Let *b* ∈ *supp*(*T*) with $v_b(T) ≥ 2$. Clearly *b* ∉ [−*h*, *h* + 1]*a* by Lemma. Since $|supp(S)| \geq 3$, $a^h b^2$ is zero-sum free and thus $2b \not\in [-h,0]$ a. The inequality $|\sum (a^h b^2)| < 3h+2$ implies that $2b \in [1, h]$ *a*. The same proof as the one of Claim 2, we have $v_b(S)$ < 3. Hence $h(T)$ < 3.

в

 Ω

K ロ ト K 倒 ト K 差 ト K 差 ト

Let *g* ∈ *supp*(*T*). By Lemma, *Tg*−¹ = *T*1*T*2*T*3, where each *Tⁱ* is a square and zero-sum free sequence of length $|T_i| \geq \lfloor (|{\mathcal{S}}| - h - 1)/3 \rfloor \geq (n + 4 - 3h)/9.$ Since *S* is unsplittable, $|\sum (a^h g)| = 2h+1.$ Hence by Lemma and Part (1) of Theorem, we have

$$
|\sum(S)| \geq |\sum(a^{h}g)| + |\sum(T_{1})| + |\sum(T_{2})| + |\sum(T_{3})|
$$

> 2h + 1 + 3 * $\frac{1}{9}$ $\left(\frac{n+4-3h}{9}\right)^{2}$
= 1 + $\frac{1}{243}((n+4-3h)^{2} + 486h)$
= 1 + $\frac{1}{243}(9h^{2} - (6n - 462)h + (n + 4)^{2})$

"sysulogo" The function $f : h \mapsto 9h^2 - (6n - 462)h + (n + 4)^2$ is decreasing in the interval $[0, n/4]$ provided $n > 308$. Hence if provided $n > 1912$,

$$
|\sum(S)| > 1 + \frac{1}{243} \left(\frac{9n^2}{16} - \frac{(6n - 462)n}{4} + (n + 4)^2 \right)
$$

= 1 + $\frac{1}{243} \left(\frac{n^2}{16} + \frac{247n}{2} + 16 \right)$
> $\frac{1}{243} \left(\frac{n^2}{16} + \frac{247n}{2} \right)$
 $\ge n$,

a contradiction. This completes the proof of Step 3. **Step 4:** $h(T) \le 5$. **Proof of Step 4:** It is exactly the same as the one of Step 2.

 299

医下环菌

4 0 8

And in

Claim 5: Let $U = q_1 q_2 \cdots q_r$ be a subsequence of T such that *g*_{*i*+1} − *g*_{*i*} ∈ [0, *h*]*a* for all *i* ∈ [1, *r* − 1]. Then *g_i* = *g_r* for all *i* ∈ [3, *r*]. Moreover if $r \geq 3$ and $g_2 \neq g_3$, then $g_1 + g_2 + g_3 = a$. As a corollary, $r < 7$.

Proof of Claim 5: First we prove $g_i = g_r$ for all $i \in [3, r]$.

Let $t\in [1,r-1]$ be the maximal integer with $g_t\neq g_r.$ If $t\leq$ 2, we are done. Let *t* ≥ 3. Since *S* is a unsplittable minimal zero-sum sequence, *S'* = (*Sg*^{−1}) · (*g*_{*r*} − *a*) · *a* can be partitioned into two disjoint minimal zero-sum subsequences, of which one contains all a in S' while the other contains *g^r* − *a* but no *a*. Let *V* be the subsequence containing *g^r* − *a* but no *a*.

 s ubsequence of *S*, where $\ell \in [0, h - 1]$ be such that $\ell a = g_r - a - b_k$. We now prove the statement: $g_1g_2\cdots g_t(g_r-a)|V$. If not, write $g_1g_2\cdots g_t=b_1^{l_1}\cdots b_s^{l_s},$ where $b_1=g_1,\,b_s=g_t$ and $b_{l+1}-b_l\in[0,h]$ a for $i \in [1, s - 1]$, and let $k \in [1, s]$ be the maximal integer such that $b_{k}^{l_{k}}\nmid V$. If $k=s$, then $V(g_{r}-a)^{-1}b_{k}a^{\ell}$ is a proper zero-sum This is impossible because *S* is minimal zero-[su](#page-37-0)[m](#page-39-0) [s](#page-37-0)[eq](#page-38-0)[u](#page-39-0)[e](#page-0-0)[nc](#page-46-0)[e.](#page-0-0)

If $k <$ s, then $b^{l_{k+1}}_{k+1}$ $\frac{f_{k+1}}{f_{k+1}}$ *V* and thus $Vb_{k+1}^{-1}b_k(g_r - a)^{-1}g_ra^{\ell}$, where $\ell \in [0, h - 1]$ be such that $\ell a = b_{k+1} - b_k - a$, is a proper zero-sum subsequence of *S*, a contradiction. This completes the proof of this statement.

Since $|V(g_r - a)^{-1}| \ge t \ge 3$, $V(g_r - a)^{-1}$ contains a subsequence V_0 with sum $\sigma(V_0) \in [-h, h]$ *a* by Lemma. Let $V_0 \in [-h, h]$ be such that $\sigma(V_0) = V_0 a$. Since *S* is minimal zero-sum, $V_0 \notin [-h, 0]$. Hence *V*(g_r − *a*)⁻¹ g_r *V*₀⁻¹ 0 *a v*0−1 is a proper zero-sum subsequence of *S*, a contradiction. This completes the proof of the first part of this claim.

 Ω

イロト イ押ト イヨト イヨト ニヨ

An Example

Example Let $S = g^{m-4}((n-m+2)g)^3((m-1)g)^2$ where $n = 3m - s$, 1 $\leq s \leq 2$ and $m = \lfloor \frac{n}{3} \rfloor$ $\frac{n}{3}$ \rfloor + 1. Then *S* is an unsplittable minimal zero-sum sequence of length $|S| = \lfloor \frac{n}{3} \rfloor$ $\frac{n}{3}$] + 2 and *index*(*S*) = 3. For example, we may take $n = 65537$ a prime, so $|S| = \lfloor \frac{n}{3} \rfloor$ $\frac{n}{3}$] + 2 = 21847 and *index*(*S*) = 3.

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{B}

Problem 1: Determine *sp*(*Cn*), where *sp*(*G*) be the largest integer *t* such that every MZS of elements in *G* with |*S*| ≤ *t* is splitable. Determine the minimal length of all unsplitable MZS over *Cn*? **Remark:** We conjecture that *sp*(*Cn*) ≥ *c* √ *n*, where *c* is an absolute constant. We have

$$
sp(C_n)\geq d+\frac{n}{d}-1, \quad d|n.
$$

Problem 2: Let $I_n = \{t, |S| = t < n \text{ and } S$ is unsplittable over C_n . Is I_n an interval for $n > 12$? i.e., is $I_n = [sp(C_n), I(C_n)]$?

Problem 3:

Determine all unsplittable MZS *S* over C_n with $|supp(S)| = 3$.

Problem 4:

Compute *MI*(*Cn*). We conjecture that

$$
MI(C_n)\leq \frac{(p-1)n}{2p^2}+1
$$

for composite integer *n* with least prime divisor *p*. We conjecture that

$$
\mathsf{MI}(C_p)\leq c\sqrt{p}
$$

"sysulogo" when *p* is an odd prime. But we have not had any precise results of *MI*(*Cn*) even for even *n*.

∍

 Ω

イロト イ押 トイラト イラト

Let *G* be an abelian group of rank greater than 1. Let **I**(*G*) be the minimal integer *t* such that every unsplittable minimal zero-sum sequence *S* of at least *t* elements in *G* satisfies $|S| = D(G)$.

Problem 5:

Determine $I(G)$ when $rank(G) = 2$ and determine the structure of unsplittable minimal zero-sum sequence *S* with $|S| = I(G)$? **Remark:** When $G = C_n$, then $I(G) = I(C_n)$.

 Ω

す 御 メ イ 重 メ イ 重 メー

Gao,

Conjecture 5.1. Let *G* be a cyclic group of prime order and *S* be a sequence over *G* of length $|S| = |G|$. Then *S* has a subsequence *T* with *ind*(T) = 1 and length $|T| \in [1, h(S)]$.

Let *G* be a cyclic group of order *n* > 2. We denote by • *t*(*n*) the smallest integer *l* ∈ N such that every sequence *S* over *G* of length $|S| > l$ has a subsequence T with $ind(T) = 1$. **Open Problem.** Determine $t(n)$ for all $n > 2$.

 Ω

イタト イミト イミトー

Problem 6:

Four zero-sum conjecture? Determine all MZS *S* over C_n with $|S| = 5$ and $index(S) = 1$.

Pingzhi Yuan (South China Normal University **[Inverse Zero-sum Problems](#page-0-0)** January 5, 2016 46 / 47

 Ω

不同 下

a F

THANKS!

Pingzhi Yuan (South China Normal University) [Inverse Zero-sum Problems](#page-0-0) January 5, 2016 47 / 47

 \mathbf{b}

重

 299

イロトメ 倒 トメ 差 トメ 差