Unsplittable minimal zero-sum subsequences over C_n

Pingzhi Yuan

South China Normal University

January 5, 2016

Pingzhi Yuan (South China Normal University

Inverse Zero-sum Problems

January 5, 2016 1 / 47

1961 EGZ Theorem:

Given a sequence S in C_n of length 2n - 1, we can extract a zero subsequence of length *n* in C_n .

Two examples:

In C_5 , let $S = 0^3 1^2 23^2 4$, then $0^3 14$, 01234 are two zero subsequences of length 5. Let $S = 0^4 1^4$, then there is no zero subsequences of length 5.

A (10) A (10)

The Davenport constant

D(G) of a group *G* is defined as the smallest integer $I \in \mathbb{N}$ such that every sequence *S* in *G* with length $|S| \ge I$ contains a zero-sum subsequence.

A (10) A (10) A (10)

Sumset

Let *G* be an abelian group and $A, B \subset G$ finite non-empty subsets. We denote by

$$A + B = \{a + b, a \in A, b \in B\}$$

the **sumset** of *A* and *B*.

Free Monoid, Sequence

Let $\mathcal{F}(G)$ (multiplicatively written) be the free abelian monoid with basis *G*. An element $S \in \mathcal{F}(G)$ is called a **sequence** (in *G*) and will be written in the form

$$S=\prod_{g\in G}g^{
u_g(S)}=\prod_{i=1}^l g_i\in \mathcal{F}(G).$$

▲ 同 ▶ → 三 ▶

Subsequence

A sequence $T \in \mathcal{F}(G)$ is called a **subsequence** of *S*, if there exists some $W \in \mathcal{F}(G)$ such that WT = S. If this holds, then $W = ST^{-1}$.

Sum

$$\sigma(\mathcal{S}) = \sum_{\mathbf{v}=1}^{l} g_{\mathbf{v}} = \sum_{g \in \mathcal{G}} v_g(\mathcal{S}) g \in \mathcal{G}$$

denotes the sum of S

Length

$$|S| = \sum_{g \in G} v_g(S) = l$$

the length of ${\cal S}$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Subsums

$$\sum(\mathcal{S}) = \{\sum_{i \in I} g_i | \emptyset \neq I \subseteq [1, I]\} \subseteq G$$

the set of all possible subsums of S.

Zero-sumfree

We say that the sequence *S* is **zero-sumfree**, if $0 \notin \sum(S)$; **a zero-sum sequence**, if $\sigma(S) = 0$; **a minimal zero-sum sequences**, if it is zero-sum sequence and each proper subsequence is zero-sumfree.

3 N K 3 N

Splitable, unsplitable

Let *S* be a minimal zero-sum (resp. zero-sumfree) sequence of elements in an abelian group *G*, we say that $a \in S$ is **splitable** if there exist two elements $x, y \in G$ such that x + y = a and $Sa^{-1}xy$ is minimal zero-sum (resp. zero-sumfree) sequence as well, otherwise we say that $a \in S$ is **unsplitable**.

we say that a sequence *S* is **splitable** if there exists an element $a \in S$ such that *a* is splitable ; *S* is **unsplitable** if every $a \in S$ is unsplitable.

g-norm

Let *G* be an abelian group. Let $g \in G$ be a nonzero element with ord(g) = n > 1. For a sequence $S = (n_1g)\cdots(n_lg)$, where $l \in \mathbb{N}_0$ and $n_1, \cdots, n_l \in [1, n]$, we define

$$||S||_g = \frac{n_1 + \dots + n_l}{n}$$

to be the *g*-norm of *S*. If $S = \emptyset$, then set $||S||_g = 0$.

Index

The index of a sequence is a crucial invariant in the investigation of (minimal) zero-sum sequences (resp. of zero-sum free sequences) over cyclic groups. The notion of the index of a sequence was introduced by Chapman, Freeze and Smith in 1999. It was first addressed by Kleitman-Lemke (in the conjecture in 1989), used as a key tool by Geroldinger in 1987, and then investigated by Gao in 2000 in a systematical way.

Definition

Let S be a nonzero sequence for which $< \text{supp}(S) > \subset G$ is a nontrivial finite cyclic group. Then we call

 $\operatorname{index}(S) = \min\{||S||_g | g \in G \text{ with } < \operatorname{supp}(S) > = < g >\} \in \mathbb{N}_0,$

where $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, the *index* of *S*.

Let $I(C_n)$ be the minimal integer *t* such that every minimal zero-sum sequence *S* of at least *t* elements in C_n satisfies index(S) = 1.

f(S)

Let f(S) denote $|\sum(S)|$.

$f(G_0, k)$

Let *G* be a finite abelian group, $G_0(\neq \emptyset) \subseteq G$ a subset and $k \in \mathbb{N}$. Define

$$f(G_0,k)=\min\{f(S)\},\$$

where $S \in \mathcal{F}(G_0$ is a squarefree, zero-sum free sequence with |S| = k, and set $f(G_0, k) = \infty$, if there are no sequences in G_0 of the above form.

$\mathcal{B}(G)$

We denote by $\mathfrak{B}(G) = \{S \in \mathfrak{F}(G) : \sigma(S) = 0\}$ the set of all zero-sum sequences, by $\mathfrak{A}(G)$ the set of all minimal zero-sum sequences.

Remark:

Obviously, a zero-sum sequence can be decomposed into a product of some minimal zero-sum sequences (usually the decompositions are not unique). Every minimal zero-sum sequences can be derived from some unsplittable minimal zero-sum sequences. Therefore, we will study unsplittable minimal zero-sum sequences over finite groups.

Lemke, Kleitman, 1989

Problem LK: Every sequence of *n* elements in C_n contains a non-empty subsequence *T* such that Index(T) = 1?

A > + > + > + >

Gao, 2000 Integer

Definition The maximum index of minimal zero-sum sequences over C_n is defined as follow:

 $MI(C_n) = \max_{S} \{ind(S)\},\$

where *S* runs over all minimal zero sequences of elements in C_n . Gao proposed an upper bound for $MI(C_n)$ as follows. **Conjecture 4.2** $MI(C_n) \leq clnn$ for some absolute constant *c*.

Gao, 2000 Integer

Problem

Determine the value of $I(C_n)$? Gao obtained the bounds as: $\lfloor \frac{n+1}{2} \rfloor + 1 \leq I(C_n) \leq n - \lfloor \frac{n+1}{3} \rfloor + 1$ for all $n \geq 8$, and $I(C_n) = 1$ for n = 1, 2, 3, 4, 5, 7, $I(C_6) = 5$.

A (10) A (10) A (10)

Four Zero-sum Conjecture, 2000 Forklore

Conjecture Let *n* be a positive integer with gcd(n, 6) = 1. Suppose *S* is a minimal zero-sum sequence over C_n with |S| = 4, then index(S) = 1.

A (10) A (10)

Zhuang and Yuan, 2008

 $I(C_n) \leq \lfloor \frac{n}{2} \rfloor + 2$ for $n \geq 8$. For every integer k in $[1, MI(C_n)]$, there exists a minimal zero sequence S with index(S) = k.

Savechev-Chen (Discrete Math), Yuan(JCTA), 2007

 $I(C_n) = \lfloor \frac{n}{2} \rfloor + 2$ for $n \ge 8$; $I(C_n) = 1$ for n = 1, 2, 3, 4, 5, 7 and $I(C_6) = 5$.

Main idea: Determine *S* and $a \in C_n$ with

$$|\sum(\mathcal{Sa})\setminus\sum(\mathcal{S})|=0,1.$$

Pingzhi Yuan (South China Normal University

Savchev-Chen

Let *G* be cyclic of order $n \ge 3$ and $S \in \mathcal{F}(G)$ a sequence of length $|S| \ge \frac{3n-1}{2}$. Then the following statements are equivalent: (a) *S* has no zero-sum sequence of length *n* and $h(S) = v_0(S)$; (b) $S = S_1S_2$, where $S_1, S_2 \in \mathcal{F}(G)$ with $||S_1||_g < 1$ and $||g - S_2||_g < 1$ for some $g \in G$ with ord(g) = n.

Gao and Gerldinger 2008

Definition Let *H* be an atomic monoid and $k \in \mathbb{N}$. 1. Let V_k denote the set of all $m \in \mathbb{N}$ for which there exist $u_1, \ldots, u_k; v_1, \ldots, v_m \in \mathfrak{A}(H)$ with $u_1 \cdots u_k = v_1 \cdots v_m$. 2. If $H = H^{\times}$, we set $\rho_k = \lambda_k = k$, and if $H \neq H^{\times}$, then we define

$$\rho_k = \sup V_k(H), \quad \lambda_k = \min V_k(H).$$

Theorem

Let H be a Krull monoid with cyclic class group G of order $|G| \ge 3$. Then for every $k \in \mathbb{N}$ we have

$$\rho_{2k}(H) \leq k|G| \quad and \quad \rho_{2k+1}(H) \leq k|G|+1$$

Moreover, if every class contains a prime, then equality holds.

Pingzhi Yuan (South China Normal University

Inverse Zero-sum Problems

Gao, Li, Peng, Plyley, Wang2010

Let *G* be a cyclic group of order $n \ge 2$, where n = 4k + 2 for some $k \ge 5$, and let $g \in G$ with ord(g) = n. Then the sequence

$$S = g^{n/2-3} \left(\frac{n}{2}g\right) \left((\frac{n}{2}+1)g \right)^{n/2-1} \left((\frac{n}{2}+2)g \right)^{\lfloor \frac{n}{4} \rfloor - 2}$$

has no subsequence T with ind(T) = 1.

・ 何 ト ・ ヨ ト ・ ヨ

Zeng and Yuan 2011 EUJC

If *S* is a zero-sum sequence, we denote by $\mathfrak{L}(S)$ the maximum of all *I* such that $S = S_1 \cdots S_l$ with $S_i \in \mathfrak{A}(G)$ for all $i \in [1, I]$. In particular, we have $\mathfrak{L}(S) = 1$ for any minimal zero-sum sequence *S*.

Theorem

. Let G be a cyclic group of order n and $S \in \mathfrak{F}(G)$ a zero-sum sequence with $\mathfrak{L}(S) = k \ge 2$ and $|S| \ge k \frac{n}{2} + 2$. Then there exists some $g \in G$ with ord(g) = n such that $||S||_g = k$.

Yuan and Li 2015 Inter J. Number Theory

Theorem

Let n be a positive integer with $\lfloor \sqrt[3]{n} \rfloor \ge 4$, let d be a positive integer with $\lfloor \frac{\sqrt[3]{n}}{2} \rfloor \ge d \ge 2$, and set n = dm - s, where $m \ge 8d^2, 0 \le s < d$. Then

$$S = g^{m-d-1}((n-m+2)g)^d((m-1)g)^{d-1}$$

is an unsplittable minimal zero-sum sequence over $G = C_n = \langle g \rangle$ and ind(S) = d. In particular, we may take $d = \lfloor \sqrt[3]{n/2} \rfloor$, so $MI(C_n) \ge ind(S) = \lfloor \sqrt[3]{n/2} \rfloor$.

$$|S|=m+d-2.$$

Some Results

Zeng, Li and Yuan 2015, Acta Arith.

Theorem

Let $n, d \ge 3$ be positive integers with d|n and $n > d^3$. Let $\frac{n}{d} = d^2t + r, 0 \le r < d^2$. Then the sequence

$$S = \left(\frac{n}{d}g\right)^{d-1}g^{dt+r}\prod_{i=1}^{d-1}\left((1+\frac{in}{d})g\right)^{dt}$$

is an unsplittable minimal zero-sum sequence over C_n. Moreover,

$$ind(S) = \frac{n}{2d} - \frac{dt+r}{2} + 1,$$
$$|S| = \frac{n}{d} + d - 1.$$

Pingzhi Yuan (South China Normal University

Zeng, Li and Yuan 2015, Acta Arith.

Theorem

Let $G = C_n = \langle g \rangle$ be a cyclic group of order n such that $2 \leq d | n$ and $n > d^2(d^3 - d^2 + d + 1)$. Then the sequence

$$S = \left(\frac{n}{d}g\right)^{d-1} \left(\left(\frac{n}{d}+d\right)g\right)^{\lfloor \frac{n}{d^2} \rfloor - d} \prod_{i=0}^{d-1} \left(\left(1+\frac{in}{d}\right)g\right)^i,$$

where $l = \frac{n}{d} - d(d-1) - 1$, has no subsequence T with ind(T) = 1and |S| > n.

< 回 > < 三 > < 三 >

Some Results

Zeng, Li and Yuan 2015 submitted, Acta Arith.

Let n > 1 be an odd integer and G an abelian group of order n. Let S be an unsplittable minimal zero-sum sequence of length $|S| \ge \lfloor \frac{n}{3} \rfloor + 3$ over G. Then G is cyclic and either $S = g^n$ or

$$S = g^{\frac{n-r}{2}-1-tr} \cdot \left(\frac{n+r}{2}g\right)^{2(t+1)} \cdot \left(\left(\frac{n-r}{2}+1\right)g\right),$$

where *g* is a generator of *G*, $r, t \in \mathbb{N}_0$ with *r* odd and $3 \le r \le \frac{n-r}{2} - 1 - tr$. Moreover, ind(S) = 2 in the latter case.

Remark:

Xia and Yuan 2010 (Discrete Math) determined all unsplittable minimal zero-sum sequence of length $|S| = \lfloor \frac{n}{2} \rfloor + 1$. Peng and Sun 2014 determined all unsplittable minimal zero-sum sequence of length $|S| = \lfloor \frac{n}{2} \rfloor, \lfloor \frac{n}{2} \rfloor - 1$ for prime *n*

Definition

Let *G* be a finite abelian group and $S = a^r b^t T$ be a sequence over *G*. If ua = vb with $1 \le u \le r$ and $0 < 2v \le t$, then we can replace b^v by a^u and thus obtain a new sequence $S' = a^{r+u}b^{t-v}T$. This operation is called **Replacement operation** on *S*.

1. The Replacement operation is an equivalent relation.

2.
$$supp(S) = supp(S')$$

3. S is unsplittable if and only if S' is unsplittable.

Determine *S* and $a \in C_n$ with

$$|\sum(Sa)\setminus\sum(S)|=2.$$

Some Results on Four Zero-sum Conjecture

Li, Plyley, Yuan, Zeng 2010(JNT) for prime power *n*; Li, Peng 2013; Xia, Li 2013 have had some works on the conjecture

Shen, Xia, Li, 2014 Colloq Math

Let *n* be a positive integer with gcd(n, 6) = 1. Suppose $S = (n_1g)(n_2g)(n_3g)(n_4g), < g >= C_n$ is a minimal zero-sum sequence over C_n with $gcd(n, n_1n_2n_3n_4) > 1$, then index(S) = 1.

Zeng, 2015

Let *n* be a positive integer with gcd(n, 30) = 1. Suppose *S* is a minimal zero-sum sequence over C_n with |S| = 4, then index(S) = 1. **Zhiwei Sun 2015.12.20** told to me that the method of Zeng cannot solve the case with 5|n.

・ロト ・ 四ト ・ ヨト ・ ヨト

sunset sums; Let S be a zero-sum free sequence of elements in an abelian group, and let S₁, S₂, · · · , S_k be disjoint subsequences of S(i.e. S_i ∩ S_j = Ø if i ≠ j). Then |∑(S)| ≥ |∑_{i=1}^k(S_i)|.

techniques from combinatorics

Lemma

(Gao 2008)Let G be a cyclic group of order $n \ge 3$. If S is a zero-sum free sequence over G of length

$$|\boldsymbol{S}| \geq \frac{6n+28}{19},$$

then S contains an element $g \in G$ with multiplicity

$$v_g(S) \geq \frac{6|S|-n+1}{17}.$$

- 24

< 17 ▶

Lemma

(Xia, Yuan 2010) Let *S* be a minimal zero-sum sequence in an abelian group of order *n* and $S_1, S_2, ..., S_k$ be non-empty subsequences such that $S = S_1 S_2 \cdots S_k$. Then $|\sum(S_1)| + \cdots + |\sum(S_{k-1})| + |\sum(S_k) \setminus \{\sigma(S_k)\}| < n$.

Lemma

(Yuan :2007) Let *S* be an unsplittable minimal zero-sum sequence. If $a, ta \in supp(S)$ with $t \in [2, n-1]$, then $t \ge v_a(S) + 2$.

A (10) A (10)

Lemma

(Xia, Yuan [Lemma 2.14],2010) Let *S* be a minimal zero-sum sequence in a finite abelian group *G*. Then an element *a* in *S* is unsplittable if and only if $\sum (Sa^{-1}) = G \setminus \{0\}$. Thus *S* is unsplittable if and only if for every element $a \in supp(S)$, we have $\sum (Sa^{-1}) = G \setminus \{0\}$.

Lemma

(Xia, Yuan [Lemma 2.15] 2010) Let *S* be a minimal zero-sum sequence consisting of two distinct elements. Then *S* is splittable.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma

(1) We have $f(k) \ge 2k$ for $k \ge 4$, and $f(k) \ge \frac{1}{9}k^2$.

(2) If p is prime, then $f_p(k) \ge {\binom{k+1}{2}} - \delta$, where $\delta = \begin{cases} 0, & k \equiv 0 \pmod{2}; \\ 1, & k \equiv 1 \pmod{2}. \end{cases}$

< 回 > < 三 > < 三 >

Lemma

(Bhowmik, Halupczok, Schlage-Puchta Math Comp. [Page 2254])

- (1) $f_n(3) \ge 6$ when $n \ge 7$.
- (2) $f_n(4) \ge 10$ when $n \ge 11$ and gcd(n, 6) = 1.
- (3) $f_n(5) \ge 15$ when $n \ge 16$ and gcd(n, 30) = 1.
- (4) $f_n(k) \ge 3k$ when $k \ge 5$ and gcd(n, 30) = 1.

3

Let $S = (a_1g)^{l_1}(a_2g)^{l_2}\cdots(a_rg)^{l_r}$ be an unsplittable minimal zero-sum sequence of length $|S| \ge \lfloor \frac{n}{3} \rfloor + 3$ over C_n such that $h(S) = l_1 \ge l_2 \ge \cdots \ge l_r \ge 1$, a_1g, a_2g, \ldots, a_rg are distinct nonzero elements of C_n , and $index(S) \ge 2$. $|supp(S)| \ge 3$. Let h = h(S), $a \in supp(S)$ with $v_a(S) = h$ and $T = Sa^{-h}$. **Step 1:** $h > \frac{n}{17}$ provided $n \ge 8$.

< 回 > < 回 > < 回 > -

Step 2: h(*T*) < 31. **Proof of Claim 2:** Suppose to the contrary that there is $b \in supp(T)$ with $v_b(T) \ge 32$. By Lemma, there is $k \in [1, t_n]$ and $s \in [-h, h]$ such that kb = sa, where $t_n = \left\lceil \frac{n-h}{h+1} \right\rceil \le \left\lceil \frac{n-n/17}{n/17+1} \right\rceil \le 16$ by Claim 1. Since S is minimal zero-sum, s cannot be in [-h, 0]. Hence $s \in [1, h]$. If s > k, then we can do the replacement operation: replacing b^k by a^s , and obtain a longer sequence $S' = Sa^{s}b^{-k}$, a contradiction with the definition of S. If s = k, then we can do the replacement operation: replacing b^k by a^s , and obtain a new sequence $S' = Sa^s b^{-k}$, which has the same length with S but larger height, that is h(S') > h, also a contradiction. Finally we consider the case s < k. Note that $h > v_b(T) \ge 32 \ge 2k > 2s$. We can do the replacement operation: replacing a^s by b^k , and obtain a longer sequence $S' = Sa^{-s}b^k$, a contradiction. This completes the proof of Claim 2.

Step 3: $h > \frac{n}{4}$ provided $n \ge 2232$. **Proof of Claim 3:** Suppose to the contrary that $h < \frac{n}{4}$. Suppose first there is a length 2 subsequence U of T such that $|\sum (a^{h}U)| > 3h + 2$. Since $|TU^{-1}| \ge |n/3| + 3 - n/4 - 2 > n/12 \ge 6 \max\{31, 7\}$ provided n > 2232, by Lemma $TU^{-1} = T_1 \cdots T_t$, where each T_i is a square free and zero-sum free sequence of length 6 or 7. By Parts (2) and (3) of Theorem, $|\sum_{i=1}^{n} T_i| \ge 3|T_i|$ for $i \in [1, t]$. Hence by Lemma $\sum(S) > |\sum(a^{h}U)| + \sum_{i=1}^{t} |\sum(T_{i})| \ge 3h + 2 + 3(|T| - 2) = 3|S| - 4 \ge 3$ 3(|n/3|+3)-4 > n, a contradiction. Next suppose that $|\sum (a^h U)| < 3h + 2$ for any length 2 subsequence U of T. Let $b \in supp(T)$ with $v_b(T) \ge 2$. Clearly $b \notin [-h, h+1]a$ by Lemma. Since $|supp(S)| \ge 3$, $a^h b^2$ is zero-sum free and thus $2b \notin [-h, 0]a$. The inequality $|\sum (a^h b^2)| < 3h + 2$ implies that $2b \in [1, h]a$. The same proof as the one of Claim 2, we have $v_b(S) < 3$. Hence h(T) < 3.

イロト 不得 トイヨト イヨト

Let $g \in supp(T)$. By Lemma, $Tg^{-1} = T_1T_2T_3$, where each T_i is a square and zero-sum free sequence of length $|T_i| \ge \lfloor (|S| - h - 1)/3 \rfloor \ge (n + 4 - 3h)/9$. Since *S* is unsplittable, $|\sum (a^hg)| = 2h + 1$. Hence by Lemma and Part (1) of Theorem, we have

$$\begin{split} \sum(S)| &\geq |\sum(a^hg)| + |\sum(T_1)| + |\sum(T_2)| + |\sum(T_3)| \\ &> 2h + 1 + 3 * \frac{1}{9} \left(\frac{n+4-3h}{9}\right)^2 \\ &= 1 + \frac{1}{243}((n+4-3h)^2 + 486h) \\ &= 1 + \frac{1}{243}(9h^2 - (6n-462)h + (n+4)^2) \end{split}$$

The function $f : h \mapsto 9h^2 - (6n - 462)h + (n + 4)^2$ is decreasing in the interval [0, n/4] provided $n \ge 308$. Hence if provided $n \ge 1912$,

$$\begin{split} |\sum(S)| > 1 + \frac{1}{243} \left(\frac{9n^2}{16} - \frac{(6n - 462)n}{4} + (n + 4)^2 \right) \\ = 1 + \frac{1}{243} \left(\frac{n^2}{16} + \frac{247n}{2} + 16 \right) \\ > \frac{1}{243} \left(\frac{n^2}{16} + \frac{247n}{2} \right) \\ \ge n, \end{split}$$

a contradiction. This completes the proof of Step 3. **Step 4:** $h(T) \le 5$. **Proof of Step 4:** It is exactly the same as the one of Step 2.

A (10) > A (10) > A (10)

Claim 5: Let $U = g_1g_2 \cdots g_r$ be a subsequence of T such that $g_{i+1} - g_i \in [0, h]a$ for all $i \in [1, r - 1]$. Then $g_i = g_r$ for all $i \in [3, r]$. Moreover if $r \ge 3$ and $g_2 \ne g_3$, then $g_1 + g_2 + g_3 = a$. As a corollary, $r \le 7$.

Proof of Claim 5: First we prove $g_i = g_r$ for all $i \in [3, r]$.

Let $t \in [1, r-1]$ be the maximal integer with $g_t \neq g_r$. If $t \leq 2$, we are done. Let $t \geq 3$. Since *S* is a unsplittable minimal zero-sum sequence, $S' = (Sg_r^{-1}) \cdot (g_r - a) \cdot a$ can be partitioned into two disjoint minimal zero-sum subsequences, of which one contains all *a* in *S'* while the other contains $g_r - a$ but no *a*. Let *V* be the subsequence containing $g_r - a$ but no *a*.

We now prove the statement: $g_1g_2 \cdots g_t(g_r - a)|V$. If not, write $g_1g_2 \cdots g_t = b_1^{l_1} \cdots b_s^{l_s}$, where $b_1 = g_1$, $b_s = g_t$ and $b_{i+1} - b_i \in [0, h]a$ for $i \in [1, s - 1]$, and let $k \in [1, s]$ be the maximal integer such that $b_k^{l_k} \nmid V$. If k = s, then $V(g_r - a)^{-1}b_ka^\ell$ is a proper zero-sum subsequence of *S*, where $\ell \in [0, h - 1]$ be such that $\ell a = g_r - a - b_k$. This is impossible because *S* is minimal zero-sum sequence.

If k < s, then $b_{k+1}^{l_{k+1}} | V$ and thus $Vb_{k+1}^{-1}b_k(g_r - a)^{-1}g_ra^\ell$, where $\ell \in [0, h - 1]$ be such that $\ell a = b_{k+1} - b_k - a$, is a proper zero-sum subsequence of *S*, a contradiction. This completes the proof of this statement.

Since $|V(g_r - a)^{-1}| \ge t \ge 3$, $V(g_r - a)^{-1}$ contains a subsequence V_0 with sum $\sigma(V_0) \in [-h, h]a$ by Lemma. Let $v_0 \in [-h, h]$ be such that $\sigma(V_0) = v_0 a$. Since *S* is minimal zero-sum, $v_0 \notin [-h, 0]$. Hence $V(g_r - a)^{-1}g_r V_0^{-1}a^{v_0-1}$ is a proper zero-sum subsequence of *S*, a contradiction. This completes the proof of the first part of this claim.

An Example

Example Let $S = g^{m-4}((n-m+2)g)^3((m-1)g)^2$ where $n = 3m - s, 1 \le s \le 2$ and $m = \lfloor \frac{n}{3} \rfloor + 1$. Then *S* is an unsplittable minimal zero-sum sequence of length $|S| = \lfloor \frac{n}{3} \rfloor + 2$ and index(S) = 3. For example, we may take n = 65537 a prime, so $|S| = \lfloor \frac{n}{3} \rfloor + 2 = 21847$ and index(S) = 3.

Problem 1: Determine $sp(C_n)$, where sp(G) be the largest integer t such that every MZS of elements in G with $|S| \le t$ is splitable. Determine the minimal length of all unsplitable MZS over C_n ? **Remark:** We conjecture that $sp(C_n) \ge c\sqrt{n}$, where c is an absolute constant. We have

$$sp(C_n) \geq d + \frac{n}{d} - 1, \quad d|n.$$

Problem 2: Let $I_n = \{t, |S| = t < n \text{ and } S \text{ is unsplittable over } C_n\}$. Is I_n an interval for n > 12? i.e., is $I_n = [sp(C_n), I(C_n)]$?

A (10) A (10)

Problem 3:

Determine all unsplittable MZS S over C_n with |supp(S)| = 3.

Problem 4:

Compute $MI(C_n)$. We conjecture that

$$MI(C_n) \leq \frac{(p-1)n}{2p^2} + 1$$

for composite integer n with least prime divisor p. We conjecture that

$$MI(C_p) \leq c\sqrt{p}$$

when *p* is an odd prime. But we have not had any precise results of $MI(C_n)$ even for even *n*.

Let *G* be an abelian group of rank greater than 1. Let I(G) be the minimal integer *t* such that every unsplittable minimal zero-sum sequence *S* of at least *t* elements in *G* satisfies |S| = D(G).

Problem 5:

Determine I(G) when rank(G) = 2 and determine the structure of unsplittable minimal zero-sum sequence *S* with |S| = I(G)? **Remark:** When $G = C_n$, then $I(G) = I(C_n)$.

イロト イ理ト イヨト イヨト

Gao,

Conjecture 5.1. Let *G* be a cyclic group of prime order and *S* be a sequence over *G* of length |S| = |G|. Then *S* has a subsequence *T* with ind(T) = 1 and length $|T| \in [1, h(S)]$.

Let *G* be a cyclic group of order n > 2. We denote by • t(n) the smallest integer $l \in \mathbb{N}$ such that every sequence *S* over *G* of length $|S| \ge l$ has a subsequence *T* with ind(T) = 1. **Open Problem.** Determine t(n) for all $n \ge 2$.

Problem 6:

Four zero-sum conjecture? Determine all MZS *S* over C_n with |S| = 5 and *index*(*S*) = 1.

THANKS!

Pingzhi Yuan (South China Normal University

Inverse Zero-sum Problems

January 5, 2016 47 / 47

2