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Sumsets

Definition
Let G be an abelian group and let A, B ⊆ G be finite, nonempty subsets.
Then their sumset is

A + B = {a + b : a ∈ A, b ∈ B}.

General Theme: |A + B| “small” implies A, B and A + B have
“structure”.
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The Freiman 3k − 4 Theorem

Theorem (Freiman 1959)
Let A ⊆ Z be a k-element subset with

|A + A| = |A|+ |A| − 1 + r ≤ 3|A| − 4 = 3k − 4.

Then there is an arithmetic progression PA ⊆ Z with

A ⊆ PA and |PA \ A| ≤ r .



The 3k − 4 Theorem for Distinct Summands

Theorem (Lev and Smeliansky 1995; Freiman 1962)
Let A, B ⊆ Z be finite and nonempty with diam(A) ≥ diam(B),
gcd(A− A) = 1, and

|A + B| = |A|+ |B| − 1 + r ≤ |A|+ 2|B| − 4.

Then there are arithmetic progressions PA and PB having common
difference 1 with

A ⊆ PA, B ⊆ PB , |PA \ A| ≤ r , and |PB \ B| ≤ r .

Here diam(A) = maxA−minA.



The 3k − 4 Theorem for Distinct Summands

Theorem (Stanchescu 1996)
Let A, B ⊆ Z be finite and nonempty with

|A + B| = |A|+ |B| − 1 + r ≤ |A|+ |B|+ min{|A|, |B|} − 4.

Then there are arithmetic progressions PA and PB having common
difference with

A ⊆ PA, B ⊆ PB , |PA \ A| ≤ r , and |PB \ B| ≤ r .



Some Examples: r is tight
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︸ ︷︷ ︸
r + 1︷ ︸︸ ︷s s s s s s s s s s c c c c c c c c c s

r ≥ 0 and a ≥ r + 2

|A + A| = |A|+ |A| − 1 + r ≤ 3|A| − 3

|PA \ A| = r
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Some Examples: r is tight

A :

a− r

︸ ︷︷ ︸
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B :

b − r

︸ ︷︷ ︸
2r︷ ︸︸ ︷s s s s s c s c s c s c s c s c s c s
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r ≥ 0, a ≥ r + 2 and b ≥ r + 2.

|A + B| = |A|+ |B| − 1 + r ≤ |A|+ |B| − 3 + min{|A|, |B|}

|PA \ A| = |PB \ B| = r



Some Examples: 3k − 4 is (nearly) tight

If A = P1 ∪ P2 is the union of two arithmetic progressions (of common
difference) spaced far enough apart, then

|A + A| = (2|P1| − 1) + (|P1|+ |P2| − 1) + (2|P2| − 1) = 3|A| − 3.

Likewise, if B = PB is also an arithmetic progression of the same
difference, then

|A + B| = (|P1|+ |PB | − 1) + (|P2|+ |PB | − 1) = |A|+ 2|B| − 2

In both cases, A can have arbitrarily many holes, so |PA \ A| is
unbounded.
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Some Examples: gcd(A− A) = 1 is (nearly) tight

A :

d

ad︷ ︸︸ ︷
︸ ︷︷ ︸s c c c s c c c s c c c s c c c s c c c s

B :

d

1
2 (b + 1)d

︸ ︷︷ ︸
︷ ︸︸ ︷s s c c s s c c s s c c s s c c s s c c s

A + B :

d

(a + 1
2 (b + 1)− 1)d

︸ ︷︷ ︸
︷ ︸︸ ︷s s c c s s c c s s c c s s c c s s c c s

gcd(A− A) = d ≥ 3, |A + B| = 2|A|+ |B| − 2 ≤ |A|+ 2|B| − 3,

|PA \ A| = (d − 1)(|A| − 1) = (d − 1)r ≥ 2r .



Minor Touch-Ups

Theorem
Let A, B ⊆ Z be finite and nonempty with diam(A) ≥ diam(B),
gcd(A− A) ≤ 2, and

|A + B| = |A|+ |B| − 1 + r ≤ |A|+ 2|B| − 3− δ(A,B),

where

δ(A,B) =

{
1, if x + A ⊆ B for some x ∈ Z
0, otherwise.

Then there are arithmetic progressions PA and PB having common
difference d = gcd(A + B − A− B) with

A ⊆ PA, B ⊆ PB , |PA \ A| ≤ r , and |PB \ B| ≤ r .



Minor Touch-Ups

Theorem
Let A, B ⊆ Z be finite and nonempty with

|A+B| = |A|+|B|−1+r ≤ |A|+|B|−3+min{|A|−δ(A,B), |B|−δ(B,A)}.

Then there are arithmetic progressions PA and PB having common
difference with

A ⊆ PA, B ⊆ PB , |PA \ A| ≤ r , and |PB \ B| ≤ r .



Trios

Definition
A trio in an abelian group G is a triple (A,B,C ), where A,B,C ⊆ G are
finite or cofinite, such that A + B + C 6= G .

Example
If A, B ⊆ G are finite and C = −A + B := −G \ (A + B), then

0 /∈ A + B + C = A + B − A + B,

as a + b − c = 0 with a ∈ A, b ∈ B and c /∈ A + B is not possible. So

(A,B,−A + B)

is a G -trio.
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Key Trio Facts

I The trio (A,B,C ) is nontrivial if A, B and C are all nonempty.

I At most one set in a nontrivial G -trio can be infinite.

I The deficiency of the G -trio (A,B,C ) is

δ(A,B,C ) = |A|+ |B| − |G \ C |,

where |A|, |B| ≤ |C |.
I If G is finite, then δ(A,B,C ) = |A|+ |B|+ |C | − |G |.
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A Trio Formulation of the 3k − 4 Theorem

Theorem
Let (A,B,C ) be a nontrivial Z-trio. If

δ(A,B,C ) > −r and |A|, |B|, |C | ≥ r + 3,

then there exist subsets PA, PB and PC , each either an arithmetic
progression or complement of an arithmetic progression of common
difference, such that

A ⊆ PA, B ⊆ PB , C ⊆ PC

|PA \ A| ≤ r , |PB \ B| ≤ r , |PC \ C | ≤ r .

Note: If A, B ⊆ Z are finite and nonempty with

|A + B| = |A|+ |B| − 1 + r ≤ |A|+ |B| − 4 + min{|A|, |B|},

then (A,B,C ) is a Z-trio, where C = −A + B, having

δ(A,B,C ) = |A|+ |B| − |A + B| = −r + 1 and |A|, |B|, |C | ≥ r + 3.
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What does C ⊆ PC with |PC \ C | ≤ r mean?

I Thus the Trio Formulation implies (one version) of the 3k − 4
Theorem

I Note −A + B = C ⊆ PC implies A + B ⊆ −PC implies
−PC ⊆ A + B.

I Thus −PC ⊆ A + B will be an arithmetic progression of length at
least |C | − r = |A|+ |B| − 1 + r − r = |A|+ |B| − 1.
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What does C ⊆ PC with |PC \ C | ≤ r mean?

I Thus the Trio Formulation implies (one version) of the 3k − 4
Theorem

I Note −A + B = C ⊆ PC implies A + B ⊆ −PC implies
−PC ⊆ A + B.

I Thus −PC ⊆ A + B will be an arithmetic progression of length at
least |C | − r = |A|+ |B| − 1 + r − r = |A|+ |B| − 1.



Long Arithmetic Progressions under the 3k − 4 Theorem
hypothesis

Theorem (Bardaji and G 2010; Freiman 2009, A = B)
Let A, B ⊆ Z be finite and nonempty with 〈A + B − A− B〉 = Z and let
|A + B| = |A|+ |B| − 1 + r . If either

(i) |A + B| ≤ |A|+ |B| − 3 + min{|B| − δ(A,B), |A| − δ(B,A)}, or

(ii) diamB ≤ diamA, gcd(A− A) ≤ 2 and
|A + B| ≤ |A|+ 2|B| − 3− δ(A,B),

then A + B contains an arithmetic progression with difference 1 and
length at least |A|+ |B| − 1.

This result, combined with the 3k − 4 Theorem, can be used to deduce
the Trio Formulation mentioned before, using saturation arguments.
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A 3k − 4 Theorem for Z/pZ?

Conjecture (3k − 4 Conjecture for Z/pZ.)
Let (A,B,C ) be a nontrivial Z/pZ-trio, where p is a prime. If

δ(A,B,C ) > −r and |A|, |B|, |C | ≥ r + 3,

then there exist arithmetic progressions PA, PB and PC of common
difference such that

A ⊆ PA, B ⊆ PB , C ⊆ PC

|PA \ A| ≤ r , |PB \ B| ≤ r , |PC \ C | ≤ r .



A 3k − 4 Theorem for Z/pZ?

Equivalently:

Conjecture (3k − 4 Conjecture for Z/pZ.)
Let A, B ⊆ Z/pZ be nonempty subsets with p prime and |A| ≥ |B|. If

|A + B| = |A|+ |B| − 1 + r ≤ p − r − 3 and r ≤ |B| − 3,

then there exist arithmetic progressions PA, PB and PC of common
difference such that

A ⊆ PA, B ⊆ PB , PC ⊆ A + B

|PA \ A| ≤ r , |PB \ B| ≤ r , |C | ≥ |A|+ |B| − 1.



Partial Progress in Z/pZ: Rectification Methods

I If A + B ⊆ Z/pZ has |A ∪ B| “very small,” then

A + B ∼= A′ + B ′

with A′ + B ′ ⊆ Z, reducing consideration in Z/pZ directly to the
case of Z.



Freiman Homomorphisms

Let G and G ′ be abelian groups.

I If A + B ⊆ G is a sumset normalized by translation so that
0 ∈ A ∩ B, then a map ψ : A + B → G ′ is called a (normalized)
Freiman homomorphism if

ψ(a + b) = ψ(a) + ψ(b) for all a ∈ A and b ∈ B.

I If ψ : A + B → G ′ is injective, then

A + B ∼= ψ(A) + ψ(B).
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Universal Ambient Groups and Dimension

I Given a sumset A + B, there may be many groups G into which
A + B may be embedded, but there is always a “canonical” choice,
called the Universal Ambient Group (UAG): U(A + B).

I dim+(A + B) = rk(U(A + B)) is torsion free rank of U(A + B).

I If a sumset A + B has an embedding into a torsion-free group, then
dim+(A + B) = d is the maximal d ≥ 1 such that A + B has an
isomorphic copy A′ + B ′ ⊆ Zd with 〈A′ + B ′〉 = Zd .



Universal Ambient Groups and Dimension

I Given a sumset A + B, there may be many groups G into which
A + B may be embedded, but there is always a “canonical” choice,
called the Universal Ambient Group (UAG): U(A + B).

I dim+(A + B) = rk(U(A + B)) is torsion free rank of U(A + B).

I If a sumset A + B has an embedding into a torsion-free group, then
dim+(A + B) = d is the maximal d ≥ 1 such that A + B has an
isomorphic copy A′ + B ′ ⊆ Zd with 〈A′ + B ′〉 = Zd .



Universal Ambient Groups and Dimension

I Given a sumset A + B, there may be many groups G into which
A + B may be embedded, but there is always a “canonical” choice,
called the Universal Ambient Group (UAG): U(A + B).

I dim+(A + B) = rk(U(A + B)) is torsion free rank of U(A + B).

I If a sumset A + B has an embedding into a torsion-free group, then
dim+(A + B) = d is the maximal d ≥ 1 such that A + B has an
isomorphic copy A′ + B ′ ⊆ Zd with 〈A′ + B ′〉 = Zd .



Partial Progress in Z/pZ: Rectification Methods
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I If |A ∪ B| ≤ dlog2 pe, where p is the smallest prime divisor of the
torsion subgroup Tor(G ), then A + B ∼= A′ + B ′ ∼= Z (Lev, 2008).

I If A + A ⊆ Z/pZ with |A + A| ≤ k|A| and |A| ≤ (32k)−12kp, then
A + A ∼= A′ + A′ ⊆ Z (Green and Ruzsa 2006; Bilu, Lev and Ruzsa
1998, weaker bounds).
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Partial Progress in Z/pZ: Rectification Methods

Thus the 3k − 4 conjecture holds for A + B ⊆ Z/pZ provided:

I |A ∪ B| ≤ dlog2 pe, or

I A = B and |A| ≤ cp for a very small constant c > 0, or

I ||A| − |B|| ≤ N and |A ∪ B| ≤ cNp for an even smaller constant
cN > 0 that depends on N (via Plünnecke bounds).
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Thus the 3k − 4 conjecture holds for A + B ⊆ Z/pZ provided:

I |A ∪ B| ≤ dlog2 pe, or

I A = B and |A| ≤ cp for a very small constant c > 0, or

I ||A| − |B|| ≤ N and |A ∪ B| ≤ cNp for an even smaller constant
cN > 0 that depends on N (via Plünnecke bounds).



Partial Progress in Z/pZ: Refined Rectification via
Exponential Sums

Lemma (Lev 2004 and 2007; Freiman 1961, weaker version)
Let ϕ ∈ (0, π] be a real number and let z1 · . . . · zN be a sequence of
complex numbers zi from the unit circle such that every open arc of
length ϕ contains at most n terms from the sequence S. Then

|
N∑
i=1

zi | ≤ 2n − N + 2(N − n) cos(ϕ/2).



Partial Progress in Z/pZ: Refined Rectification via
Exponential Sums

Theorem (Freimain 1961; Nathanson 1995; Roth 2006; G
2013)
Let A + B ⊆ Z/pZ with

|A + B| = |A|+ |B| − 1 + r and |A| ≥ |B|.

Under any of the following conditions, the 3k − 4 Theorem holds for
A + B.

A = B, r ≤ 0.4|B| − 2 and |A + A| ≤ 0.2125p;

A = B, r ≤ 0.29|B| − 2 and |A + A| ≤ p − 1

2
;

|A| ≤ 4

3
|B|, r ≤ 0.05|B| − 2 and |A + B| ≤ p

225
;

|A| ≤ 1.12|B|, r ≤ 0.12|B| − 2 and |A + B| ≤ p

55
;

|A| = |B|, r ≤ 0.15|B| − 2 and |A + B| ≤ 0.036p.



Partial Progress in Z/pZ:
Rectification+Plünnecke+Trios+UAG+Isoperimetric
Method

Theorem (G 2013)
Let A, B ⊆ Z/pZ with

|A + B| = |A|+ |B| − 1 + r ≤ p − r − 3 and |A| ≥ |B|.

If

r ≤ |B| − 3 and r ≤ cp − 1.2, where c = 3.1 · 10−1549,

then the 3k − 4 Conjecture holds for A + B.



Beyond |A + B | ≤ |A|+ |B | − 4 + min{|A|, |B |}

I Problem: Finding similar precise bounds for the covering progression
when |A + B| > |A|+ |B| − 4 + min{|A|, |B|} when A + B ⊆ Z.



Dimension and Sumset Cardinality

Theorem (Ruzsa 1994)
Let A, B ⊆ Z be finite and nonempty with dim+(A + B) ≥ d with
|A| ≥ |B|. If dim+(A + B) ≥ d, then

|A + B| ≥ |A|+ d |B| − 1

2
d(d + 1).

In particular (d = 3): if A + B is at least 3 dimensional, then
|A + B| ≥ |A|+ 3|B| − 6.
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Dimension and Sumset Cardinality

Theorem (G and Serra 2010)
Let s ≥ 2 be an integer. Let A, B ⊆ R2 be finite subsets with
|A| ≥ |B| ≥ 2s2 − 3s + 2. If

|A + B| < |A|+ (3− 2

s
)|B| − 2s + 1,

then there is a line ` such that each of A and B can be covered by at
most s − 1 parallel translates of `.

In particular (s = 3): If A + B ⊆ Z has |A + B| < |A|+ 7
3 |B| − 5, then

either dim+(A + B) = 1 or A + B has an isomorphic copy A′ + B ′ ⊆ Z2

with A′ and B ′ covered by two parallel lines.
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with A′ and B ′ covered by two parallel lines.



The 2-Dimensional Case
Theorem (G 2016; Stanchescu 1998, A = B)
Let A, B ⊆ Z2 be finite, nonempty subsets each covered by 2 horizontal
lines. Suppose 〈A + B − A− B〉 = Z2, |A| ≥ |B| and

|A + B| = |A|+ 2|B| − 2 + r − δ(A,B) ≤ |A|+ 19

7
|B| − 5.

Then there exist subsets PA, PB , P ⊆ Z2, each the union of two
arithmetic progressions with difference (1, 0), such that, after translating
A and B appropriately,

A ⊆ PA, |PA \ A| ≤ r , B ⊆ PB , |PB \ B| ≤ r , A ∪ B ⊆ P, and

|P \ A|+ |P \ B| ≤ 2r + 2 +
∣∣∣|PA| − |PB |

∣∣∣− ∣∣∣|A| − |B|∣∣∣ ≤ 3r + 2,

Moreover, |P \ A|+ |P \ B| ≤ 2r + 2−
∣∣∣|A| − |B|∣∣∣ unless either

PB ⊆ PA = P and |P \ A|+ |P \ B| = 2|PA \ A|+ |A| − |B|, or

PA ⊆ PB = P and |P \ A|+ |P \ B| = 2|PB \ B|+ |B| − |A|.
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The 1-Dimensional Case?

Conjecture
Let A, B ⊆ Z be finite, nonempty subsets with |A| ≥ |B| and
dim+(A + B) = 1. If

|A + B| = |A|+ 2|B| − 2 + r − δ(A,B) and 0 ≤ r ≤ |B| − 5,

then there arithmetic progressions PA and PB of common difference with

A ⊆ PA, B ⊆ PB , and |PA \ A|, |PB \ B| ≤ |B| − δ(A,B) + 2r .



Other Ways Beyond
|A + B | ≤ |A|+ |B |+ min{|A|, |B |} − 4

I Problem: Finding similar precise bounds for the covering progression
when |A + B| > |A|+ |B| − 4 + min{|A|, |B|} when A + B ⊆ Z.

I Question: If we have diamB < 2 diamA instead of
diamB ≤ diamA, can we achieve |PA \ A| ≤ r with a weaker bound
than |A + B| ≤ |A|+ |B| − 4 + min{|A|, |B|}?

I How about when diamB < k diamA?



Thanks!
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