The Freiman 3k - 4 Theorem

David Grynkiewicz

University of Memphis

January 7, 2016

Sumsets

Definition

Let G be an abelian group and let A, $B \subseteq G$ be finite, nonempty subsets. Then their sumset is

$$A+B=\{a+b: a\in A, b\in B\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Sumsets

Definition

Let G be an abelian group and let A, $B \subseteq G$ be finite, nonempty subsets. Then their sumset is

$$A+B=\{a+b:\ a\in A,\ b\in B\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

General Theme: |A + B| "small" implies A, B and A + B have "structure".

The Freiman 3k - 4 Theorem

Theorem (Freiman 1959)

Let $A \subseteq \mathbb{Z}$ be a k-element subset with

$$|A + A| = |A| + |A| - 1 + r \le 3|A| - 4 = 3k - 4.$$

Then there is an arithmetic progression $P_A \subseteq \mathbb{Z}$ with

$$A \subseteq P_A$$
 and $|P_A \setminus A| \leq r$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The 3k - 4 Theorem for Distinct Summands

Theorem (Lev and Smeliansky 1995; Freiman 1962) Let $A, B \subseteq \mathbb{Z}$ be finite and nonempty with diam $(A) \ge \text{diam}(B)$, gcd(A - A) = 1, and

$$|A + B| = |A| + |B| - 1 + r \le |A| + 2|B| - 4.$$

Then there are arithmetic progressions P_A and P_B having common difference 1 with

$$A \subseteq P_A$$
, $B \subseteq P_B$, $|P_A \setminus A| \le r$, and $|P_B \setminus B| \le r$.

Here diam $(A) = \max A - \min A$.

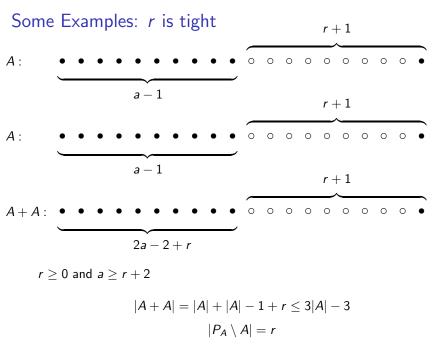
The 3k - 4 Theorem for Distinct Summands

Theorem (Stanchescu 1996) Let $A, B \subseteq \mathbb{Z}$ be finite and nonempty with

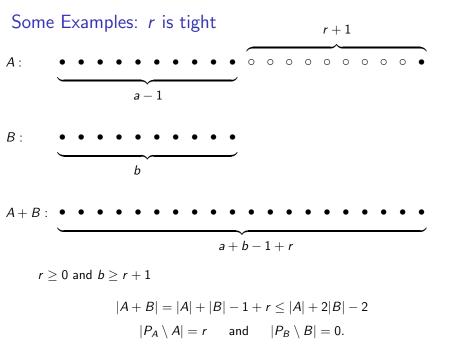
 $|A + B| = |A| + |B| - 1 + r \le |A| + |B| + \min\{|A|, |B|\} - 4.$

Then there are arithmetic progressions P_A and P_B having common difference with

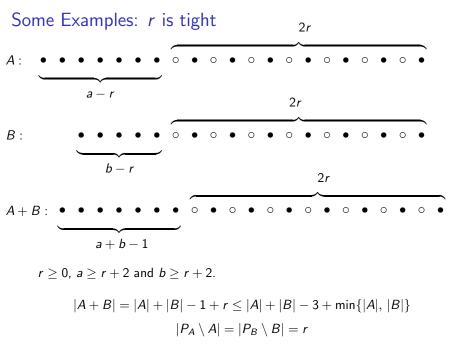
 $A \subseteq P_A$, $B \subseteq P_B$, $|P_A \setminus A| \le r$, and $|P_B \setminus B| \le r$.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへ⊙



| ◆ □ ▶ ★ □ ▶ ★ 三 ▶ ★ □ ▶ ★ ■ ▶ ★ □ ▶ ↓ ■ ▶ ★ □ ▶ ★ □ ▶ ↓ ■ ▶ ↓

Some Examples: 3k - 4 is (nearly) tight

If $A = P_1 \cup P_2$ is the union of two arithmetic progressions (of common difference) spaced far enough apart, then

 $|A + A| = (2|P_1| - 1) + (|P_1| + |P_2| - 1) + (2|P_2| - 1) = 3|A| - 3.$

Some Examples: 3k - 4 is (nearly) tight

If $A = P_1 \cup P_2$ is the union of two arithmetic progressions (of common difference) spaced far enough apart, then

 $|A + A| = (2|P_1| - 1) + (|P_1| + |P_2| - 1) + (2|P_2| - 1) = 3|A| - 3.$

Likewise, if $B = P_B$ is also an arithmetic progression of the same difference, then

 $|A + B| = (|P_1| + |P_B| - 1) + (|P_2| + |P_B| - 1) = |A| + 2|B| - 2$

Some Examples: 3k - 4 is (nearly) tight

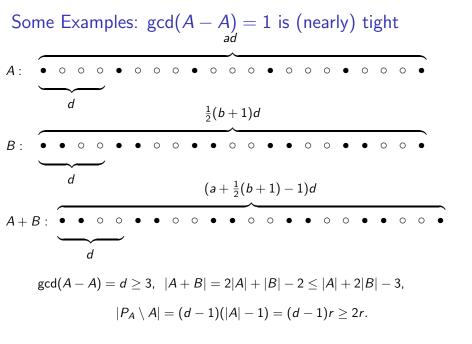
If $A = P_1 \cup P_2$ is the union of two arithmetic progressions (of common difference) spaced far enough apart, then

 $|A + A| = (2|P_1| - 1) + (|P_1| + |P_2| - 1) + (2|P_2| - 1) = 3|A| - 3.$

Likewise, if $B = P_B$ is also an arithmetic progression of the same difference, then

$$|A + B| = (|P_1| + |P_B| - 1) + (|P_2| + |P_B| - 1) = |A| + 2|B| - 2$$

In both cases, A can have arbitrarily many holes, so $|P_A \setminus A|$ is unbounded.



- イロト イロト イヨト イヨト ヨー のへぐ

Minor Touch-Ups

Theorem Let $A, B \subseteq \mathbb{Z}$ be finite and nonempty with diam $(A) \ge$ diam(B), $gcd(A - A) \le 2$, and

$$|A + B| = |A| + |B| - 1 + r \le |A| + 2|B| - 3 - \delta(A, B),$$

where

$$\delta(A,B) = \begin{cases} 1, & \text{if } x + A \subseteq B \text{ for some } x \in \mathbb{Z} \\ 0, & \text{otherwise.} \end{cases}$$

Then there are arithmetic progressions P_A and P_B having common difference d = gcd(A + B - A - B) with

$$A \subseteq P_A, \quad B \subseteq P_B, \quad |P_A \setminus A| \le r, \quad \text{ and } \quad |P_B \setminus B| \le r.$$

Minor Touch-Ups

Theorem Let $A, B \subseteq \mathbb{Z}$ be finite and nonempty with

 $|A+B| = |A|+|B|-1+r \le |A|+|B|-3+\min\{|A|-\delta(A,B), |B|-\delta(B,A)\}.$

Then there are arithmetic progressions $P_{\rm A}$ and $P_{\rm B}$ having common difference with

 $A \subseteq P_A$, $B \subseteq P_B$, $|P_A \setminus A| \le r$, and $|P_B \setminus B| \le r$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Trios

Definition

A **trio** in an abelian group G is a triple (A, B, C), where $A, B, C \subseteq G$ are *finite* or *cofinite*, such that $A + B + C \neq G$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Trios

Definition

A **trio** in an abelian group G is a triple (A, B, C), where $A, B, C \subseteq G$ are *finite* or *cofinite*, such that $A + B + C \neq G$.

Example

If $A, B \subseteq G$ are finite and $C = -\overline{A + B} := -G \setminus (A + B)$, then

$$0 \notin A + B + C = A + B - \overline{A + B},$$

as a + b - c = 0 with $a \in A$, $b \in B$ and $c \notin A + B$ is not possible. So

$$(A, B, -\overline{A+B})$$

(日) (日) (日) (日) (日) (日) (日) (日)

is a G-trio.

• The trio (A, B, C) is **nontrivial** if A, B and C are all nonempty.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Key Trio Facts

• The trio (A, B, C) is **nontrivial** if A, B and C are all nonempty.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• At most one set in a nontrivial *G*-trio can be infinite.

Key Trio Facts

- ▶ The trio (A, B, C) is **nontrivial** if A, B and C are all nonempty.
- At most one set in a nontrivial *G*-trio can be infinite.
- ▶ The **deficiency** of the *G*-trio (*A*, *B*, *C*) is

$$\delta(A, B, C) = |A| + |B| - |G \setminus C|,$$

where $|A|, |B| \le |C|$.

Key Trio Facts

- ▶ The trio (A, B, C) is **nontrivial** if A, B and C are all nonempty.
- At most one set in a nontrivial G-trio can be infinite.
- ▶ The **deficiency** of the *G*-trio (*A*, *B*, *C*) is

$$\delta(A, B, C) = |A| + |B| - |G \setminus C|,$$

where $|A|, |B| \le |C|$.

• If *G* is finite, then $\delta(A, B, C) = |A| + |B| + |C| - |G|$.

A Trio Formulation of the 3k - 4 Theorem

Theorem Let (A, B, C) be a nontrivial \mathbb{Z} -trio. If

 $\delta(A,B,C) > -r \quad \text{ and } \quad |A|, \, |B|, \, |C| \geq r+3,$

then there exist subsets P_A , P_B and P_C , each either an arithmetic progression or complement of an arithmetic progression of common difference, such that

 $\begin{array}{ll} A \subseteq P_A, & B \subseteq P_B, & C \subseteq P_C \\ |P_A \setminus A| \leq r, & |P_B \setminus B| \leq r, & |P_C \setminus C| \leq r. \end{array}$

A Trio Formulation of the 3k - 4 Theorem

Theorem Let (A, B, C) be a nontrivial \mathbb{Z} -trio. If

 $\delta(A,B,C)>-r \quad \text{ and } \quad |A|,\,|B|,\,|C|\geq r+3,$

then there exist subsets P_A , P_B and P_C , each either an arithmetic progression or complement of an arithmetic progression of common difference, such that

 $\begin{array}{ll} A \subseteq P_A, & B \subseteq P_B, & C \subseteq P_C \\ |P_A \setminus A| \leq r, & |P_B \setminus B| \leq r, & |P_C \setminus C| \leq r. \end{array}$

Note: If $A, B \subseteq \mathbb{Z}$ are finite and nonempty with

 $|A + B| = |A| + |B| - 1 + r \le |A| + |B| - 4 + \min\{|A|, |B|\},\$

then (A, B, C) is a \mathbb{Z} -trio, where $C = -\overline{A + B}$, having

 $\delta(A, B, C) = |A| + |B| - |A + B| = -r + 1$ and $|A|, |B|, |C| \ge r + 3.$

What does $C \subseteq P_C$ with $|P_C \setminus C| \leq r$ mean?

► Thus the Trio Formulation implies (one version) of the 3k - 4 Theorem

What does $C \subseteq P_C$ with $|P_C \setminus C| \leq r$ mean?

► Thus the Trio Formulation implies (one version) of the 3k - 4 Theorem

▶ Note $-\overline{A+B} = C \subseteq P_C$ implies $\overline{A+B} \subseteq -P_C$ implies $-\overline{P_C} \subseteq A+B$.

What does $C \subseteq P_C$ with $|P_C \setminus C| \leq r$ mean?

- ► Thus the Trio Formulation implies (one version) of the 3k 4 Theorem
- ▶ Note $-\overline{A+B} = C \subseteq P_C$ implies $\overline{A+B} \subseteq -P_C$ implies $-\overline{P_C} \subseteq A+B$.
- ▶ Thus $-\overline{P_C} \subseteq A + B$ will be an arithmetic progression of length at least |C| r = |A| + |B| 1 + r r = |A| + |B| 1.

Long Arithmetic Progressions under the 3k - 4 Theorem hypothesis

Theorem (Bardaji and G 2010; Freiman 2009, A = B) Let $A, B \subseteq \mathbb{Z}$ be finite and nonempty with $\langle A + B - A - B \rangle = \mathbb{Z}$ and let |A + B| = |A| + |B| - 1 + r. If either (i) $|A + B| \le |A| + |B| - 3 + \min\{|B| - \delta(A, B), |A| - \delta(B, A)\}$, or (ii) diam $B \le$ diam A, $gcd(A - A) \le 2$ and $|A + B| \le |A| + 2|B| - 3 - \delta(A, B)$, then A + B contains an arithmetic progression with difference 1 and

length at least |A| + |B| - 1.

Long Arithmetic Progressions under the 3k - 4 Theorem hypothesis

Theorem (Bardaji and G 2010; Freiman 2009, A = B) Let $A, B \subseteq \mathbb{Z}$ be finite and nonempty with $\langle A + B - A - B \rangle = \mathbb{Z}$ and let |A + B| = |A| + |B| - 1 + r. If either (i) $|A + B| \le |A| + |B| - 3 + \min\{|B| - \delta(A, B), |A| - \delta(B, A)\}$, or (ii) diam $B \le$ diam A, $gcd(A - A) \le 2$ and $|A + B| \le |A| + 2|B| - 3 - \delta(A, B)$, then A + B contains an arithmetic progression with difference 1 and

then A + B contains an arithmetic progression with difference 1 and length at least |A| + |B| - 1.

This result, combined with the 3k - 4 Theorem, can be used to deduce the Trio Formulation mentioned before, using saturation arguments.

A 3k - 4 Theorem for $\mathbb{Z}/p\mathbb{Z}$?

Conjecture $(3k - 4 \text{ Conjecture for } \mathbb{Z}/p\mathbb{Z}.)$ Let (A, B, C) be a nontrivial $\mathbb{Z}/p\mathbb{Z}$ -trio, where p is a prime. If

 $\delta(A, B, C) > -r \quad \text{and} \quad |A|, |B|, |C| \ge r+3,$

then there exist arithmetic progressions P_A , P_B and P_C of common difference such that

 $\begin{array}{ll} A \subseteq P_A, & B \subseteq P_B, & C \subseteq P_C \\ |P_A \setminus A| \leq r, & |P_B \setminus B| \leq r, & |P_C \setminus C| \leq r. \end{array}$

A 3k - 4 Theorem for $\mathbb{Z}/p\mathbb{Z}$?

Equivalently:

Conjecture $(3k - 4 \text{ Conjecture for } \mathbb{Z}/p\mathbb{Z}.)$ Let $A, B \subseteq \mathbb{Z}/p\mathbb{Z}$ be nonempty subsets with p prime and $|A| \ge |B|$. If

$$|A + B| = |A| + |B| - 1 + r \le p - r - 3$$
 and $r \le |B| - 3$,

then there exist arithmetic progressions P_A , P_B and P_C of common difference such that

 $\begin{array}{ll} A \subseteq P_A, & B \subseteq P_B, & P_C \subseteq A + B \\ |P_A \setminus A| \leq r, & |P_B \setminus B| \leq r, & |C| \geq |A| + |B| - 1. \end{array}$

Partial Progress in $\mathbb{Z}/p\mathbb{Z}$: Rectification Methods

▶ If $A + B \subseteq \mathbb{Z}/p\mathbb{Z}$ has $|A \cup B|$ "very small," then

 $A + B \cong A' + B'$

with $A' + B' \subseteq \mathbb{Z}$, reducing consideration in $\mathbb{Z}/p\mathbb{Z}$ directly to the case of \mathbb{Z} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Freiman Homomorphisms

Let G and G' be abelian groups.

▶ If $A + B \subseteq G$ is a sumset normalized by translation so that $0 \in A \cap B$, then a map $\psi : A + B \rightarrow G'$ is called a (normalized) Freiman homomorphism if

$$\psi(a+b) = \psi(a) + \psi(b)$$
 for all $a \in A$ and $b \in B$.

Freiman Homomorphisms

Let G and G' be abelian groups.

▶ If $A + B \subseteq G$ is a sumset normalized by translation so that $0 \in A \cap B$, then a map $\psi : A + B \rightarrow G'$ is called a (normalized) Freiman homomorphism if

$$\psi(a+b) = \psi(a) + \psi(b)$$
 for all $a \in A$ and $b \in B$.

• If $\psi : A + B \rightarrow G'$ is injective, then

$$A+B \cong \psi(A) + \psi(B).$$

Universal Ambient Groups and Dimension

► Given a sumset A + B, there may be many groups G into which A + B may be embedded, but there is always a "canonical" choice, called the Universal Ambient Group (UAG): U(A + B).

(日) (日) (日) (日) (日) (日) (日) (日)

Universal Ambient Groups and Dimension

► Given a sumset A + B, there may be many groups G into which A + B may be embedded, but there is always a "canonical" choice, called the Universal Ambient Group (UAG): U(A + B).

• dim⁺(A + B) = rk($\mathcal{U}(A + B)$) is torsion free rank of $\mathcal{U}(A + B)$.

Universal Ambient Groups and Dimension

► Given a sumset A + B, there may be many groups G into which A + B may be embedded, but there is always a "canonical" choice, called the Universal Ambient Group (UAG): U(A + B).

• dim⁺(A + B) = rk($\mathcal{U}(A + B)$) is torsion free rank of $\mathcal{U}(A + B)$.

If a sumset A + B has an embedding into a torsion-free group, then dim⁺(A + B) = d is the maximal d ≥ 1 such that A + B has an isomorphic copy A' + B' ⊆ Z^d with ⟨A' + B'⟩ = Z^d.

▶ If $A + B \subseteq G$ has $|A \cup B|$ "very small," then

 $A+B\cong A'+B'\subseteq\mathbb{Z}.$

▶ If $A + B \subseteq G$ has $|A \cup B|$ "very small," then

 $A+B\cong A'+B'\subseteq\mathbb{Z}.$

If |A ∪ B| ≤ [log₂ p], where p is the smallest prime divisor of the torsion subgroup Tor(G), then A + B ≅ A' + B' ≅ Z (Lev, 2008).

▶ If $A + B \subseteq G$ has $|A \cup B|$ "very small," then

$$A+B\cong A'+B'\subseteq\mathbb{Z}.$$

- If |A ∪ B| ≤ ⌈log₂ p⌉, where p is the smallest prime divisor of the torsion subgroup Tor(G), then A + B ≅ A' + B' ≅ ℤ (Lev, 2008).
- ▶ If $A + A \subseteq \mathbb{Z}/p\mathbb{Z}$ with $|A + A| \leq k|A|$ and $|A| \leq (32k)^{-12k}p$, then $A + A \cong A' + A' \subseteq \mathbb{Z}$ (Green and Ruzsa 2006; Bilu, Lev and Ruzsa 1998, weaker bounds).

Thus the 3k - 4 conjecture holds for $A + B \subseteq \mathbb{Z}/p\mathbb{Z}$ provided:

•
$$|A \cup B| \leq \lceil \log_2 p \rceil$$
, or

• A = B and $|A| \le cp$ for a *very* small constant c > 0, or

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thus the 3k - 4 conjecture holds for $A + B \subseteq \mathbb{Z}/p\mathbb{Z}$ provided:

- ▶ $|A \cup B| \leq \lceil \log_2 p \rceil$, or
- A = B and $|A| \le cp$ for a *very* small constant c > 0, or
- ▶ $||A| |B|| \le N$ and $|A \cup B| \le c_N p$ for an even smaller constant $c_N > 0$ that depends on N (via Plünnecke bounds).

Partial Progress in $\mathbb{Z}/p\mathbb{Z}$: Refined Rectification via Exponential Sums

Lemma (Lev 2004 and 2007; Freiman 1961, weaker version) Let $\varphi \in (0, \pi]$ be a real number and let $z_1 \cdot \ldots \cdot z_N$ be a sequence of complex numbers z_i from the unit circle such that every open arc of length φ contains at most n terms from the sequence S. Then

$$|\sum_{i=1}^{N} z_i| \leq 2n - N + 2(N-n)\cos(\varphi/2).$$

Partial Progress in $\mathbb{Z}/p\mathbb{Z}$: Refined Rectification via Exponential Sums

Theorem (Freimain 1961; Nathanson 1995; Roth 2006; G 2013)

Let $A + B \subseteq \mathbb{Z}/p\mathbb{Z}$ with

$$|A + B| = |A| + |B| - 1 + r$$
 and $|A| \ge |B|$.

Under any of the following conditions, the 3k - 4 Theorem holds for A + B.

$$\begin{array}{ll} A=B, & r\leq 0.4|B|-2 & \text{and} & |A+A|\leq 0.2125p; \\ A=B, & r\leq 0.29|B|-2 & \text{and} & |A+A|\leq \frac{p-1}{2}; \\ |A|\leq \frac{4}{3}|B|, & r\leq 0.05|B|-2 & \text{and} & |A+B|\leq \frac{p}{225}; \\ |A|\leq 1.12|B|, & r\leq 0.12|B|-2 & \text{and} & |A+B|\leq \frac{p}{55}; \\ |A|=|B|, & r\leq 0.15|B|-2 & \text{and} & |A+B|\leq 0.036p. \end{array}$$

Partial Progress in $\mathbb{Z}/p\mathbb{Z}$: Rectification+Plünnecke+Trios+UAG+Isoperimetric Method

Theorem (G 2013) Let $A, B \subseteq \mathbb{Z}/p\mathbb{Z}$ with

$$|A + B| = |A| + |B| - 1 + r \le p - r - 3$$
 and $|A| \ge |B|$

lf

 $r \le |B| - 3$ and $r \le cp - 1.2$, where $c = 3.1 \cdot 10^{-1549}$,

then the 3k - 4 Conjecture holds for A + B.

Beyond $|A + B| \le |A| + |B| - 4 + \min\{|A|, |B|\}$

▶ Problem: Finding similar precise bounds for the covering progression when $|A + B| > |A| + |B| - 4 + \min\{|A|, |B|\}$ when $A + B \subseteq \mathbb{Z}$.

Theorem (Ruzsa 1994)

Let $A, B \subseteq \mathbb{Z}$ be finite and nonempty with dim⁺ $(A + B) \ge d$ with $|A| \ge |B|$. If dim⁺ $(A + B) \ge d$, then

$$|A + B| \ge |A| + d|B| - \frac{1}{2}d(d + 1).$$

Theorem (Ruzsa 1994)

Let $A, B \subseteq \mathbb{Z}$ be finite and nonempty with dim⁺ $(A + B) \ge d$ with $|A| \ge |B|$. If dim⁺ $(A + B) \ge d$, then

$$|A+B| \ge |A|+d|B| - rac{1}{2}d(d+1).$$

In particular (d = 3): if A + B is at least 3 dimensional, then $|A + B| \ge |A| + 3|B| - 6$.

Theorem (G and Serra 2010)

Let $s \ge 2$ be an integer. Let $A, B \subseteq \mathbb{R}^2$ be finite subsets with $|A| \ge |B| \ge 2s^2 - 3s + 2$. If

$$|A+B| < |A| + (3-\frac{2}{s})|B| - 2s + 1,$$

then there is a line ℓ such that each of A and B can be covered by at most s - 1 parallel translates of ℓ .

Theorem (G and Serra 2010)

Let $s \ge 2$ be an integer. Let $A, B \subseteq \mathbb{R}^2$ be finite subsets with $|A| \ge |B| \ge 2s^2 - 3s + 2$. If

$$|A+B| < |A| + (3-\frac{2}{s})|B| - 2s + 1,$$

then there is a line ℓ such that each of A and B can be covered by at most s - 1 parallel translates of ℓ .

In particular (s = 3): If $A + B \subseteq \mathbb{Z}$ has $|A + B| < |A| + \frac{7}{3}|B| - 5$, then either dim⁺(A + B) = 1 or A + B has an isomorphic copy $A' + B' \subseteq \mathbb{Z}^2$ with A' and B' covered by two parallel lines.

The 2-Dimensional Case

Theorem (G 2016; Stanchescu 1998, A = B) Let $A, B \subseteq \mathbb{Z}^2$ be finite, nonempty subsets each covered by 2 horizontal lines. Suppose $\langle A + B - A - B \rangle = \mathbb{Z}^2$, $|A| \ge |B|$ and

$$|A + B| = |A| + 2|B| - 2 + r - \delta(A, B) \le |A| + \frac{19}{7}|B| - 5$$

Then there exist subsets P_A , P_B , $P \subseteq \mathbb{Z}^2$, each the union of two arithmetic progressions with difference (1,0), such that, after translating A and B appropriately,

$$A \subseteq P_A, \quad |P_A \setminus A| \le r, \quad B \subseteq P_B, \quad |P_B \setminus B| \le r, \quad A \cup B \subseteq P, \quad \text{and} \\ |P \setminus A| + |P \setminus B| \le 2r + 2 + \left| |P_A| - |P_B| \right| - \left| |A| - |B| \right| \le 3r + 2r$$

The 2-Dimensional Case

Theorem (G 2016; Stanchescu 1998, A = B) Let $A, B \subseteq \mathbb{Z}^2$ be finite, nonempty subsets each covered by 2 horizontal lines. Suppose $\langle A + B - A - B \rangle = \mathbb{Z}^2$, $|A| \ge |B|$ and

$$|A + B| = |A| + 2|B| - 2 + r - \delta(A, B) \le |A| + \frac{19}{7}|B| - 5$$

Then there exist subsets P_A , P_B , $P \subseteq \mathbb{Z}^2$, each the union of two arithmetic progressions with difference (1,0), such that, after translating A and B appropriately,

$$A \subseteq P_A, \quad |P_A \setminus A| \le r, \quad B \subseteq P_B, \quad |P_B \setminus B| \le r, \quad A \cup B \subseteq P, \quad \text{and} \\ |P \setminus A| + |P \setminus B| \le 2r + 2 + \left||P_A| - |P_B|\right| - \left||A| - |B|\right| \le 3r + 2$$

Moreover, $|P \setminus A| + |P \setminus B| \le 2r + 2 - ||A| - |B||$ unless either

 $\begin{array}{ll} P_B \subseteq P_A = P & \text{and} & |P \setminus A| + |P \setminus B| = 2|P_A \setminus A| + |A| - |B|, \quad \text{or} \\ P_A \subseteq P_B = P & \text{and} & |P \setminus A| + |P \setminus B| = 2|P_B \setminus B| + |B| - |A|. \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

The 1-Dimensional Case?

Conjecture

Let A, $B \subseteq \mathbb{Z}$ be finite, nonempty subsets with $|A| \ge |B|$ and $\dim^+(A+B) = 1$. If

$$|A + B| = |A| + 2|B| - 2 + r - \delta(A, B)$$
 and $0 \le r \le |B| - 5$,

then there arithmetic progressions P_A and P_B of common difference with

 $A \subseteq P_A$, $B \subseteq P_B$, and $|P_A \setminus A|, |P_B \setminus B| \le |B| - \delta(A, B) + 2r$.

Other Ways Beyond $|A + B| \le |A| + |B| + \min\{|A|, |B|\} - 4$

- ▶ Problem: Finding similar precise bounds for the covering progression when $|A + B| > |A| + |B| 4 + \min\{|A|, |B|\}$ when $A + B \subseteq \mathbb{Z}$.
- Question: If we have diam B < 2 diam A instead of diam B ≤ diam A, can we achieve |P_A \ A| ≤ r with a weaker bound than |A + B| ≤ |A| + |B| - 4 + min{|A|, |B|}?

▶ How about when diam *B* < *k* diam *A*?

Thanks!