The Freiman $3k - 4$ Theorem

David Grynkiewicz

University of Memphis

January 7, 2016

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Sumsets

Definition

Let G be an abelian group and let $A, B \subseteq G$ be finite, nonempty subsets. Then their sumset is

$$
A+B=\{a+b: a\in A, b\in B\}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Sumsets

Definition

Let G be an abelian group and let $A, B \subseteq G$ be finite, nonempty subsets. Then their sumset is

$$
A + B = \{a + b : a \in A, b \in B\}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

General Theme: $|A + B|$ "small" implies A, B and $A + B$ have "structure".

The Freiman $3k - 4$ Theorem

Theorem (Freiman 1959)

Let $A \subseteq \mathbb{Z}$ be a k-element subset with

$$
|A+A|=|A|+|A|-1+r\leq 3|A|-4=3k-4.
$$

Then there is an arithmetic progression $P_A \subseteq \mathbb{Z}$ with

$$
A\subseteq P_A \quad \text{and} \quad |P_A\setminus A|\leq r.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

The $3k - 4$ Theorem for Distinct Summands

Theorem (Lev and Smeliansky 1995; Freiman 1962) Let A, $B \subseteq \mathbb{Z}$ be finite and nonempty with diam(A) \geq diam(B), $gcd(A - A) = 1$, and

$$
|A + B| = |A| + |B| - 1 + r \le |A| + 2|B| - 4.
$$

Then there are arithmetic progressions P_A and P_B having common difference 1 with

$$
A \subseteq P_A
$$
, $B \subseteq P_B$, $|P_A \setminus A| \le r$, and $|P_B \setminus B| \le r$.

KORK ERKER ADE YOUR

Here diam(A) = max A – min A.

The $3k - 4$ Theorem for Distinct Summands

Theorem (Stanchescu 1996) Let A, $B \subseteq \mathbb{Z}$ be finite and nonempty with

 $|A + B| = |A| + |B| - 1 + r \leq |A| + |B| + \min\{|A|, |B|\} - 4.$

Then there are arithmetic progressions P_A and P_B having common difference with

 $A \subseteq P_A$, $B \subseteq P_B$, $|P_A \setminus A| \le r$, and $|P_B \setminus B| \le r$.

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

 $|P_A \setminus A| = r$ and $|P_B \setminus B| = 0$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

KORK STRAIN A BAR SHOP

Some Examples: $3k - 4$ is (nearly) tight

If $A = P_1 \cup P_2$ is the union of two arithmetic progressions (of common difference) spaced far enough apart, then

 $|A + A| = (2|P_1| - 1) + (|P_1| + |P_2| - 1) + (2|P_2| - 1) = 3|A| - 3.$

Some Examples: $3k - 4$ is (nearly) tight

If $A = P_1 \cup P_2$ is the union of two arithmetic progressions (of common difference) spaced far enough apart, then

$$
|A+A|=(2|P_1|-1)+(|P_1|+|P_2|-1)+(2|P_2|-1)=3|A|-3.
$$

Likewise, if $B = P_B$ is also an arithmetic progression of the same difference, then

$$
|A + B| = (|P_1| + |P_B| - 1) + (|P_2| + |P_B| - 1) = |A| + 2|B| - 2
$$

Some Examples: $3k - 4$ is (nearly) tight

If $A = P_1 \cup P_2$ is the union of two arithmetic progressions (of common difference) spaced far enough apart, then

 $|A + A| = (2|P_1| - 1) + (|P_1| + |P_2| - 1) + (2|P_2| - 1) = 3|A| - 3.$

Likewise, if $B = P_B$ is also an arithmetic progression of the same difference, then

$$
|A + B| = (|P_1| + |P_B| - 1) + (|P_2| + |P_B| - 1) = |A| + 2|B| - 2
$$

KORKAR KERKER EL VOLO

In both cases, A can have arbitrarily many holes, so $|P_A \setminus A|$ is unbounded.

KORK STRAIN A BAR SHOP

Minor Touch-Ups

Theorem Let A, $B \subseteq \mathbb{Z}$ be finite and nonempty with diam(A) \geq diam(B), $gcd(A - A) \leq 2$, and

$$
|A + B| = |A| + |B| - 1 + r \le |A| + 2|B| - 3 - \delta(A, B),
$$

where

$$
\delta(A, B) = \left\{ \begin{array}{ll} 1, & \text{if } x + A \subseteq B \text{ for some } x \in \mathbb{Z} \\ 0, & \text{otherwise.} \end{array} \right.
$$

Then there are arithmetic progressions P_A and P_B having common difference $d = \gcd(A + B - A - B)$ with

$$
A \subseteq P_A
$$
, $B \subseteq P_B$, $|P_A \setminus A| \le r$, and $|P_B \setminus B| \le r$.

Minor Touch-Ups

Theorem Let A, $B \subseteq \mathbb{Z}$ be finite and nonempty with

 $|A+B| = |A|+|B|-1+r \leq |A|+|B|-3+\min\{|A|-\delta(A,B), |B|-\delta(B,A)\}.$

Then there are arithmetic progressions P_A and P_B having common difference with

 $A \subseteq P_A$, $B \subseteq P_B$, $|P_A \setminus A| \le r$, and $|P_B \setminus B| \le r$.

Trios

Definition

A trio in an abelian group G is a triple (A, B, C) , where $A, B, C \subseteq G$ are finite or cofinite, such that $A + B + C \neq G$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Trios

Definition

A trio in an abelian group G is a triple (A, B, C) , where $A, B, C \subseteq G$ are finite or cofinite, such that $A + B + C \neq G$.

Example

If $A, B \subseteq G$ are finite and $C = -\overline{A+B} := -G \setminus (A+B)$, then

$$
0 \notin A + B + C = A + B - \overline{A + B},
$$

as $a + b - c = 0$ with $a \in A$, $b \in B$ and $c \notin A + B$ is not possible. So

$$
(A,B,-\overline{A+B})
$$

KORK EX KEY CRACK

is a G-trio.

\blacktriangleright The trio (A, B, C) is **nontrivial** if A, B and C are all nonempty.

K ロ X K 메 X K B X X B X X D X O Q Q O

 \blacktriangleright The trio (A, B, C) is **nontrivial** if A, B and C are all nonempty.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 \triangleright At most one set in a nontrivial *G*-trio can be infinite.

Key Trio Facts

- \blacktriangleright The trio (A, B, C) is **nontrivial** if A, B and C are all nonempty.
- \triangleright At most one set in a nontrivial G-trio can be infinite.
- \blacktriangleright The **deficiency** of the *G*-trio (A, B, C) is

$$
\delta(A,B,C)=|A|+|B|-|G\setminus C|,
$$

where $|A|, |B| \leq |C|$.

Key Trio Facts

- \blacktriangleright The trio (A, B, C) is **nontrivial** if A, B and C are all nonempty.
- \triangleright At most one set in a nontrivial G-trio can be infinite.
- \blacktriangleright The deficiency of the G-trio (A, B, C) is

$$
\delta(A, B, C) = |A| + |B| - |G \setminus C|,
$$

KORK EX KEY CRACK

where $|A|, |B| \leq |C|$.

If G is finite, then $\delta(A, B, C) = |A| + |B| + |C| - |G|$.

A Trio Formulation of the $3k - 4$ Theorem

Theorem Let (A, B, C) be a nontrivial \mathbb{Z} -trio. If

 $\delta(A, B, C) > -r$ and $|A|, |B|, |C| \ge r + 3$,

then there exist subsets P_A , P_B and P_C , each either an arithmetic progression or complement of an arithmetic progression of common difference, such that

> $A \subseteq P_A$, $B \subseteq P_B$, $C \subseteq P_C$ $|P_A \setminus A| < r$, $|P_B \setminus B| < r$, $|P_C \setminus C| < r$.

A Trio Formulation of the $3k - 4$ Theorem

Theorem Let (A, B, C) be a nontrivial \mathbb{Z} -trio. If

 $\delta(A, B, C) > -r$ and $|A|, |B|, |C| \ge r + 3$,

then there exist subsets P_A , P_B and P_C , each either an arithmetic progression or complement of an arithmetic progression of common difference, such that

> $A \subseteq P_A$, $B \subseteq P_B$, $C \subseteq P_C$ $|P_A \setminus A| < r$, $|P_B \setminus B| < r$, $|P_C \setminus C| < r$.

Note: If $A, B \subseteq \mathbb{Z}$ are finite and nonempty with

 $|A + B| = |A| + |B| - 1 + r < |A| + |B| - 4 + \min\{|A|, |B|\},$

then (A, B, C) is a Z-trio, where $C = -\overline{A + B}$, having

 $\delta(A, B, C) = |A| + |B| - |A + B| = -r + 1$ and $|A|, |B|, |C| \ge r + 3$.

What does $C \subseteq P_C$ with $|P_C \setminus C| \leq r$ mean?

► Thus the Trio Formulation implies (one version) of the $3k - 4$ Theorem

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

What does $C \subseteq P_C$ with $|P_C \setminus C| \leq r$ mean?

► Thus the Trio Formulation implies (one version) of the $3k - 4$ Theorem

KORK STRATER STRAKES

 \triangleright Note $-\overline{A+B} = C \subseteq P_C$ implies $\overline{A+B} \subseteq -P_C$ implies $-\overline{P_{C}} \subset A + B$.

What does $C \subseteq P_C$ with $|P_C \setminus C| \leq r$ mean?

- \triangleright Thus the Trio Formulation implies (one version) of the 3k 4 Theorem
- \triangleright Note $-\overline{A+B} = C \subseteq P_C$ implies $\overline{A+B} \subseteq -P_C$ implies $-\overline{P_{C}} \subset A + B$.
- ► Thus $-\overline{P_C}$ \subset $A + B$ will be an arithmetic progression of length at least $|C| - r = |A| + |B| - 1 + r - r = |A| + |B| - 1$.

Long Arithmetic Progressions under the $3k - 4$ Theorem hypothesis

Theorem (Bardaji and G 2010; Freiman 2009, $A = B$) Let A, $B \subseteq \mathbb{Z}$ be finite and nonempty with $\langle A + B - A - B \rangle = \mathbb{Z}$ and let $|A + B| = |A| + |B| - 1 + r$. If either (i) $|A + B| \le |A| + |B| - 3 + \min\{|B| - \delta(A, B), |A| - \delta(B, A)\},$ or (ii) diam $B \leq$ diam A, gcd($A - A$) ≤ 2 and $|A + B| \leq |A| + 2|B| - 3 - \delta(A, B),$ then $A + B$ contains an arithmetic progression with difference 1 and

KORK ERKER ADE YOUR

length at least $|A| + |B| - 1$.

Long Arithmetic Progressions under the $3k - 4$ Theorem hypothesis

Theorem (Bardaji and G 2010; Freiman 2009, $A = B$) Let A, $B \subseteq \mathbb{Z}$ be finite and nonempty with $\langle A + B - A - B \rangle = \mathbb{Z}$ and let $|A + B| = |A| + |B| - 1 + r$. If either (i) $|A + B| \leq |A| + |B| - 3 + \min\{|B| - \delta(A, B), |A| - \delta(B, A)\},$ or (ii) diam $B \leq$ diam A, gcd($A - A$) ≤ 2 and $|A + B| \leq |A| + 2|B| - 3 - \delta(A, B),$ then $A + B$ contains an arithmetic progression with difference 1 and length at least $|A| + |B| - 1$.

This result, combined with the $3k - 4$ Theorem, can be used to deduce the Trio Formulation mentioned before, using saturation arguments.

KORKAR KERKER EL VOLO

A 3k – 4 Theorem for $\mathbb{Z}/p\mathbb{Z}$?

Conjecture (3k – 4 Conjecture for $\mathbb{Z}/p\mathbb{Z}$.) Let (A, B, C) be a nontrivial $\mathbb{Z}/p\mathbb{Z}$ -trio, where p is a prime. If

 $\delta(A, B, C) > -r$ and $|A|, |B|, |C| \ge r + 3$,

then there exist arithmetic progressions P_A , P_B and P_C of common difference such that

> $A \subseteq P_A$, $B \subseteq P_B$, $C \subseteq P_C$ $|P_A \setminus A| \leq r$, $|P_B \setminus B| \leq r$, $|P_C \setminus C| \leq r$.

A 3k – 4 Theorem for $\mathbb{Z}/p\mathbb{Z}$?

Equivalently:

Conjecture (3k – 4 Conjecture for $\mathbb{Z}/p\mathbb{Z}$.)

Let A, $B \subseteq \mathbb{Z}/p\mathbb{Z}$ be nonempty subsets with p prime and $|A| \geq |B|$. If

$$
|A + B| = |A| + |B| - 1 + r \le p - r - 3 \quad \text{and} \quad r \le |B| - 3,
$$

then there exist arithmetic progressions P_A , P_B and P_C of common difference such that

 $A \subseteq P_A$, $B \subseteq P_B$, $P_C \subseteq A + B$ $|P_A \setminus A| \le r$, $|P_B \setminus B| \le r$, $|C| \ge |A| + |B| - 1$.

If $A + B \subseteq \mathbb{Z}/p\mathbb{Z}$ has $|A \cup B|$ "very small," then

 $A + B \cong A' + B'$

with $A' + B' \subseteq \mathbb{Z}$, reducing consideration in $\mathbb{Z}/p\mathbb{Z}$ directly to the case of \mathbb{Z} .

Freiman Homomorphisms

Let G and G' be abelian groups.

If $A + B \subseteq G$ is a sumset normalized by translation so that $0\in A\cap B,$ then a map $\psi:A+B\rightarrow G'$ is called a (normalized) Freiman homomorphism if

$$
\psi(a+b) = \psi(a) + \psi(b) \quad \text{ for all } a \in A \text{ and } b \in B.
$$

KORK STRATER STRAKES

Freiman Homomorphisms

Let G and G' be abelian groups.

If $A + B \subseteq G$ is a sumset normalized by translation so that $0\in A\cap B,$ then a map $\psi:A+B\rightarrow G'$ is called a (normalized) Freiman homomorphism if

 $\psi(a+b) = \psi(a) + \psi(b)$ for all $a \in A$ and $b \in B$.

If $\psi : A + B \rightarrow G'$ is injective, then

$$
A + B \cong \psi(A) + \psi(B).
$$

KORKAR KERKER EL VOLO

Universal Ambient Groups and Dimension

Given a sumset $A + B$, there may be many groups G into which $A + B$ may be embedded, but there is always a "canonical" choice, called the Universal Ambient Group (UAG): $U(A + B)$.

Universal Ambient Groups and Dimension

Given a sumset $A + B$, there may be many groups G into which $A + B$ may be embedded, but there is always a "canonical" choice, called the Universal Ambient Group (UAG): $U(A + B)$.

KORKAR KERKER EL VOLO

In dim⁺(A+B) = rk(U(A+B)) is torsion free rank of $U(A + B)$.

Universal Ambient Groups and Dimension

Given a sumset $A + B$, there may be many groups G into which $A + B$ may be embedded, but there is always a "canonical" choice, called the Universal Ambient Group (UAG): $U(A + B)$.

In dim⁺(A+B) = rk(U(A+B)) is torsion free rank of $U(A + B)$.

If a sumset $A + B$ has an embedding into a torsion-free group, then $\mathsf{dim}^+(\mathsf{A+B}) = \mathsf{d}$ is the maximal $\mathsf{d} \geq 1$ such that $\mathsf{A+B}$ has an isomorphic copy $A' + B' \subseteq \mathbb{Z}^d$ with $\langle A' + B' \rangle = \mathbb{Z}^d$.

KORKAR KERKER EL VOLO

If $A + B \subseteq G$ has $|A \cup B|$ "very small," then

 $A + B \cong A' + B' \subseteq \mathbb{Z}$.

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

If $A + B \subseteq G$ has $|A \cup B|$ "very small," then

 $A + B \cong A' + B' \subseteq \mathbb{Z}$.

► If $|A \cup B| \leq |\log_2 p|$, where p is the smallest prime divisor of the torsion subgroup $\operatorname{\sf Tor}(G)$, then $A+B\cong A'+B'\cong \mathbb{Z}$ (Lev, 2008).

If $A + B \subseteq G$ has $|A \cup B|$ "very small," then

$$
A + B \cong A' + B' \subseteq \mathbb{Z}.
$$

- If $|A \cup B| \leq \lceil \log_2 p \rceil$, where p is the smallest prime divisor of the torsion subgroup $\operatorname{\sf Tor}(G)$, then $A+B\cong A'+B'\cong \mathbb{Z}$ (Lev, 2008).
- If $A + A \subseteq \mathbb{Z}/p\mathbb{Z}$ with $|A + A| \le k|A|$ and $|A| \le (32k)^{-12k}p$, then $A + A \cong A' + A' \subseteq \mathbb{Z}$ (Green and Ruzsa 2006; Bilu, Lev and Ruzsa 1998, weaker bounds).

KORKAR KERKER EL VOLO

Thus the 3k – 4 conjecture holds for $A + B \subseteq \mathbb{Z}/p\mathbb{Z}$ provided:

$$
\blacktriangleright |A \cup B| \leq \lceil \log_2 p \rceil, \text{ or }
$$

 \blacktriangleright $A = B$ and $|A| \leq c p$ for a very small constant $c > 0$, or

Thus the 3k – 4 conjecture holds for $A + B \subseteq \mathbb{Z}/p\mathbb{Z}$ provided:

- \blacktriangleright $|A \cup B|$ \lt $\lceil \log_2 p \rceil$, or
- \blacktriangleright $A = B$ and $|A| \leq c p$ for a very small constant $c > 0$, or
- $\vert A \vert \vert B \vert \vert \leq N$ and $\vert A \cup B \vert \leq c_N p$ for an even smaller constant $c_N > 0$ that depends on N (via Plünnecke bounds).

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Partial Progress in $\mathbb{Z}/p\mathbb{Z}$: Refined Rectification via Exponential Sums

Lemma (Lev 2004 and 2007; Freiman 1961, weaker version) Let $\varphi \in (0, \pi]$ be a real number and let $z_1 \cdot \ldots \cdot z_N$ be a sequence of complex numbers z_i from the unit circle such that every open arc of length φ contains at most n terms from the sequence S. Then

$$
\left|\sum_{i=1}^N z_i\right| \leq 2n - N + 2(N - n)\cos(\varphi/2).
$$

Partial Progress in $\mathbb{Z}/p\mathbb{Z}$: Refined Rectification via Exponential Sums

Theorem (Freimain 1961; Nathanson 1995; Roth 2006; G 2013)

Let $A + B \subseteq \mathbb{Z}/p\mathbb{Z}$ with

$$
|A + B| = |A| + |B| - 1 + r
$$
 and $|A| \ge |B|$.

Under any of the following conditions, the $3k - 4$ Theorem holds for $A + B$.

$$
A = B, \t r \le 0.4|B| - 2 \t and \t |A + A| \le 0.2125p;
$$

\n
$$
A = B, \t r \le 0.29|B| - 2 \t and \t |A + A| \le \frac{p-1}{2};
$$

\n
$$
|A| \le \frac{4}{3}|B|, \t r \le 0.05|B| - 2 \t and \t |A + B| \le \frac{p}{225};
$$

\n
$$
|A| \le 1.12|B|, \t r \le 0.12|B| - 2 \t and \t |A + B| \le \frac{p}{55};
$$

\n
$$
|A| = |B|, \t r \le 0.15|B| - 2 \t and \t |A + B| \le 0.036p.
$$

Partial Progress in $\mathbb{Z}/p\mathbb{Z}$: Rectification+Plünnecke+Trios+UAG+Isoperimetric Method

Theorem (G 2013) Let A, $B \subseteq \mathbb{Z}/p\mathbb{Z}$ with

$$
|A + B| = |A| + |B| - 1 + r \le p - r - 3
$$
 and $|A| \ge |B|$.

If

 $r \leq |B|-3$ and $r \leq cp-1.2,$ where $c=3.1\cdot 10^{-1549},$

KORK ERKER ADE YOUR

then the $3k - 4$ Conjecture holds for $A + B$.

Beyond $|A + B| \le |A| + |B| - 4 + \min\{|A|, |B|\}$

 \triangleright Problem: Finding similar precise bounds for the covering progression when $|A + B| > |A| + |B| - 4 + \min\{|A|, |B|\}$ when $A + B \subseteq \mathbb{Z}$.

Theorem (Ruzsa 1994)

Let $A, B \subseteq \mathbb{Z}$ be finite and nonempty with $\dim^+(A+B) \geq d$ with $|A|\geq |B|$. If $\dim^+(A+B)\geq d$, then

$$
|A + B| \ge |A| + d|B| - \frac{1}{2}d(d+1).
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Theorem (Ruzsa 1994)

Let $A, B \subseteq \mathbb{Z}$ be finite and nonempty with $\dim^+(A+B) \geq d$ with $|A|\geq |B|$. If $\dim^+(A+B)\geq d$, then

$$
|A + B| \ge |A| + d|B| - \frac{1}{2}d(d+1).
$$

KORK ERKER ADE YOUR

In particular $(d = 3)$: if $A + B$ is at least 3 dimensional, then $|A + B| > |A| + 3|B| - 6.$

Theorem (G and Serra 2010)

Let $s \geq 2$ be an integer. Let $A, B \subseteq \mathbb{R}^2$ be finite subsets with $|A| \ge |B| \ge 2s^2 - 3s + 2$. If

$$
|A+B|<|A|+(3-\frac{2}{s})|B|-2s+1,
$$

KORK ERKER ADE YOUR

then there is a line ℓ such that each of A and B can be covered by at most s -1 parallel translates of ℓ .

Theorem (G and Serra 2010)

Let $s \geq 2$ be an integer. Let $A, B \subseteq \mathbb{R}^2$ be finite subsets with $|A| \ge |B| \ge 2s^2 - 3s + 2$. If

$$
|A+B|<|A|+(3-\frac{2}{s})|B|-2s+1,
$$

then there is a line ℓ such that each of A and B can be covered by at most s -1 parallel translates of ℓ .

In particular $(s = 3)$: If $A + B \subseteq \mathbb{Z}$ has $|A + B| < |A| + \frac{7}{3}|B| - 5$, then either $\dim^+(\!A+B)=1$ or $A+B$ has an isomorphic copy $A'+B'\subseteq\mathbb{Z}^2$ with A' and B' covered by two parallel lines.

KORKAR KERKER EL VOLO

The 2-Dimensional Case

Theorem (G 2016; Stanchescu 1998, $A = B$) Let A, $B \subseteq \mathbb{Z}^2$ be finite, nonempty subsets each covered by 2 horizontal lines. Suppose $\langle A + B - A - B \rangle = \mathbb{Z}^2$, $|A| \geq |B|$ and

$$
|A + B| = |A| + 2|B| - 2 + r - \delta(A, B) \le |A| + \frac{19}{7}|B| - 5.
$$

Then there exist subsets P_A , P_B , $P \subseteq \mathbb{Z}^2$, each the union of two arithmetic progressions with difference $(1, 0)$, such that, after translating A and B appropriately,

$$
A \subseteq P_A, \quad |P_A \setminus A| \le r, \quad B \subseteq P_B, \quad |P_B \setminus B| \le r, \quad A \cup B \subseteq P, \quad \text{and}
$$

$$
|P \setminus A| + |P \setminus B| \le 2r + 2 + \left| |P_A| - |P_B| \right| - \left| |A| - |B| \right| \le 3r + 2,
$$

The 2-Dimensional Case

Theorem (G 2016; Stanchescu 1998, $A = B$) Let A, $B \subseteq \mathbb{Z}^2$ be finite, nonempty subsets each covered by 2 horizontal lines. Suppose $\langle A + B - A - B \rangle = \mathbb{Z}^2$, $|A| \geq |B|$ and

$$
|A + B| = |A| + 2|B| - 2 + r - \delta(A, B) \le |A| + \frac{19}{7}|B| - 5.
$$

Then there exist subsets P_A , P_B , $P \subseteq \mathbb{Z}^2$, each the union of two arithmetic progressions with difference $(1, 0)$, such that, after translating A and B appropriately,

$$
A \subseteq P_A, \quad |P_A \setminus A| \le r, \quad B \subseteq P_B, \quad |P_B \setminus B| \le r, \quad A \cup B \subseteq P, \quad \text{and}
$$

$$
|P \setminus A| + |P \setminus B| \le 2r + 2 + \left| |P_A| - |P_B| \right| - \left| |A| - |B| \right| \le 3r + 2,
$$

Moreover, $|P \setminus A| + |P \setminus B| \leq 2r + 2 - \bigg||A| - |B|\bigg|$ unless either

 $P_B \subseteq P_A = P$ and $|P \setminus A| + |P \setminus B| = 2|P_A \setminus A| + |A| - |B|$, or $P_A \subseteq P_B = P$ and $|P \setminus A| + |P \setminus B| = 2|P_B \setminus B| + |B| - |A|.$

> 2990

The 1-Dimensional Case?

Conjecture

Let A, $B \subseteq \mathbb{Z}$ be finite, nonempty subsets with $|A| > |B|$ and $\dim^+(\mathcal{A}+B)=1$. If

$$
|A + B| = |A| + 2|B| - 2 + r - \delta(A, B)
$$
 and $0 \le r \le |B| - 5$,

then there arithmetic progressions P_A and P_B of common difference with

 $A \subseteq P_A$, $B \subseteq P_B$, and $|P_A \setminus A|, |P_B \setminus B| < |B| - \delta(A, B) + 2r$.

Other Ways Beyond $|A + B| \leq |A| + |B| + \min\{|A|, |B|\} - 4$

- \triangleright Problem: Finding similar precise bounds for the covering progression when $|A + B| > |A| + |B| - 4 + \min\{|A|, |B|\}$ when $A + B \subseteq \mathbb{Z}$.
- \triangleright Question: If we have diam $B < 2$ diam A instead of diam $B \leq$ diam A, can we achieve $|P_A \setminus A| \leq r$ with a weaker bound than $|A + B| < |A| + |B| - 4 + \min\{|A|, |B|\}$?

KORK ERKER ADE YOUR

 \blacktriangleright How about when diam $B < k$ diam A?

Thanks!

K ロ X (日) X (日)