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Sumsets

Definition
Let G be an abelian group and let A, B C G be finite, nonempty subsets.
Then their sumset is

A+B={a+b: acA be B}
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Definition
Let G be an abelian group and let A, B C G be finite, nonempty subsets.
Then their sumset is

A+B={a+b: acA be B}

General Theme: |[A+ B
“structure”.

“small” implies A, B and A+ B have




The Freiman 3k — 4 Theorem

Theorem (Freiman 1959)
Let A C Z be a k-element subset with

[A+A =]A+|Al—14+r<3|A|—4=3k—4.
Then there is an arithmetic progression Py C 7, with

ACPs and |Pa\A<r.



The 3k — 4 Theorem for Distinct Summands

Theorem (Lev and Smeliansky 1995; Freiman 1962)

Let A, B C Z be finite and nonempty with diam(A) > diam(B),
gcd(A—A) =1, and

[A+B|=|Al+|B|—1+r<|A+2|Bl—4.

Then there are arithmetic progressions Pa and Pg having common
difference 1 with

AQPA, Bg’DB7 |PA\A|§r7 and |PB\B|§r

Here diam(A) = max A — min A.



The 3k — 4 Theorem for Distinct Summands

Theorem (Stanchescu 1996)
Let A, B C Z be finite and nonempty with

[A+ B|=|Al+|B|—1+r <|Al+ |B| + min{|A|, |B|} — 4.

Then there are arithmetic progressions P4 and Pg having common
difference with

AQPA, BQPB, |PA\A|§I‘, and |PB\B|§I‘



Some Examples: r is tight
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Some Examples: r is tight
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and |Pg\ B|=0.
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Some Examples: 3k — 4 is (nearly) tight

If A= Py U P is the union of two arithmetic progressions (of common
difference) spaced far enough apart, then

A+ Al = (2|P1| — 1) + (|P1| + |P2| — 1) + (2|P2| — 1) = 3|A] - 3.
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Some Examples: 3k — 4 is (nearly) tight

If A= Py U P is the union of two arithmetic progressions (of common
difference) spaced far enough apart, then

A+ Al = (2|P1| — 1) + (|P1| + |P2| — 1) + (2|P2| — 1) = 3|A] - 3.

Likewise, if B = Pg is also an arithmetic progression of the same
difference, then

|[A+ B|=(|Pi]| +|Pg| = 1)+ (|P2| + |Pg| — 1) = |A| +2|B| — 2

In both cases, A can have arbitrarily many holes, so |P4 \ A| is
unbounded.



Some Examples: gcd(A — A) = 1 is (nearly) tight
ad
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Minor Touch-Ups

Theorem
Let A, B C Z be finite and nonempty with diam(A) > diam(B),

gcd(A—A) <2, and
|A+ B| = |A|+|B| =1+ r < |A[+2|B| =3 —6(A, B),

where
|1, ifx+AC B for some x € Z
0(A.B) = { 0, otherwise.

Then there are arithmetic progressions P, and Pg having common
difference d = gcd(A+ B — A — B) with

ACPs, BCPg, |PA\NA<r, and |Pg\B|<r.



Minor Touch-Ups

Theorem
Let A, B C Z be finite and nonempty with

|A+B| = |A|+|B|—1+r < |A|+|B|—=3+min{|A|—0(A, B), |B|—d(B, A)}.

Then there are arithmetic progressions Pa and Pg having common
difference with

ACPs, BCPg, |PA\A<r, and |Pg\B|<r.



Trios

Definition
A trio in an abelian group G is a triple (A, B, C), where A, B, C C G are
finite or cofinite, such that A+ B+ C # G.



Trios

Definition
A trio in an abelian group G is a triple (A, B, C), where A, B, C C G are
finite or cofinite, such that A+ B+ C # G.

Example
If A, B C G are finite and C = —A+ B:= -G\ (A+ B), then

0¢A+B+C=A+B—-A+B,
asat+b—c=0withae A be Band c¢ A+ B is not possible. So
(A,B,—A+ B)

is a G-trio.



Key Trio Facts

» The trio (A, B, C) is nontrivial if A, B and C are all nonempty.
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Key Trio Facts

v

The trio (A, B, C) is nontrivial if A, B and C are all nonempty.
At most one set in a nontrivial G-trio can be infinite.
The deficiency of the G-trio (A, B, C) is

v
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3(A, B, C) = |A[ +[B| - |G\ C],

where |A|, |B| < |C].
If G is finite, then 6(A, B, C) = |A| + |B| + |C| — | G|.
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A Trio Formulation of the 3k — 4 Theorem

Theorem
Let (A, B, C) be a nontrivial Z-trio. If

(A, B,C)>—r and |A], |B|, |C|>r+3,

then there exist subsets Pa, Pg and Pc, each either an arithmetic
progression or complement of an arithmetic progression of common
difference, such that

A C Py, B C Pg, C C Pc
|[Pa\ Al <, |Ps\ Bl <, |Pc\C|<r.



A Trio Formulation of the 3k — 4 Theorem

Theorem
Let (A, B, C) be a nontrivial Z-trio. If

(A, B,C)>—r and |A], |B|, |C|>r+3,

then there exist subsets Pa, Pg and Pc, each either an arithmetic
progression or complement of an arithmetic progression of common
difference, such that

A C Pa, B C Ps, CCPc
[Pa\ Al <, |Pg\ B| <r, [Pc\ C|<r.
Note: If A, B C Z are finite and nonempty with
|[A+ B|=|Al+|B] =14+ r < |A + |B| — 4+ min{|A|, |B|},
then (A, B, C) is a Z-trio, where C = —A + B, having
A, B,C)=|Al+|B|—|A+B|=—-r+1 and |A], |B|, |C| >r+3.



What does C C P¢ with |Pc \ C| < r mean?

» Thus the Trio Formulation implies (one version) of the 3k — 4
Theorem
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> N(E —A+ B =CC P¢c implies A+ B C —P¢ implies
—PcCA+B.



What does C C P¢ with |Pc \ C| < r mean?

» Thus the Trio Formulation implies (one version) of the 3k — 4
Theorem

> N(E —A+ B =CC P¢c implies A+ B C —P¢ implies
—PcCA+B.

» Thus —Pc C A+ B will be an arithmetic progression of length at
least |C|—r=|Al+|B|—-14+r—r=|A+|B| -1



Long Arithmetic Progressions under the 3k — 4 Theorem
hypothesis

Theorem (Bardaji and G 2010; Freiman 2009, A = B)
Let A, B C Z be finite and nonempty with (A+ B — A— B) = Z and let
|A+ B| = |Al+|B| —1+r. If either
(i) JA+ B| < |A|+|B| -3+ min{|B| — §(A, B), |A| = §(B,A)}, or
(i) diam B < diam A, gcd(A—A)<2 and
|[A+ B| < |Al+2|B] —3-6(A, B),

then A + B contains an arithmetic progression with difference 1 and
length at least |A| + |B| — 1.



Long Arithmetic Progressions under the 3k — 4 Theorem
hypothesis

Theorem (Bardaji and G 2010; Freiman 2009, A = B)
Let A, B C Z be finite and nonempty with (A+ B — A— B) = Z and let
|A+ B| = |Al+|B| —1+r. If either
(i) JA+ B| < |A|+|B| -3+ min{|B| — §(A, B), |A| = §(B,A)}, or
(i) diam B < diam A, gcd(A—A)<2 and
|[A+ B| < |Al+2|B] —3-6(A, B),

then A + B contains an arithmetic progression with difference 1 and
length at least |A| + |B| — 1.

This result, combined with the 3k — 4 Theorem, can be used to deduce
the Trio Formulation mentioned before, using saturation arguments.



A 3k — 4 Theorem for Z/pZ?

Conjecture (3k — 4 Conjecture for Z/pZ.)
Let (A, B, C) be a nontrivial Z/ pZ-trio, where p is a prime. If

(A,B,C)>—r and |A], |B|, |C|>r+3,

then there exist arithmetic progressions Pa, Pg and Pc of common
difference such that

A C Py, B C Pg, C C Pc
|Pa\ Al <, |Ps\ Bl <, |Pc\C| <.



A 3k — 4 Theorem for Z/pZ?

Equivalently:

Conjecture (3k — 4 Conjecture for Z/pZ.)

Let A, B C Z/pZ be nonempty subsets with p prime and |A| > |B|. If
[A+B|=|Al+|B|-1+r<p—r—3 and r<|B|-3,

then there exist arithmetic progressions P4, Pg and Pc of common
difference such that

A C Py, B C Pg, PcCA+B
[Pa\ Al <, |Pg\ B| <r, |C| > |Al+|B| - 1.



Partial Progress in Z/pZ: Rectification Methods

» If A+ B CZ/pZ has |AU B| "very small,” then
A+B=A +B

with A’ + B’ C Z, reducing consideration in Z/pZ directly to the
case of Z.



Freiman Homomorphisms

Let G and G’ be abelian groups.

» If A+ B C G is a sumset normalized by translation so that
0€ AN B, thenamap ¢ : A4+ B — G’ is called a (normalized)
Freiman homomorphism if

w(a+ b) =1(a)+¢(b) forallae Aand be B.



Freiman Homomorphisms

Let G and G’ be abelian groups.

» If A+ B C G is a sumset normalized by translation so that
0€ AN B, thenamap ¢ : A4+ B — G’ is called a (normalized)
Freiman homomorphism if

w(a+ b) =1(a)+¢(b) forallae Aand be B.
» If ¢ : A+ B — G’ is injective, then

A+ B = g(A) +¥(B).



Universal Ambient Groups and Dimension

» Given a sumset A + B, there may be many groups G into which
A+ B may be embedded, but there is always a “canonical” choice,
called the Universal Ambient Group (UAG): U(A + B).
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Universal Ambient Groups and Dimension

» Given a sumset A + B, there may be many groups G into which
A+ B may be embedded, but there is always a “canonical” choice,
called the Universal Ambient Group (UAG): U(A + B).

> dimT (A + B) = rk(U(A + B)) is torsion free rank of U(A + B).

» If a sumset A+ B has an embedding into a torsion-free group, then
dim*(A + B) = d is the maximal d > 1 such that A+ B has an
isomorphic copy A’ + B’ C Z9 with (A’ + B') = Z7.
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Partial Progress in Z/pZ: Rectification Methods

» If A+ B C G has |AU B| “very small,” then
A+B=A +B CZ.

> If |JAU B| < [log, p], where p is the smallest prime divisor of the
torsion subgroup Tor(G), then A+ B = A’ + B’ =2 Z (Lev, 2008).

> If A+ A C Z/pZ with |A+ A| < k|A| and |A| < (32k)12kp, then
A+ A=A + A CZ (Green and Ruzsa 2006; Bilu, Lev and Ruzsa
1998, weaker bounds).



Partial Progress in Z/pZ: Rectification Methods

Thus the 3k — 4 conjecture holds for A+ B C Z/pZ provided:
» |[AUB| < [log, p], or

» A= B and |A| < cp for a very small constant ¢ > 0, or



Partial Progress in Z/pZ: Rectification Methods

Thus the 3k — 4 conjecture holds for A+ B C Z/pZ provided:
» |AU B| < [log, p], or
» A= B and |A| < cp for a very small constant ¢ > 0, or

> ||A] —|B|| < N and |JAU B| < cyp for an even smaller constant
cn > 0 that depends on N (via Pliinnecke bounds).



Partial Progress in Z/pZ: Refined Rectification via
Exponential Sums

Lemma (Lev 2004 and 2007; Freiman 1961, weaker version)

Let ¢ € (0,7] be a real number and let z; - ... - zy be a sequence of
complex numbers z; from the unit circle such that every open arc of
length ¢ contains at most n terms from the sequence S. Then

N
|Zz,-| <2n— N+2(N — n)cos(p/2).

i=1



Partial Progress in Z/pZ: Refined Rectification via
Exponential Sums

Theorem (Freimain 1961; Nathanson 1995; Roth 2006; G
2013)

Let A+ B C Z/pZ with
|[A+B|=|A|+|B|—1+r and |A >|B]|.

Under any of the following conditions, the 3k — 4 Theorem holds for
A+ B.

A=B, r<04/B|—2  and |A+A| <0.2125p;
1
A= B, r<029/B|—2  and |A+A|§pT;
4
Al<2iB <0.05/B| -2 A+ B
Al<3Bl,  r<o00s8] and  |AT \_225

|A] <1.12|B|, r<0.12|B]-2 and |[A+B| < — 55

Al = |B], r<0.15/B|—2 and  |A+ B|<0.036p.



Partial Progress in Z/pZ:
Rectification+Plinnecke+ Trios+UAG+Isoperimetric
Method

Theorem (G 2013)
Let A, B C Z/pZ with

A+ Bl =|A+|Bl-1+r<p—r—3 and |A>B|.
If
r<|B|—-3 and r<cp—12, wherec=3.1-10"15%,

then the 3k — 4 Conjecture holds for A+ B.



Beyond |A + B| < |A| + |B| — 4 + min{|A|, |B|}

» Problem: Finding similar precise bounds for the covering progression
when |A+ B| > |A| + |B| — 4+ min{|A|, |B|} when A4+ B C Z.



Dimension and Sumset Cardinality

Theorem (Ruzsa 1994)

Let A, B C 7 be finite and nonempty with dim™ (A + B) > d with
|A| > |B|. Ifdim™(A+ B) > d, then

1
|A+ B| > |A|+d|B| — 5o/(d +1).



Dimension and Sumset Cardinality

Theorem (Ruzsa 1994)

Let A, B C 7 be finite and nonempty with dim™ (A + B) > d with
|A| > |B|. Ifdim™(A+ B) > d, then

1
|A+ B| > |A|+d|B| — 5o/(d +1).

In particular (d = 3): if A+ B is at least 3 dimensional, then
|A+ B| > |A| + 3|B| — 6.



Dimension and Sumset Cardinality

Theorem (G and Serra 2010)

Let s > 2 be an integer. Let A, B C R? be finite subsets with
|A| > |B| > 25?2 —3s+2. If

2
A+ Bl <|Al+ (3= 3)Bl-2s+1,

then there is a line £ such that each of A and B can be covered by at
most s — 1 parallel translates of £.



Dimension and Sumset Cardinality

Theorem (G and Serra 2010)

Let s > 2 be an integer. Let A, B C R? be finite subsets with
|A| > |B| > 25?2 —3s+2. If

2
A+ Bl <|Al+ (3= 3)Bl-2s+1,

then there is a line £ such that each of A and B can be covered by at
most s — 1 parallel translates of £.

In particular (s = 3): If A+ B C Z has |[A+ B| < |A| + £|B| — 5, then
either dim™(A+ B) = 1 or A+ B has an isomorphic copy A’ + B’ C 7?
with A" and B’ covered by two parallel lines.



The 2-Dimensional Case
Theorem (G 2016; Stanchescu 1998, A = B)

Let A, B C Z? be finite, nonempty subsets each covered by 2 horizontal
lines. Suppose (A+ B — A— B) = Z2, |A| > |B| and

19
A+ B| = |A| +2|B| — 2+ r (A B) < |A| + —|B| - 5.

Then there exist subsets P, Pg, P C Z?, each the union of two
arithmetic progressions with difference (1,0), such that, after translating

A and B appropriately,

ACPa, |Pa\NA<r, BCPg, |Ps\B|<r, AUBCP, and

~|1a1- 18] < 3r+2,

IP\A|+ [P\ Bl <2r+2+ ||Pal | Psl



The 2-Dimensional Case

Theorem (G 2016; Stanchescu 1998, A = B)

Let A, B C Z? be finite, nonempty subsets each covered by 2 horizontal
lines. Suppose (A+ B — A— B) =72, |A| > |B| and

19
A+ B| = |A| +2|B| — 2+ r (A B) < |A| + —|B| - 5.

Then there exist subsets P, Pg, P C Z?, each the union of two
arithmetic progressions with difference (1,0), such that, after translating
A and B appropriately,

ACPa, |Pa\NA<r, BCPgs |Ps\B|<r, AUBCP, and
IP\A|+|P\B|§2r+2+’\PA|f\PB\ f’\A|f|B|‘§3r+2,

Moreover, |P\ Al + |P\ B| <2r+2— ‘|A| - \B|‘ unless either

Pg CPa=P and [P\A[+|P\B|=2[Pa\Al+|Al—|B], or
PaCPs=P and |P\A+|P\B|=2|Ps\B|+|B|—|A



The 1-Dimensional Case?

Conjecture

Let A, B C Z be finite, nonempty subsets with |A| > |B| and
dim™(A+ B) =1. If

|[A+B|=|Al+2|B|—2+r—6AB) and 0<r<|B|-5,
then there arithmetic progressions P, and Pg of common difference with

AC Pa, BCPs,  and [Pa\A| |Ps\B|<|B|l-d(AB)+2r.



Other Ways Beyond
A+ Bl < [A[ + [B| + min{[A], |B[} — 4

» Problem: Finding similar precise bounds for the covering progression
when |A + B| > |A| + |B| — 4 + min{|A|, |B|} when A+ B C Z.

» Question: If we have diam B < 2diam A instead of
diam B < diam A, can we achieve |P4 \ A| < r with a weaker bound
than |A+ B| < |A| +|B| — 4+ min{|A|, |B|}?

» How about when diam B < kdiam A?



Thanks!
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