Rokhlin's lemma, a generalization, and combinatorial applications

Pablo Candela

joint work with Artur Avila

Combinatorial and Additive Number Theory 2016 Graz, January 2016

Let G be a compact abelian group, with Haar probability μ .

Let G be a compact abelian group, with Haar probability μ . Consider a linear equation $c_1x_1 = c_2x_2$ with (non-zero) coefficients $c_i \in \mathbb{Z}$.

Let G be a compact abelian group, with Haar probability μ . Consider a linear equation $c_1x_1 = c_2x_2$ with (non-zero) coefficients $c_i \in \mathbb{Z}$. We say a set $A \subset G$ is (c_1, c_2) -free if there is no $x = (x_1, x_2) \in A^2$ such that $c_1x_1 = c_2x_2$

Let G be a compact abelian group, with Haar probability μ . Consider a linear equation $c_1x_1 = c_2x_2$ with (non-zero) coefficients $c_i \in \mathbb{Z}$. We say a set $A \subset G$ is (c_1, c_2) -free if there is no $x = (x_1, x_2) \in A^2$ such that $c_1x_1 = c_2x_2$, equivalently if $(c_1A) \cap (c_2A) = \emptyset$.

Let G be a compact abelian group, with Haar probability μ . Consider a linear equation $c_1x_1 = c_2x_2$ with (non-zero) coefficients $c_i \in \mathbb{Z}$. We say a set $A \subset G$ is (c_1, c_2) -free if there is no $x = (x_1, x_2) \in A^2$ such that $c_1x_1 = c_2x_2$, equivalently if $(c_1A) \cap (c_2A) = \emptyset$. Consider

 $d_{(c_1,c_2)}(G) := \sup\{\mu(A) : A \subset G \text{ Borel and } (c_1,c_2)\text{-free}\}.$

Let G be a compact abelian group, with Haar probability μ . Consider a linear equation $c_1x_1 = c_2x_2$ with (non-zero) coefficients $c_i \in \mathbb{Z}$. We say a set $A \subset G$ is (c_1, c_2) -free if there is no $x = (x_1, x_2) \in A^2$ such that $c_1x_1 = c_2x_2$, equivalently if $(c_1A) \cap (c_2A) = \emptyset$. Consider

 $d_{(c_1,c_2)}(G) := \sup\{\mu(A) : A \subset G \text{ Borel and } (c_1,c_2)\text{-free}\}.$

Discrete setting: focus on $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$, p a large prime. Continuous setting: focus on $\mathbb{T} = \mathbb{R}/\mathbb{Z}$.

Let G be a compact abelian group, with Haar probability μ . Consider a linear equation $c_1x_1 = c_2x_2$ with (non-zero) coefficients $c_i \in \mathbb{Z}$. We say a set $A \subset G$ is (c_1, c_2) -free if there is no $x = (x_1, x_2) \in A^2$ such that $c_1x_1 = c_2x_2$, equivalently if $(c_1A) \cap (c_2A) = \emptyset$. Consider

 $d_{(c_1,c_2)}(G) := \sup\{\mu(A) : A \subset G \text{ Borel and } (c_1,c_2)\text{-free}\}.$

Discrete setting: focus on $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$, p a large prime. Continuous setting: focus on $\mathbb{T} = \mathbb{R}/\mathbb{Z}$.

Let us find $d_{(1,c)}(\mathbb{Z}_p)$ with |c| > 1.

Let G be a compact abelian group, with Haar probability μ . Consider a linear equation $c_1x_1 = c_2x_2$ with (non-zero) coefficients $c_i \in \mathbb{Z}$. We say a set $A \subset G$ is (c_1, c_2) -free if there is no $x = (x_1, x_2) \in A^2$ such that $c_1x_1 = c_2x_2$, equivalently if $(c_1A) \cap (c_2A) = \emptyset$. Consider

 $d_{(c_1,c_2)}(G) := \sup\{\mu(A) : A \subset G \text{ Borel and } (c_1,c_2)\text{-free}\}.$

Discrete setting: focus on $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$, p a large prime. Continuous setting: focus on $\mathbb{T} = \mathbb{R}/\mathbb{Z}$.

Let us find $d_{(1,c)}(\mathbb{Z}_p)$ with |c| > 1. Let $k = \min\{j \in \mathbb{N} : c^j = 1 \mod p\}$,

Let G be a compact abelian group, with Haar probability μ . Consider a linear equation $c_1x_1 = c_2x_2$ with (non-zero) coefficients $c_i \in \mathbb{Z}$. We say a set $A \subset G$ is (c_1, c_2) -free if there is no $x = (x_1, x_2) \in A^2$ such that $c_1x_1 = c_2x_2$, equivalently if $(c_1A) \cap (c_2A) = \emptyset$. Consider

 $d_{(c_1,c_2)}(G) := \sup\{\mu(A) : A \subset G \text{ Borel and } (c_1,c_2)\text{-free}\}.$

Discrete setting: focus on $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$, p a large prime. Continuous setting: focus on $\mathbb{T} = \mathbb{R}/\mathbb{Z}$.

Let us find $d_{(1,c)}(\mathbb{Z}_p)$ with |c| > 1. Let $k = \min\{j \in \mathbb{N} : c^j = 1 \mod p\}$, and $\mathcal{O}(c) = \{c^j : j \in [k]\} \le \mathbb{Z}_p^{\times}$.

Let G be a compact abelian group, with Haar probability μ . Consider a linear equation $c_1x_1 = c_2x_2$ with (non-zero) coefficients $c_i \in \mathbb{Z}$. We say a set $A \subset G$ is (c_1, c_2) -free if there is no $x = (x_1, x_2) \in A^2$ such that $c_1x_1 = c_2x_2$, equivalently if $(c_1A) \cap (c_2A) = \emptyset$. Consider

 $d_{(c_1,c_2)}(G) := \sup\{\mu(A) : A \subset G \text{ Borel and } (c_1,c_2)\text{-free}\}.$

Discrete setting: focus on $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$, p a large prime. Continuous setting: focus on $\mathbb{T} = \mathbb{R}/\mathbb{Z}$.

Let us find $d_{(1,c)}(\mathbb{Z}_p)$ with |c| > 1. Let $k = \min\{j \in \mathbb{N} : c^j = 1 \mod p\}$, and $\mathcal{O}(c) = \{c^j : j \in [k]\} \le \mathbb{Z}_p^{\times}$. Let $b_1, \ldots, b_d \in \mathbb{Z}_p^{\times}$ such that $\mathbb{Z}_p^{\times} = \bigsqcup_{i \in [d]} b_i \mathcal{O}(c)$.

Let G be a compact abelian group, with Haar probability μ . Consider a linear equation $c_1x_1 = c_2x_2$ with (non-zero) coefficients $c_i \in \mathbb{Z}$. We say a set $A \subset G$ is (c_1, c_2) -free if there is no $x = (x_1, x_2) \in A^2$ such that $c_1x_1 = c_2x_2$, equivalently if $(c_1A) \cap (c_2A) = \emptyset$. Consider

 $d_{(c_1,c_2)}(G) := \sup\{\mu(A) : A \subset G \text{ Borel and } (c_1,c_2)\text{-free}\}.$

Discrete setting: focus on $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$, p a large prime. Continuous setting: focus on $\mathbb{T} = \mathbb{R}/\mathbb{Z}$.

Let us find $d_{(1,c)}(\mathbb{Z}_p)$ with |c| > 1. Let $k = \min\{j \in \mathbb{N} : c^j = 1 \mod p\}$, and $\mathcal{O}(c) = \{c^j : j \in [k]\} \leq \mathbb{Z}_p^{\times}$. Let $b_1, \ldots, b_d \in \mathbb{Z}_p^{\times}$ such that $\mathbb{Z}_p^{\times} = \bigsqcup_{i \in [d]} b_i \mathcal{O}(c)$. Let $B = \{b_1, \ldots, b_d\}$.

Let G be a compact abelian group, with Haar probability μ . Consider a linear equation $c_1x_1 = c_2x_2$ with (non-zero) coefficients $c_i \in \mathbb{Z}$. We say a set $A \subset G$ is (c_1, c_2) -free if there is no $x = (x_1, x_2) \in A^2$ such that $c_1x_1 = c_2x_2$, equivalently if $(c_1A) \cap (c_2A) = \emptyset$. Consider

 $d_{(c_1,c_2)}(G) := \sup\{\mu(A) : A \subset G \text{ Borel and } (c_1,c_2)\text{-free}\}.$

Discrete setting: focus on $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$, p a large prime. Continuous setting: focus on $\mathbb{T} = \mathbb{R}/\mathbb{Z}$.

Let us find $d_{(1,c)}(\mathbb{Z}_p)$ with |c| > 1. Let $k = \min\{j \in \mathbb{N} : c^j = 1 \mod p\}$, and $\mathcal{O}(c) = \{c^j : j \in [k]\} \le \mathbb{Z}_p^{\times}$. Let $b_1, \ldots, b_d \in \mathbb{Z}_p^{\times}$ such that $\mathbb{Z}_p^{\times} = \bigsqcup_{i \in [d]} b_i \mathcal{O}(c)$. Let $B = \{b_1, \ldots, b_d\}$. Let $A = \bigsqcup_{j=0}^{\lfloor k/2 \rfloor - 1} c^{2j} B$.

Let G be a compact abelian group, with Haar probability μ . Consider a linear equation $c_1x_1 = c_2x_2$ with (non-zero) coefficients $c_i \in \mathbb{Z}$. We say a set $A \subset G$ is (c_1, c_2) -free if there is no $x = (x_1, x_2) \in A^2$ such that $c_1x_1 = c_2x_2$, equivalently if $(c_1A) \cap (c_2A) = \emptyset$. Consider

 $d_{(c_1,c_2)}(G) := \sup\{\mu(A) : A \subset G \text{ Borel and } (c_1,c_2)\text{-free}\}.$

Discrete setting: focus on $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$, p a large prime. Continuous setting: focus on $\mathbb{T} = \mathbb{R}/\mathbb{Z}$.

Let us find $d_{(1,c)}(\mathbb{Z}_p)$ with |c| > 1. Let $k = \min\{j \in \mathbb{N} : c^j = 1 \mod p\}$, and $\mathcal{O}(c) = \{c^j : j \in [k]\} \le \mathbb{Z}_p^{\times}$. Let $b_1, \ldots, b_d \in \mathbb{Z}_p^{\times}$ such that $\mathbb{Z}_p^{\times} = \bigsqcup_{i \in [d]} b_i \mathcal{O}(c)$. Let $B = \{b_1, \ldots, b_d\}$. Let $A = \bigsqcup_{j=0}^{\lfloor k/2 \rfloor - 1} c^{2j} B$. We have $A \cap (cA) = \emptyset$, so A is (1, c)-free.

Let G be a compact abelian group, with Haar probability μ . Consider a linear equation $c_1x_1 = c_2x_2$ with (non-zero) coefficients $c_i \in \mathbb{Z}$. We say a set $A \subset G$ is (c_1, c_2) -free if there is no $x = (x_1, x_2) \in A^2$ such that $c_1x_1 = c_2x_2$, equivalently if $(c_1A) \cap (c_2A) = \emptyset$. Consider

 $d_{(c_1,c_2)}(G) := \sup\{\mu(A) : A \subset G \text{ Borel and } (c_1,c_2)\text{-free}\}.$

Discrete setting: focus on $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$, p a large prime. Continuous setting: focus on $\mathbb{T} = \mathbb{R}/\mathbb{Z}$.

Let us find $d_{(1,c)}(\mathbb{Z}_p)$ with |c| > 1. Let $k = \min\{j \in \mathbb{N} : c^j = 1 \mod p\}$, and $\mathcal{O}(c) = \{c^j : j \in [k]\} \le \mathbb{Z}_p^{\times}$. Let $b_1, \ldots, b_d \in \mathbb{Z}_p^{\times}$ such that $\mathbb{Z}_p^{\times} = \bigsqcup_{i \in [d]} b_i \mathcal{O}(c)$. Let $B = \{b_1, \ldots, b_d\}$. Let $A = \bigsqcup_{j=0}^{\lfloor k/2 \rfloor - 1} c^{2j} B$. We have $A \cap (c A) = \emptyset$, so A is (1, c)-free. Moreover, since $k \gg \log p$, we have $|A| \sim p/2$.

Let G be a compact abelian group, with Haar probability μ . Consider a linear equation $c_1x_1 = c_2x_2$ with (non-zero) coefficients $c_i \in \mathbb{Z}$. We say a set $A \subset G$ is (c_1, c_2) -free if there is no $x = (x_1, x_2) \in A^2$ such that $c_1x_1 = c_2x_2$, equivalently if $(c_1A) \cap (c_2A) = \emptyset$. Consider

 $d_{(c_1,c_2)}(G) := \sup\{\mu(A) : A \subset G \text{ Borel and } (c_1,c_2)\text{-free}\}.$

Discrete setting: focus on $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$, p a large prime. Continuous setting: focus on $\mathbb{T} = \mathbb{R}/\mathbb{Z}$.

Let us find $d_{(1,c)}(\mathbb{Z}_p)$ with |c| > 1. Let $k = \min\{j \in \mathbb{N} : c^j = 1 \mod p\}$, and $\mathcal{O}(c) = \{c^j : j \in [k]\} \le \mathbb{Z}_p^{\times}$. Let $b_1, \ldots, b_d \in \mathbb{Z}_p^{\times}$ such that $\mathbb{Z}_p^{\times} = \bigsqcup_{i \in [d]} b_i \mathcal{O}(c)$. Let $B = \{b_1, \ldots, b_d\}$. Let $A = \bigsqcup_{j=0}^{\lfloor k/2 \rfloor - 1} c^{2j} B$. We have $A \cap (c A) = \emptyset$, so A is (1, c)-free. Moreover, since $k \gg \log p$, we have $|A| \sim p/2$.

Hence
$$d_{(1,c)}(\mathbb{Z}_p) = 1/2 + o(1)_{p \to \infty}$$
.

We have used $B = \{b_1, \ldots, b_d\}$ as a "cross-section" for $T : x \mapsto c x$, i.e. $\mathbb{Z}_p^{\times} = \bigsqcup_{j=0}^{k-1} c^j B$.

We have used $B = \{b_1, \ldots, b_d\}$ as a "cross-section" for $T : x \mapsto c x$, i.e. $\mathbb{Z}_p^{\times} = \bigsqcup_{j=0}^{k-1} c^j B$. We want to do something similar for more general maps.

We have used $B = \{b_1, \ldots, b_d\}$ as a "cross-section" for $T : x \mapsto c x$, i.e. $\mathbb{Z}_p^{\times} = \bigsqcup_{j=0}^{k-1} c^j B$. We want to do something similar for more general maps. Let (X, μ) be a standard probability space. An **endomorphism** on X is a measurable map $T : X \to X$ such that $\mu(T^{-1}B) = \mu(B)$ for every measurable $B \subset X$.

We have used $B = \{b_1, \ldots, b_d\}$ as a "cross-section" for $T : x \mapsto c x$, i.e. $\mathbb{Z}_p^{\times} = \bigsqcup_{j=0}^{k-1} c^j B$. We want to do something similar for more general maps. Let (X, μ) be a standard probability space. An **endomorphism** on X is a measurable map $T : X \to X$ such that $\mu(T^{-1}B) = \mu(B)$ for every measurable $B \subset X$. T is **aperiodic** if $\forall n \in \mathbb{N}$, $\mu(\{x \in X : T^n x = x\}) = 0$.

We have used $B = \{b_1, \ldots, b_d\}$ as a "cross-section" for $T : x \mapsto c x$, i.e. $\mathbb{Z}_p^{\times} = \bigsqcup_{j=0}^{k-1} c^j B$. We want to do something similar for more general maps. Let (X, μ) be a standard probability space. An **endomorphism** on X is a measurable map $T : X \to X$ such that $\mu(T^{-1}B) = \mu(B)$ for every measurable $B \subset X$. T is **aperiodic** if $\forall n \in \mathbb{N}$, $\mu(\{x \in X : T^n x = x\}) = 0$. An *n*-tower for T is a sequence $B, T^{-1}B, ..., T^{-(n-1)}B$ of pairwise disjoint preimages of some measurable set $B \subset X$.

We have used $B = \{b_1, \ldots, b_d\}$ as a "cross-section" for $T : x \mapsto c x$, i.e. $\mathbb{Z}_p^{\times} = \bigsqcup_{j=0}^{k-1} c^j B$. We want to do something similar for more general maps. Let (X, μ) be a standard probability space. An **endomorphism** on X is a measurable map $T : X \to X$ such that $\mu(T^{-1}B) = \mu(B)$ for every measurable $B \subset X$. T is **aperiodic** if $\forall n \in \mathbb{N}$, $\mu(\{x \in X : T^n x = x\}) = 0$. An *n*-tower for T is a sequence $B, T^{-1}B, ..., T^{-(n-1)}B$ of pairwise disjoint preimages of some measurable set $B \subset X$. The **measure** of such a tower is simply $\mu(\bigsqcup_{i=0}^{n-1} T^{-i}B)$.

We have used $B = \{b_1, \ldots, b_d\}$ as a "cross-section" for $T : x \mapsto c x$, i.e. $\mathbb{Z}_p^{\times} = \bigsqcup_{j=0}^{k-1} c^j B$. We want to do something similar for more general maps. Let (X, μ) be a standard probability space. An **endomorphism** on X is a measurable map $T : X \to X$ such that $\mu(T^{-1}B) = \mu(B)$ for every measurable $B \subset X$. T is **aperiodic** if $\forall n \in \mathbb{N}, \mu(\{x \in X : T^n x = x\}) = 0$. An *n*-tower for T is a sequence $B, T^{-1}B, ..., T^{-(n-1)}B$ of pairwise disjoint preimages of some measurable set $B \subset X$. The **measure** of such a tower is simply $\mu(\bigsqcup_{i=0}^{n-1} T^{-i}B)$.

Lemma (Rokhlin, 1948)

Let $\epsilon > 0$ and let n be a positive integer. Then for every aperiodic automorphism T on a standard probability space, there exists an n-tower for T of measure at least $1 - \epsilon$.

We have used $B = \{b_1, \ldots, b_d\}$ as a "cross-section" for $T : x \mapsto c x$, i.e. $\mathbb{Z}_p^{\times} = \bigsqcup_{j=0}^{k-1} c^j B$. We want to do something similar for more general maps. Let (X, μ) be a standard probability space. An **endomorphism** on X is a measurable map $T : X \to X$ such that $\mu(T^{-1}B) = \mu(B)$ for every measurable $B \subset X$. T is **aperiodic** if $\forall n \in \mathbb{N}, \mu(\{x \in X : T^n x = x\}) = 0$. An *n*-tower for T is a sequence $B, T^{-1}B, ..., T^{-(n-1)}B$ of pairwise disjoint preimages of some measurable set $B \subset X$. The **measure** of such a tower is simply $\mu(\bigsqcup_{j=0}^{n-1} T^{-j}B)$.

Lemma (Rokhlin, 1948)

Let $\epsilon > 0$ and let n be a positive integer. Then for every aperiodic automorphism T on a standard probability space, there exists an n-tower for T of measure at least $1 - \epsilon$.

Many applications in ergodic theory (mixing, entropy, constructions...).

We have used $B = \{b_1, \ldots, b_d\}$ as a "cross-section" for $T : x \mapsto c x$, i.e. $\mathbb{Z}_p^{\times} = \bigsqcup_{j=0}^{k-1} c^j B$. We want to do something similar for more general maps. Let (X, μ) be a standard probability space. An **endomorphism** on X is a measurable map $T : X \to X$ such that $\mu(T^{-1}B) = \mu(B)$ for every measurable $B \subset X$. T is **aperiodic** if $\forall n \in \mathbb{N}, \mu(\{x \in X : T^n x = x\}) = 0$. An *n*-tower for T is a sequence $B, T^{-1}B, ..., T^{-(n-1)}B$ of pairwise disjoint preimages of some measurable set $B \subset X$. The **measure** of such a tower is simply $\mu(\bigsqcup_{j=0}^{n-1} T^{-j}B)$.

Lemma (Rokhlin, 1948)

Let $\epsilon > 0$ and let n be a positive integer. Then for every aperiodic automorphism T on a standard probability space, there exists an n-tower for T of measure at least $1 - \epsilon$.

Many applications in ergodic theory (mixing, entropy, constructions...). Many generalizations, in the invertible case, to other group actions than \mathbb{Z} .

For problems such as determining $d_{(c_1,c_2)}(\mathbb{T})$ with $|c_i| > 1$, we must handle **several non-invertible** endomorphisms, i.e. the maps $\mathbb{T} \to \mathbb{T}$, $x \mapsto c_i x$.

For problems such as determining $d_{(c_1,c_2)}(\mathbb{T})$ with $|c_i| > 1$, we must handle **several non-invertible** endomorphisms, i.e. the maps $\mathbb{T} \to \mathbb{T}$, $x \mapsto c_i x$. Consider a **measure-preserving action** f of \mathbb{N}_0^d on X ($\mathbb{N}_0 = \mathbb{Z}_{\geq 0}$) generated by commuting endomorphisms T_1, \ldots, T_d on X,

For problems such as determining $d_{(c_1,c_2)}(\mathbb{T})$ with $|c_i| > 1$, we must handle several non-invertible endomorphisms, i.e. the maps $\mathbb{T} \to \mathbb{T}$, $x \mapsto c_i x$. Consider a **measure-preserving action** f of \mathbb{N}_0^d on X ($\mathbb{N}_0 = \mathbb{Z}_{\geq 0}$) generated by commuting endomorphisms T_1, \ldots, T_d on X, thus for $n = (n(1), \ldots, n(d)) \in \mathbb{N}_0^d$ and $x \in X$ we have $f(n, x) = f_n(x) := T_1^{n(1)} \circ \cdots \circ T_d^{n(d)}(x)$. (Note $f_{m+n}(x) = f_m \circ f_n(x)$.)

For problems such as determining $d_{(c_1,c_2)}(\mathbb{T})$ with $|c_i| > 1$, we must handle several non-invertible endomorphisms, i.e. the maps $\mathbb{T} \to \mathbb{T}$, $x \mapsto c_i x$. Consider a measure-preserving action f of \mathbb{N}_0^d on X ($\mathbb{N}_0 = \mathbb{Z}_{\geq 0}$) generated by commuting endomorphisms T_1, \ldots, T_d on X, thus for $n = (n(1), \ldots, n(d)) \in \mathbb{N}_0^d$ and $x \in X$ we have $f(n, x) = f_n(x) := T_1^{n(1)} \circ \cdots \circ T_d^{n(d)}(x)$. (Note $f_{m+n}(x) = f_m \circ f_n(x)$.) Call f a free action if $\forall k \neq \ell$ in \mathbb{N}_0^d , $\mu(\{x \in X : f_k(x) = f_\ell(x)\}) = 0$.

For problems such as determining $d_{(c_1,c_2)}(\mathbb{T})$ with $|c_i| > 1$, we must handle **several non-invertible** endomorphisms, i.e. the maps $\mathbb{T} \to \mathbb{T}$, $x \mapsto c_i x$. Consider a measure-preserving action f of \mathbb{N}_0^d on X ($\mathbb{N}_0 = \mathbb{Z}_{>0}$) generated by commuting endomorphisms T_1, \ldots, T_d on X, thus for $n = (n(1), \ldots, n(d)) \in \mathbb{N}_0^d$ and $x \in X$ we have $f(n,x) = f_n(x) := T_1^{n(1)} \circ \cdots \circ T_d^{n(d)}(x).$ (Note $f_{m+n}(x) = f_m \circ f_n(x).$) Call f a free action if $\forall k \neq \ell$ in \mathbb{N}_0^d , $\mu(\{x \in X : f_k(x) = f_\ell(x)\}) = 0$. For $k, \ell \in \mathbb{Z}^d$, write $k < \ell$ (resp. $k \leq \ell$) if for every $j \in [d]$ we have $k(i) < \ell(j)$ (resp. $k(j) \le \ell(j)$).

For problems such as determining $d_{(c_1,c_2)}(\mathbb{T})$ with $|c_i| > 1$, we must handle **several non-invertible** endomorphisms, i.e. the maps $\mathbb{T} \to \mathbb{T}$, $x \mapsto c_i x$. Consider a measure-preserving action f of \mathbb{N}_0^d on X ($\mathbb{N}_0 = \mathbb{Z}_{>0}$) generated by commuting endomorphisms T_1, \ldots, T_d on X, thus for $n = (n(1), \ldots, n(d)) \in \mathbb{N}_0^d$ and $x \in X$ we have $f(n,x) = f_n(x) := T_1^{n(1)} \circ \cdots \circ T_d^{n(d)}(x).$ (Note $f_{m+n}(x) = f_m \circ f_n(x).$) Call f a free action if $\forall k \neq \ell$ in \mathbb{N}_0^d , $\mu(\{x \in X : f_k(x) = f_\ell(x)\}) = 0$. For $k, \ell \in \mathbb{Z}^d$, write $k < \ell$ (resp. $k \leq \ell$) if for every $j \in [d]$ we have $k(i) < \ell(i)$ (resp. $k(i) < \ell(i)$).

For $N \in \mathbb{N}^d$ and $B \subset X$, write $B_{(N)} = (f_k^{-1}(B))_{0 \le k < N}$. If the preimages are pairwise disjoint, we say that $B_{(N)}$ is an N-tower for f with base B.

For problems such as determining $d_{(c_1,c_2)}(\mathbb{T})$ with $|c_i| > 1$, we must handle **several non-invertible** endomorphisms, i.e. the maps $\mathbb{T} \to \mathbb{T}$, $x \mapsto c_i x$. Consider a measure-preserving action f of \mathbb{N}_0^d on X ($\mathbb{N}_0 = \mathbb{Z}_{>0}$) generated by commuting endomorphisms T_1, \ldots, T_d on X, thus for $n = (n(1), \ldots, n(d)) \in \mathbb{N}_0^d$ and $x \in X$ we have $f(n,x) = f_n(x) := T_1^{n(1)} \circ \cdots \circ T_d^{n(d)}(x).$ (Note $f_{m+n}(x) = f_m \circ f_n(x).$) Call f a free action if $\forall k \neq \ell$ in \mathbb{N}_0^d , $\mu(\{x \in X : f_k(x) = f_\ell(x)\}) = 0$. For $k, \ell \in \mathbb{Z}^d$, write $k < \ell$ (resp. $k \le \ell$) if for every $j \in [d]$ we have $k(j) < \ell(j)$ (resp. $k(j) \le \ell(j)$). For $N \in \mathbb{N}^d$ and $B \subset X$, write $B_{(N)} = (f_k^{-1}(B))_{0 \le k \le N}$. If the preimages are pairwise disjoint, we say that $B_{(N)}$ is an *N*-tower for f with base B. Theorem (Towers for \mathbb{N}_0^d actions – Avila & C, 2015) Let $\epsilon > 0$ and let $N \in \mathbb{N}^d$. Then for every free measure-preserving action f of \mathbb{N}_{0}^{d} on a standard probability space, there exists an N-tower for f of measure at least $1 - \epsilon$. P. Candela

Fiz-Pontiveros had observed that an earlier special case of the theorem for a single map $x \mapsto c x$ implied that $d_{(1,c)}(\mathbb{T}) = 1/2$. (2012)

Fiz-Pontiveros had observed that an earlier special case of the theorem for a single map $x \mapsto c x$ implied that $d_{(1,c)}(\mathbb{T}) = 1/2$. (2012) Applying the theorem for two such maps easily yields the following result.

Proposition

For every distinct integers c_1, c_2 , we have $d_{(c_1,c_2)}(\mathbb{T}) = 1/2$.

Fiz-Pontiveros had observed that an earlier special case of the theorem for a single map $x \mapsto c x$ implied that $d_{(1,c)}(\mathbb{T}) = 1/2$. (2012) Applying the theorem for two such maps easily yields the following result.

Proposition

For every distinct integers c_1, c_2 , we have $d_{(c_1, c_2)}(\mathbb{T}) = 1/2$.

Proof.

W.L.O.G. c_1, c_2 are coprime and $|c_i| > 1$.

Fiz-Pontiveros had observed that an earlier special case of the theorem for a single map $x \mapsto c x$ implied that $d_{(1,c)}(\mathbb{T}) = 1/2$. (2012) Applying the theorem for two such maps easily yields the following result.

Proposition

For every distinct integers c_1, c_2 , we have $d_{(c_1, c_2)}(\mathbb{T}) = 1/2$.

Proof.

W.L.O.G. c_1, c_2 are coprime and $|c_i| > 1$. Then $f_n(x) = c_1^{n(1)} c_2^{n(2)} x$ defines a free measure-preserving action of \mathbb{N}_0^2 on \mathbb{T} .

Fiz-Pontiveros had observed that an earlier special case of the theorem for a single map $x \mapsto c x$ implied that $d_{(1,c)}(\mathbb{T}) = 1/2$. (2012) Applying the theorem for two such maps easily yields the following result.

Proposition

For every distinct integers c_1, c_2 , we have $d_{(c_1, c_2)}(\mathbb{T}) = 1/2$.

Proof.

W.L.O.G. c_1, c_2 are coprime and $|c_i| > 1$. Then $f_n(x) = c_1^{n(1)} c_2^{n(2)} x$ defines a free measure-preserving action of \mathbb{N}_0^2 on \mathbb{T} . Fix any $\delta > 0$, and apply the towers theorem with $\epsilon = \delta/2$ and N = (t, 2), with $t > 1/\delta$.

Fiz-Pontiveros had observed that an earlier special case of the theorem for a single map $x \mapsto c x$ implied that $d_{(1,c)}(\mathbb{T}) = 1/2$. (2012) Applying the theorem for two such maps easily yields the following result.

Proposition

For every distinct integers c_1, c_2 , we have $d_{(c_1,c_2)}(\mathbb{T}) = 1/2$.

Proof.

W.L.O.G. c_1, c_2 are coprime and $|c_i| > 1$. Then $f_n(x) = c_1^{n(1)} c_2^{n(2)} x$ defines a free measure-preserving action of \mathbb{N}_0^2 on \mathbb{T} . Fix any $\delta > 0$, and apply the towers theorem with $\epsilon = \delta/2$ and N = (t, 2), with $t > 1/\delta$. Let *B* be the resulting base of an *N*-tower, with $\mu(B_{(N)}) \ge 1 - \delta/2$.

Fiz-Pontiveros had observed that an earlier special case of the theorem for a single map $x \mapsto c x$ implied that $d_{(1,c)}(\mathbb{T}) = 1/2$. (2012) Applying the theorem for two such maps easily yields the following result.

Proposition

For every distinct integers c_1, c_2 , we have $d_{(c_1,c_2)}(\mathbb{T}) = 1/2$.

Proof.

W.L.O.G. c_1, c_2 are coprime and $|c_i| > 1$. Then $f_n(x) = c_1^{n(1)} c_2^{n(2)} x$ defines a free measure-preserving action of \mathbb{N}_0^2 on \mathbb{T} . Fix any $\delta > 0$, and apply the towers theorem with $\epsilon = \delta/2$ and N = (t, 2), with $t > 1/\delta$. Let B be the resulting base of an N-tower, with $\mu(B_{(N)}) \ge 1 - \delta/2$. Now let

$$A = \bigsqcup_{j=1}^{t-1} (c_1^j c_2)^{-1} (B).$$

Fiz-Pontiveros had observed that an earlier special case of the theorem for a single map $x \mapsto c x$ implied that $d_{(1,c)}(\mathbb{T}) = 1/2$. (2012) Applying the theorem for two such maps easily yields the following result.

Proposition

For every distinct integers c_1, c_2 , we have $d_{(c_1,c_2)}(\mathbb{T}) = 1/2$.

Proof.

W.L.O.G. c_1, c_2 are coprime and $|c_i| > 1$. Then $f_n(x) = c_1^{n(1)} c_2^{n(2)} x$ defines a free measure-preserving action of \mathbb{N}_0^2 on \mathbb{T} . Fix any $\delta > 0$, and apply the towers theorem with $\epsilon = \delta/2$ and N = (t, 2), with $t > 1/\delta$. Let B be the resulting base of an N-tower, with $\mu(B_{(N)}) \ge 1 - \delta/2$. Now let

$$A = \bigsqcup_{j=1}^{t-1} (c_1^j c_2)^{-1} (B).$$

We have $c_1 A \cap c_2 A = \emptyset$.

Fiz-Pontiveros had observed that an earlier special case of the theorem for a single map $x \mapsto c x$ implied that $d_{(1,c)}(\mathbb{T}) = 1/2$. (2012) Applying the theorem for two such maps easily yields the following result.

Proposition

For every distinct integers c_1, c_2 , we have $d_{(c_1,c_2)}(\mathbb{T}) = 1/2$.

Proof.

W.L.O.G. c_1, c_2 are coprime and $|c_i| > 1$. Then $f_n(x) = c_1^{n(1)} c_2^{n(2)} x$ defines a free measure-preserving action of \mathbb{N}_0^2 on \mathbb{T} . Fix any $\delta > 0$, and apply the towers theorem with $\epsilon = \delta/2$ and N = (t, 2), with $t > 1/\delta$. Let B be the resulting base of an N-tower, with $\mu(B_{(N)}) \ge 1 - \delta/2$. Now let

$$A = \bigsqcup_{j=1}^{t-1} (c_1^j c_2)^{-1} (B).$$

We have $c_1 A \cap c_2 A = \emptyset$. Also, $\mu(A) \ge (1 - \delta/2)/2 - 1/(2t) \ge 1/2 - \delta$.

Fiz-Pontiveros had observed that an earlier special case of the theorem for a single map $x \mapsto c x$ implied that $d_{(1,c)}(\mathbb{T}) = 1/2$. (2012) Applying the theorem for two such maps easily yields the following result.

Proposition

For every distinct integers c_1, c_2 , we have $d_{(c_1,c_2)}(\mathbb{T}) = 1/2$.

Proof.

W.L.O.G. c_1, c_2 are coprime and $|c_i| > 1$. Then $f_n(x) = c_1^{n(1)} c_2^{n(2)} x$ defines a free measure-preserving action of \mathbb{N}_0^2 on \mathbb{T} . Fix any $\delta > 0$, and apply the towers theorem with $\epsilon = \delta/2$ and N = (t, 2), with $t > 1/\delta$. Let B be the resulting base of an N-tower, with $\mu(B_{(N)}) \ge 1 - \delta/2$. Now let

$$A = \bigsqcup_{j=1}^{t-1} (c_1^j c_2)^{-1} (B).$$

We have $c_1 A \cap c_2 A = \emptyset$. Also, $\mu(A) \ge (1 - \delta/2)/2 - 1/(2t) \ge 1/2 - \delta$. Hence $d_{(c_1, c_2)}(\mathbb{T}) \ge 1/2 - \delta$.

Large subsets of \mathbb{T} avoiding <u>several</u> 2-variable equations

Large subsets of \mathbb{T} avoiding <u>several</u> 2-variable equations

Let c_1, c_2, \ldots, c_d be multiplicatively independent non-zero integers.

Large subsets of \mathbb{T} avoiding <u>several</u> 2-variable equations

Let c_1, c_2, \ldots, c_d be multiplicatively independent non-zero integers. Let Γ be a graph on [d], and let \mathcal{F} be the family of equations $c_i x_1 = c_j x_2$ where ij is an edge in Γ .

Large subsets of \mathbb{T} avoiding <u>several</u> 2-variable equations

Let c_1, c_2, \ldots, c_d be multiplicatively independent non-zero integers. Let Γ be a graph on [d], and let \mathcal{F} be the family of equations $c_i x_1 = c_j x_2$ where ij is an edge in Γ . We say that a measurable set $A \subset \mathbb{T}$ is \mathcal{F} -free if there are no solutions $(x_1, x_2) \in A^2$ to any of the equations in \mathcal{F} .

Large subsets of \mathbb{T} avoiding <u>several</u> 2-variable equations

Let c_1, c_2, \ldots, c_d be multiplicatively independent non-zero integers. Let Γ be a graph on [d], and let \mathcal{F} be the family of equations $c_i x_1 = c_j x_2$ where ij is an edge in Γ . We say that a measurable set $A \subset \mathbb{T}$ is \mathcal{F} -free if there are no solutions $(x_1, x_2) \in A^2$ to any of the equations in \mathcal{F} . **The problem**: determine $d_{\mathcal{F}}(\mathbb{T}) = \sup\{\mu(A) : A \subset \mathbb{T} \text{ is } \mathcal{F}\text{-free}\}.$

Large subsets of \mathbb{T} avoiding <u>several</u> 2-variable equations

Let c_1, c_2, \ldots, c_d be multiplicatively independent non-zero integers. Let Γ be a graph on [d], and let \mathcal{F} be the family of equations $c_i x_1 = c_j x_2$ where ij is an edge in Γ . We say that a measurable set $A \subset \mathbb{T}$ is \mathcal{F} -free if there are no solutions $(x_1, x_2) \in A^2$ to any of the equations in \mathcal{F} . The problem: determine $d_{\mathcal{F}}(\mathbb{T}) = \sup\{\mu(A) : A \subset \mathbb{T} \text{ is } \mathcal{F}\text{-free}\}.$

Using the towers theorem, we show that $d_{\mathcal{F}}(\mathbb{T})$ is equal to a quantity d_{Γ} defined as follows.

Large subsets of \mathbb{T} avoiding <u>several</u> 2-variable equations

Let c_1, c_2, \ldots, c_d be multiplicatively independent non-zero integers. Let Γ be a graph on [d], and let \mathcal{F} be the family of equations $c_i x_1 = c_j x_2$ where ij is an edge in Γ . We say that a measurable set $A \subset \mathbb{T}$ is \mathcal{F} -free if there are no solutions $(x_1, x_2) \in A^2$ to any of the equations in \mathcal{F} . The problem: determine $d_{\mathcal{F}}(\mathbb{T}) = \sup\{\mu(A) : A \subset \mathbb{T} \text{ is } \mathcal{F}\text{-free}\}.$

Using the towers theorem, we show that $d_{\mathcal{F}}(\mathbb{T})$ is equal to a quantity d_{Γ} defined as follows. For $N \in \mathbb{N}^d$, let $\pi(N)$ denote the product $N(1) \cdots N(d)$.

Large subsets of \mathbb{T} avoiding <u>several</u> 2-variable equations

Let c_1, c_2, \ldots, c_d be multiplicatively independent non-zero integers. Let Γ be a graph on [d], and let \mathcal{F} be the family of equations $c_i x_1 = c_j x_2$ where ij is an edge in Γ . We say that a measurable set $A \subset \mathbb{T}$ is \mathcal{F} -free if there are no solutions $(x_1, x_2) \in A^2$ to any of the equations in \mathcal{F} . The problem: determine $d_{\mathcal{F}}(\mathbb{T}) = \sup\{\mu(A) : A \subset \mathbb{T} \text{ is } \mathcal{F}\text{-free}\}.$

Using the towers theorem, we show that $d_{\mathcal{F}}(\mathbb{T})$ is equal to a quantity d_{Γ} defined as follows. For $N \in \mathbb{N}^d$, let $\pi(N)$ denote the product $N(1) \cdots N(d)$. We say a set $S \subset \mathbb{Z}^d$ is Γ -admissible if for every edge ij of Γ we have $(S - e_i) \cap (S - e_j) = \emptyset$.

Large subsets of \mathbb{T} avoiding <u>several</u> 2-variable equations

Let c_1, c_2, \ldots, c_d be multiplicatively independent non-zero integers. Let Γ be a graph on [d], and let \mathcal{F} be the family of equations $c_i x_1 = c_j x_2$ where ij is an edge in Γ . We say that a measurable set $A \subset \mathbb{T}$ is \mathcal{F} -free if there are no solutions $(x_1, x_2) \in A^2$ to any of the equations in \mathcal{F} . The problem: determine $d_{\mathcal{F}}(\mathbb{T}) = \sup\{\mu(A) : A \subset \mathbb{T} \text{ is } \mathcal{F}\text{-free}\}.$

Using the towers theorem, we show that $d_{\mathcal{F}}(\mathbb{T})$ is equal to a quantity d_{Γ} defined as follows. For $N \in \mathbb{N}^d$, let $\pi(N)$ denote the product $N(1) \cdots N(d)$. We say a set $S \subset \mathbb{Z}^d$ is Γ -admissible if for every edge ij of Γ we have $(S - e_i) \cap (S - e_j) = \emptyset$. For each $N \in \mathbb{N}^d$, let

 $M_{\Gamma}(N) = \max\{ |S|/\pi(N) : S \subset \prod_{i=1}^{d} [0, N(i)) \text{ is } \Gamma\text{-admissible} \}.$

Large subsets of \mathbb{T} avoiding <u>several</u> 2-variable equations

Let c_1, c_2, \ldots, c_d be multiplicatively independent non-zero integers. Let Γ be a graph on [d], and let \mathcal{F} be the family of equations $c_i x_1 = c_j x_2$ where ij is an edge in Γ . We say that a measurable set $A \subset \mathbb{T}$ is \mathcal{F} -free if there are no solutions $(x_1, x_2) \in A^2$ to any of the equations in \mathcal{F} . The problem: determine $d_{\mathcal{F}}(\mathbb{T}) = \sup\{\mu(A) : A \subset \mathbb{T} \text{ is } \mathcal{F}\text{-free}\}.$

Using the towers theorem, we show that $d_{\mathcal{F}}(\mathbb{T})$ is equal to a quantity d_{Γ} defined as follows. For $N \in \mathbb{N}^d$, let $\pi(N)$ denote the product $N(1) \cdots N(d)$. We say a set $S \subset \mathbb{Z}^d$ is Γ -admissible if for every edge ij of Γ we have $(S - e_i) \cap (S - e_j) = \emptyset$. For each $N \in \mathbb{N}^d$, let

 $M_{\Gamma}(N) = \max\{ |S|/\pi(N) : S \subset \prod_{i=1}^{d} [0, N(i)) \text{ is } \Gamma\text{-admissible} \}.$

Fact: for every sequence of $N_j \in \mathbb{N}^d$ with $\min_i N_j(i) \to \infty$, the sequence $M_{\Gamma}(N_j)$ converges to the same limit d_{Γ} .

Large subsets of \mathbb{T} avoiding <u>several</u> 2-variable equations

Let c_1, c_2, \ldots, c_d be multiplicatively independent non-zero integers. Let Γ be a graph on [d], and let \mathcal{F} be the family of equations $c_i x_1 = c_j x_2$ where ij is an edge in Γ . We say that a measurable set $A \subset \mathbb{T}$ is \mathcal{F} -free if there are no solutions $(x_1, x_2) \in A^2$ to any of the equations in \mathcal{F} . The problem: determine $d_{\mathcal{F}}(\mathbb{T}) = \sup\{\mu(A) : A \subset \mathbb{T} \text{ is } \mathcal{F}\text{-free}\}.$

Using the towers theorem, we show that $d_{\mathcal{F}}(\mathbb{T})$ is equal to a quantity d_{Γ} defined as follows. For $N \in \mathbb{N}^d$, let $\pi(N)$ denote the product $N(1) \cdots N(d)$. We say a set $S \subset \mathbb{Z}^d$ is Γ -admissible if for every edge ij of Γ we have $(S - e_i) \cap (S - e_j) = \emptyset$. For each $N \in \mathbb{N}^d$, let

 $M_{\Gamma}(N) = \max\{ |S|/\pi(N) : S \subset \prod_{i=1}^{d} [0, N(i)) \text{ is } \Gamma\text{-admissible} \}.$

Fact: for every sequence of $N_j \in \mathbb{N}^d$ with $\min_i N_j(i) \to \infty$, the sequence $M_{\Gamma}(N_j)$ converges to the same limit d_{Γ} . We show that $d_{\mathcal{F}}(\mathbb{T}) = d_{\Gamma}$.

Proposition (Avoiding a bipartite family of equations)

Let $c_1, c_2, \ldots, c_d \in \mathbb{Z} \setminus \{0\}$ be multiplicatively independent, let Γ be a non-empty bipartite graph on [d], and let \mathcal{F} be the corresponding family of 2-variable equations.

Proposition (Avoiding a bipartite family of equations)

Let $c_1, c_2, \ldots, c_d \in \mathbb{Z} \setminus \{0\}$ be multiplicatively independent, let Γ be a non-empty bipartite graph on [d], and let \mathcal{F} be the corresponding family of 2-variable equations. Then $d_{\mathcal{F}}(\mathbb{T}) = 1/2$.

Proposition (Avoiding a bipartite family of equations)

Let $c_1, c_2, \ldots, c_d \in \mathbb{Z} \setminus \{0\}$ be multiplicatively independent, let Γ be a non-empty bipartite graph on [d], and let \mathcal{F} be the corresponding family of 2-variable equations. Then $d_{\mathcal{F}}(\mathbb{T}) = 1/2$.

Thank you !