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Let k=min{j e N: ¢/ =1modp}, and O(c)={c :je[k]} <Z}.
Let by, ..., bg € Zj such that Z = | |;c(4 bi O(c).

Let B = {b1,...,bg}. Let A= |I*? 7! c¥ B. We have AN (c A) =0, so
A'is (1, c)-free. Moreover, since k > log p, we have |A| ~ p/2.

Hence d(1,¢)(Zp) = 1/2 + o(1)p—s00-
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Let € > 0 and let n be a positive integer. Then for every aperiodic
automorphism T on a standard probability space, there exists an n-tower
for T of measure at least 1 — €.
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Let € > 0 and let n be a positive integer. Then for every aperiodic
automorphism T on a standard probability space, there exists an n-tower
for T of measure at least 1 — €.

Many applications in ergodic theory (mixing, entropy, constructions...).

Many generalizations, in the invertible case, to other group actions than Z.
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Towers for commuting endomorphisms

For problems such as determining d(c, ,)(T) with |c;| > 1, we must handle
several non-invertible endomorphisms, i.e. the maps T — T, x — ¢; x.
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Consider a measure-preserving action f of N on X (Ng = Zxq)
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k() <L) (resp. k(Jj) < £())-
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Towers for commuting endomorphisms

For problems such as determining d(c, ,)(T) with |c;| > 1, we must handle
several non-invertible endomorphisms, i.e. the maps T — T, x — ¢; x.

Consider a measure-preserving action f of N on X (Ng = Zxq)
generated by commuting endomorphisms Tq,..., T4 on X,
thus for n = (n(1),...,n(d)) € N§ and x € X we have

F(n,x) = fo(x) = TTM 00 THD(). (Note Fppn(x) = fin 0 fa().)
Call f a free action if V k # £ in N§, u({x € X : fi(x) = fi(x)}) = 0.
For k,¢ € 79, write k < ¢ (resp. k < {) if for every j € [d] we have

k(i) < £0) (resp. k(j) < £())).

For N € N? and B C X, write By = (f; "(B))o<k<n. If the preimages
are pairwise disjoint, we say that By is an N-tower for f with base B.

Theorem (Towers for N¢ actions — Avila & C, 2015)

Let € > 0 and let N € N9, Then for every free measure-preserving action f
of Ng on a standard probability space, there exists an N-tower for f of
measure at least 1 — .
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Towers for Ng actions — Applications

Fiz-Pontiveros had observed that an earlier special case of the theorem for
a single map x — ¢ x implied that d; )(T) = 1/2. (2012)
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a single map x — ¢ x implied that d; )(T) = 1/2. (2012)
Applying the theorem for two such maps easily yields the following result.

Proposition

For every distinct integers c1, ca, we have d(c, .,)(T) = 1/2.
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Fiz-Pontiveros had observed that an earlier special case of the theorem for
a single map x — ¢ x implied that d; )(T) = 1/2. (2012)
Applying the theorem for two such maps easily yields the following result.

Proposition

For every distinct integers c1, ca, we have d(c, .,)(T) = 1/2.

Proof.

|

W.L.O.G. ¢1, ¢ are coprime and |¢j| > 1.
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Towers for Ng actions — Applications

Fiz-Pontiveros had observed that an earlier special case of the theorem for
a single map x — ¢ x implied that d; )(T) = 1/2. (2012)
Applying the theorem for two such maps easily yields the following result.

Proposition
For every distinct integers c1, ca, we have d(c, .,)(T) = 1/2.

|

Proof.

W.L.O.G. ¢1, ¢ are coprime and |¢j| > 1. Then f,(x) = c{'(l)cg(2)x defines
a free measure-preserving action of Ng on T. Fix any § > 0, and apply the
towers theorem with e = §/2 and N = (t,2), with t > 1/4.
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Fiz-Pontiveros had observed that an earlier special case of the theorem for
a single map x — ¢ x implied that d; )(T) = 1/2. (2012)
Applying the theorem for two such maps easily yields the following result.

Proposition
For every distinct integers c1, ca, we have d(c, .,)(T) = 1/2.

W.L.O.G. ¢1, ¢ are coprime and |¢j| > 1. Then f,(x) = c{'(l)cg(2)x defines

a free measure-preserving action of Ng on T. Fix any § > 0, and apply the
towers theorem with € = /2 and N = (t,2), with t > 1/6. Let B be the
resulting base of an N-tower, with p(Byy) > 1—6/2.
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Fiz-Pontiveros had observed that an earlier special case of the theorem for
a single map x — ¢ x implied that d; )(T) = 1/2. (2012)
Applying the theorem for two such maps easily yields the following result.

Proposition
For every distinct integers c1, ca, we have d(c, .,)(T) = 1/2.

Poof
W.L.O.G. ¢1, ¢ are coprime and |¢j| > 1. Then f,(x) = c{'(l)cg(2)x defines

a free measure-preserving action of Ng on T. Fix any § > 0, and apply the
towers theorem with € = /2 and N = (t,2), with t > 1/6. Let B be the
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Fiz-Pontiveros had observed that an earlier special case of the theorem for
a single map x — ¢ x implied that d; )(T) = 1/2. (2012)
Applying the theorem for two such maps easily yields the following result.

Proposition
For every distinct integers c1, ca, we have d(c, .,)(T) = 1/2.

W.L.O.G. ¢1, ¢ are coprime and |¢j| > 1. Then f,(x) = c{'(l)cg(2)x defines

a free measure-preserving action of Ng on T. Fix any § > 0, and apply the
towers theorem with € = /2 and N = (t,2), with t > 1/6. Let B be the
resulting base of an N-tower, with ;(B(y)) > 1 — /2. Now let

A= (df @)7(B).
We have ;AN A = (.
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Towers for Ng actions — Applications

Fiz-Pontiveros had observed that an earlier special case of the theorem for
a single map x — ¢ x implied that d; )(T) = 1/2. (2012)
Applying the theorem for two such maps easily yields the following result.

Proposition

For every distinct integers c1, ca, we have d(c, .,)(T) = 1/2.

Proof.

W.L.O.G. ¢1, ¢ are coprime and |¢j| > 1. Then f,(x) = c{'(l)cg(2)x defines
a free measure-preserving action of Ng on T. Fix any § > 0, and apply the
towers theorem with e = /2 and N = (t,2), with t > 1/J. Let B be the
resulting base of an N-tower, with ;(B(y)) > 1 — /2. Now let

A=Lia (¢ &) 7}(B).
We have c;AN A =10. Also, u(A) > (1-6/2)/2—-1/(2t) >1/2 — 0.
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Fiz-Pontiveros had observed that an earlier special case of the theorem for
a single map x — ¢ x implied that d; )(T) = 1/2. (2012)
Applying the theorem for two such maps easily yields the following result.

Proposition

For every distinct integers c1, ca, we have d(c, .,)(T) = 1/2.

Proof

W.L.O.G. ¢1, ¢ are coprime and |¢j| > 1. Then f,(x) = c{'(l)cg(2)x defines
a free measure-preserving action of Ng on T. Fix any § > 0, and apply the
towers theorem with e = /2 and N = (t,2), with t > 1/J. Let B be the
resulting base of an N-tower, with ;(B(y)) > 1 — /2. Now let

A=US (d @) (B).
We have c;AN A =10. Also, u(A) > (1-6/2)/2—-1/(2t) >1/2 — 0.
Hence d(c, ,)(T) > 1/2 - 4. O

v
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In the last proof, the N-tower was used to reduce the problem of finding a
large (c1, cp)-free set in T to finding a large S C {0,..,t — 1} x {0,1} C Z?
such that (S —e1) N (S — &) = 0.
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ijis an edge in .
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Using the towers theorem, we show that dz(T) is equal to a quantity dr
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(S—e)N(S—¢)=0. Foreach N € N9, et
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Fact: for every sequence of N; € N¢ with min; N;(i) — oo, the sequence
Mr(N;) converges to the same limit df.
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We give estimates for dr in terms of known graph parameters. Let us end
with a special case in which we can tell the exact value.
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Proposition (Avoiding a bipartite family of equations)

Let ci,¢2,...,¢c4 € Z\ {0} be multiplicatively independent, let T be a

non-empty bipartite graph on [d], and let F be the corresponding family
of 2-variable equations.
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We give estimates for dr in terms of known graph parameters. Let us end
with a special case in which we can tell the exact value.

Proposition (Avoiding a bipartite family of equations)

Let ci,¢2,...,¢c4 € Z\ {0} be multiplicatively independent, let T be a
non-empty bipartite graph on [d], and let F be the corresponding family
of 2-variable equations. Then dr(T) =1/2.

Thank you !
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