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A question in additive combinatorics

Let G be a compact abelian group, with Haar probability µ.

Consider a linear equation c1x1 = c2x2 with (non-zero) coefficients ci ∈ Z.
We say a set A ⊂ G is (c1, c2)-free if there is no x = (x1, x2) ∈ A2 such
that c1x1 = c2x2, equivalently if (c1A) ∩ (c2A) = ∅. Consider

d(c1,c2)(G ) := sup{µ(A) : A ⊂ G Borel and (c1, c2)-free}.

Discrete setting: focus on Zp = Z/pZ, p a large prime.
Continuous setting: focus on T = R/Z.

Let us find d(1,c)(Zp) with |c | > 1.

Let k = min{j ∈ N : c j = 1mod p}, and O(c) = {c j : j ∈ [k]} ≤ Z×p .
Let b1, . . . , bd ∈ Z×p such that Z×p =

⊔
i∈[d ] bi O(c).

Let B = {b1, . . . , bd}. Let A =
⊔bk/2c−1

j=0 c2j B. We have A ∩ (c A) = ∅, so
A is (1, c)-free. Moreover, since k � log p, we have |A| ∼ p/2.

Hence d(1,c)(Zp) = 1/2 + o(1)p→∞.
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Rokhlin’s lemma

We have used B = {b1, . . . , bd} as a “cross-section” for T : x 7→ c x , i.e.
Z×p =

⊔k−1
j=0 c jB.

We want to do something similar for more general maps.

Let (X , µ) be a standard probability space. An endomorphism on X is a
measurable map T : X → X such that µ(T−1B) = µ(B) for every
measurable B ⊂ X . T is aperiodic if ∀ n ∈ N, µ({x ∈ X : T nx = x}) = 0.

An n-tower for T is a sequence B,T−1B, ...,T−(n−1)B of pairwise
disjoint preimages of some measurable set B ⊂ X . The measure of such a
tower is simply µ

(⊔n−1
j=0 T−jB

)
.

Lemma (Rokhlin, 1948)

Let ε > 0 and let n be a positive integer. Then for every aperiodic
automorphism T on a standard probability space, there exists an n-tower
for T of measure at least 1− ε.

Many applications in ergodic theory (mixing, entropy, constructions...).

Many generalizations, in the invertible case, to other group actions than Z.
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Towers for commuting endomorphisms

For problems such as determining d(c1,c2)(T) with |ci | > 1, we must handle
several non-invertible endomorphisms, i.e. the maps T→ T, x 7→ ci x .

Consider a measure-preserving action f of Nd
0 on X (N0 = Z≥0)

generated by commuting endomorphisms T1, . . . ,Td on X ,
thus for n =

(
n(1), . . . , n(d)

)
∈ Nd

0 and x ∈ X we have

f (n, x) = fn(x) := T
n(1)
1 ◦ · · · ◦ T n(d)

d (x). (Note fm+n(x) = fm ◦ fn(x).)

Call f a free action if ∀ k 6= ` in Nd
0 , µ({x ∈ X : fk(x) = f`(x)}) = 0.

For k , ` ∈ Zd , write k < ` (resp. k ≤ `) if for every j ∈ [d ] we have
k(j) < `(j) (resp. k(j) ≤ `(j)).

For N ∈ Nd and B ⊂ X , write B(N) = (f −1
k (B))0≤k<N . If the preimages

are pairwise disjoint, we say that B(N) is an N-tower for f with base B.

Theorem (Towers for Nd
0 actions – Avila & C, 2015)

Let ε > 0 and let N ∈ Nd . Then for every free measure-preserving action f
of Nd

0 on a standard probability space, there exists an N-tower for f of
measure at least 1− ε.
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Towers for Nd
0 actions – Applications

Fiz-Pontiveros had observed that an earlier special case of the theorem for
a single map x 7→ c x implied that d(1,c)(T) = 1/2. (2012)

Applying the theorem for two such maps easily yields the following result.

Proposition

For every distinct integers c1, c2, we have d(c1,c2)(T) = 1/2.

Proof.

W.L.O.G. c1, c2 are coprime and |ci | > 1. Then fn(x) = c
n(1)
1 c

n(2)
2 x defines

a free measure-preserving action of N2
0 on T. Fix any δ > 0, and apply the

towers theorem with ε = δ/2 and N = (t, 2), with t > 1/δ. Let B be the
resulting base of an N-tower, with µ(B(N)) ≥ 1− δ/2. Now let

A =
⊔t−1

j=1 (c j
1 c2)−1(B).

We have c1A ∩ c2A = ∅. Also, µ(A) ≥ (1− δ/2)/2− 1/(2t) ≥ 1/2− δ.

Hence d(c1,c2)(T) ≥ 1/2− δ.
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In the last proof, the N-tower was used to reduce the problem of finding a
large (c1, c2)-free set in T to finding a large S ⊂ {0, .., t − 1}×{0, 1} ⊂ Z2

such that (S − e1) ∩ (S − e2) = ∅.

We can generalize this argument.

Large subsets of T avoiding several 2-variable equations

Let c1, c2, . . . , cd be multiplicatively independent non-zero integers. Let Γ
be a graph on [d ], and let F be the family of equations cix1 = cjx2 where
i j is an edge in Γ. We say that a measurable set A ⊂ T is F-free if there
are no solutions (x1, x2) ∈ A2 to any of the equations in F .
The problem: determine dF (T) = sup{µ(A) : A ⊂ T is F-free}.

Using the towers theorem, we show that dF (T) is equal to a quantity dΓ

defined as follows. For N ∈ Nd , let π(N) denote the product N(1) ···N(d).
We say a set S ⊂ Zd is Γ-admissible if for every edge i j of Γ we have
(S − ei ) ∩ (S − ej) = ∅. For each N ∈ Nd , let

MΓ(N) = max{ |S |/π(N) : S ⊂
∏d

i=1 [0,N(i)) is Γ-admissible}.

Fact: for every sequence of Nj ∈ Nd with mini Nj(i)→∞, the sequence
MΓ(Nj) converges to the same limit dΓ. We show that dF (T) = dΓ.
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We give estimates for dΓ in terms of known graph parameters. Let us end
with a special case in which we can tell the exact value.

Proposition (Avoiding a bipartite family of equations)

Let c1, c2, . . . , cd ∈ Z \ {0} be multiplicatively independent, let Γ be a
non-empty bipartite graph on [d ], and let F be the corresponding family
of 2-variable equations. Then dF (T) = 1/2.

Thank you !
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