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Primary decompositions and associated primes
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180 = 22 · 32 · 5 2 3 5

X 3 − XY 3 X 2 − Y 3 X

associated primes of 180Z : {2Z, 3Z, 5Z}
associated primes of (X 3 − XY 3) : {(X 2 − Y 3), (X )}
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x1 x2

x3x4

I = (x1x2, x2x3, x2x4)

x1 x2

x3x4

(x1, x3, x4)

x1 x2

x3x4 (x2)

edge ideals minimal vertex covers

associated primes of I : {(x2), (x1, x3, x4)}
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Definition (primary ideal)
An ideal Q ( R is called primary if whenever f · g ∈ Q, then

- either f ∈ Q, or
- there exists an n ∈ N such that gn ∈ Q.

I every irreducible ideal is primary
I every prime ideal is primary
I if Q is primary, then

√
Q is prime
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Definition (primary decomposition)
Let I ⊆ R be an ideal. A primary decomposition of I is a
representation

I = Q1 ∩ · · · ∩ Qr

as intersection of finitely many primary ideals Qi .The decomposition
is irredundant if no Qi ⊇

⋂
i 6=j Qj and

√
Qi are all distinct.

Example

I = (x2, xy) = (x2, x) ∩ (x2, y)

= (x) ∩ (x2, y)

= (x) ∩ (x2, cx + y)

for any c ∈ R.
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Theorem (Lasker-Noether)
Every ideal I in a Noetherian ring has an irredundant primary
decomposition I = Q1 ∩ · · · ∩ Qr .The ideals in the set

Ass(I ) :=
{√

Q1, . . . ,
√
Qr

}
are called associated primes of I . Ass(I ) does not depend on the
particular primary decomposition.

I for every P ∈ Ass(I ) there exists a w ∈ R such that P = I : w

I w is called a witness of P in I
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Example
I = (x2, xy) = (x) ∩ (x2, y) = (x) ∩ (x2, x + y)

Ass(I ) =

{√
(x) ,

√
(x2, y)

}
= {(x), (x , y)}

=

{√
(x) ,

√
(x2, x + y)

}
= {(x), (x , y)}

(x) = I : (y),

(x , y) = I : (x).

I y is a witness of (x) in I ,
I x is a witness of (x , y) in I .
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associated primes of binomial ideals

I = (xu1 − α1x
v1 , . . . , xus − αsx

vs ) ⊆ K [x1, . . . , xr ]

Theorem (Eisenbud, Sturmfels, 1994)
If I is a binomial ideal, then
I I has a primary decomposition such that all primary

components are binomial,
I the radical of I is binomial,
I all associated primes of I are binomial.
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associated primes of monomial ideals

Let I be a monomial ideal in R = K [x1, . . . , xr ].

I I has a primary decomposition such that all primary
components are monomial,

I all associated primes of I are monomial, i.e.,

Ass(I ) ⊆ {(x1), (x2), . . . , (xr ), (x1, x2), . . . , (x1, . . . , xr )},

I all witnesses are monomial, i.e., for every P ∈ Ass(I ) there
exists a monomial xa such that P = I : xa.
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I = (xy , yz , xz) = (x , y) ∩ (x , z) ∩ (y , z)
I 2 = (x2y2, xy2z , x2yz , y2z2, xyz2, x2z2)

I I 2 : x2y = (y , z)

I I 2 : y2x = (x , z)

I I 2 : z2y = (x , y)

I I 2 : xyz = (x , y , z)

Ass(I 2) ⊆
{

(y)(x) (z)

(x , z)(x , z)X(x , y)(x , y)X (y , z)(y , z)X
(x , y , z)(x , y , z)X

}

The set of associated primes of an ideal changes when looking at
its powers.
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Associated primes of powers of ideals
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Example

P = (2× 2 minors of a 3× 3 matrix)
= (ae − bd , af − cd , . . . )

⊆ K [a, b, c , d , e, f , g , h, i , j ]

is a binomial prime ideal.

a b c
d e f
h i j



P2 has primary decomposition

P2 = (P2 + (detM)) ∩ (P2 +m).

I Powers of prime ideals are not necessarily primary.
I Associated primes can change when looking at powers of an

ideal:

Ass(P) = {P},
Ass(P2) = {P,m}.
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Theorem (Kim, Swanson, 2019)
Let m ≥ 3, v1, . . . , vm ∈ N. Then there exists a polynomial ring R
in
∑

vi variables with a prime ideal P such that for all integers
e ≥ 2, Pe has

∏
vi embedded primes.

Construction of such ideals:

(x3 − yz ,y2 − xz , z2 − x2y)

↓ spreading of I

(x3 − yz , y2 − xz , z2 − x2y , z1 − z , . . . , zm−3 − z)

↓ splitting the variables xi 7→ x11 · · · x1vi

P

Example
There exists a prime ideal P in 11 · 2 = 22 variables such that Pe

has 211 = 2048 embedded primes for all e ≥ 2.
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Theorem (Brodmann, 1979)
The sequence (Ass(I n))n∈N stabilizes.

Definition
stability index of I : smallest BI

= ∈ N such that for all n ≥ BI
=

Ass(I n) = Ass(IB
I
=)

I How does the sequence (Ass(I n))n∈N behave?
(increasing/decreasing?)

I When does (Ass(I n))n∈N stabilize?

I Can we give an upper bound for BI
= for monomial ideals?

I On which parameters does such a bound depend?
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Example (Weinstein, Swanson, 2020)
For every d ∈ N:

I = (ad+2y , ad+1by , abd+1y , bd+2y , adb2xy) ⊆ K [a, b, x , y ]

Ass(I n) =

{
{(a, b), (y), (a, b, x)}, for n < d

{(a, b), (y)}, for n ≥ d
.

BI
= = d

degree
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Example (Martínez-Bernal, Morey, Villarreal, 2012)
Edge ideals of odd cycles of length 2s + 1 :

I = (x1x2, x2x3, x3x4, . . . , x2sx2s+1, x2s+1x1) ⊆ K [x1, . . . , x2s+1].

I n ≤ s: Ass(I n) = {prime ideals generated by s + 1 variables}
I n > s: Ass(I n) = Ass(I ) ∪ {m}

BI
= = s

number of generators and variables
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persistence index of I : smallest integer BI
⊆ such that

Ass(I n) ⊆ Ass(I n+1) for all n ≥ BI
⊆.

copersistence index of I : smallest integer BI
⊇ such that

Ass(I n) ⊇ Ass(I n+1) for all n ≥ BI
⊇.

stability index = max{BI
⊆,B

I
⊇}
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I monomial ideal in K [x1, . . . , xr ]

I r – number of variables
I s – number of generators
I d – maximal total degree of the generators

Theorem (Hoa, 2006)

I BI
⊆ ≤ sr+3(s + r)4d2 (2d2)s2−s+1

I BI
⊇ ≤ d(rs + s + d)

(√
r
)r+1

(
√
2d)(r+1)(s−1)

Example
I = (a6, b6, a5b, ab5, ca4b4, a4xy2, b4x2y) ⊆ K [a, b, c , x , y ]

I r = 5, s = 7, d = 9
I upper bound ≈ 10108

I stability index: 4
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Theorem (Heuberger, R., Rissner, 2024)

BI
⊇ ≤ (rs + r + 2)(

√
r)r+2(d + 1)rs := σ1

Hoa: BI
⊇ ≤ d(rs + s + d)

(√
r
)r+1

(
√
2d)(r+1)(s−1) := σ2

σ2 ≥

(
d
√
2√

d2 + 1

)rs
1√
2r
· σ1

Example
I = (a6, b6, a5b, ab5, ca4b4, a4xy2, b4x2y) ⊆ K [a, b, c , x , y ]

I σ1 ≈ 3 · 1037

I σ2 ≈ 3 · 1044
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Squarefree monomial ideals: edge ideals and cover ideals

x1 x2

x3x4x5

x6

x1 x2

x4

x6

x1

x3x4x5

J = ( minimal vertex covers )

= (x1x2x4x6 , x1x3x4x5, . . . )

Ass(J ) =
{

(x1, x2)(x1, x5)

(x2, x3)(x3, x4)

(x3, x6)(x4, x5)

(x4, x6)(x5, x6)
}
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Connection to graph theory

Let G be a graph and I its edge ideal:

graph theoretical tools

minimal vertex covers −→ minimal associated primes of I

matching number −→ (Ass(I n))n∈N is increasing

generalized ear decompositions −→ fully describe (Ass(I n))n∈N

Let H be a hypergraph and J its cover ideal:

chromatic number −→ lower bound for the stability index

graph colorings −→ fully describe (Ass(Jn))n∈N
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Some known results about the changes of Ass(I n)

• edge ideals [Martínez-Bernal, Morey, Villarreal, 2012]
• cover ideals of perfect graphs [Francisco, Hà, Tuyl, 2011]
• ideals with all powers integrally closed [Ratliff, 1984]

(Ass(I n))n∈N is increasing

• ideals can be constructed with
• (Ass(I n))n∈N not increasing
• (Ass(I n))n∈N not monotone [McAdam, Eakin, 1979]

• BI
= arbitrarily large [Hà, Nguyen, Trung, Trung, 2021]

• conjecture [J. Herzog]: if I square-free, BI
= ≤ r − 1

• upper bound for BI
= of general monomial ideals
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Algebraic statistics: primary decompositions of
conditional independence ideals
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What is algebraic statistics?

I many questions in statistics are fundamentally problems of
algebra and algebraic geometry

I apply tools from
I algebraic geometry,

I commutative algebra,

I combinatorics, and

I symbolic computation

to problems in probability theory, statistics, and their
applications
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Some history
First connections between algebra and statistics:
I Raj Chandra Bose, 1947: first link between the geometry of

finite fields and construction of designs
“It is a startling idea that Galois fields might be helpful to

provide people with more and better food”– Levi
I Ulf Grenander, 1963: algebraic structures to describe central

limit theorems in complex settings
I Persi Diaconis, 1988: representation theoretic methods in the

analysis of discrete data

“Algebraic statistics” started with
I Persi Diaconis and Bernd Sturmfels, 1998: Algebraic

algorithms for sampling from conditional distributions
I Giovanni Pistone, Eva Riccomagno, and Henry P. Wynn, 2001:

Algebraic Statistics
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An introductory example (part 1)

I X1, X2, X3 random variables on {0, 1}
I probability that X1 = i , X2 = j and X3 = k is

P(X1 = i ,X2 = j ,X3 = k) =: pijk

I joint distribution of X1, X2 and X3 is a point

(p000, p100, p010, p001, p110, p101, p011, p111) ∈ R8

probability distribution ←→ point
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Notation and some definitions

X = (X1, . . . ,Xm) m-dimensional random vector

I values in X =
∏m

i=1Xi

I assume that the joint probability distribution of X has a
density function f

For A ⊆ [m], write

I XA := (Xa)a∈A, and

I XA :=
∏

a∈AXa
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Definition (marginal density)

fA(x) :=

∫
X[m]\A

f (xA, x[m]\A)dν[m]\A(x[m]\A), xA ∈ XA.

Example
X = (X1,X2,X3) discrete random vector,
I Xi takes values in [ri ], ri ∈ N
I X takes values in [r1]× [r2]× [r3].
I P(X1 = i ,X2 = j ,X3 = k) = pijk

If A = {1, 2}, then

P(X1 = i ,X2 = j) =
∑
k∈[r3]

pijk =: pij+
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Definition (conditional density)
A, B ⊆ [m] disjoint and xB ∈ XB . The conditional density of XA

given XB = xB is

fA|B(xA | xB) =

{
fA∪B(xA,xB)

fB(xB)
, if fB(xB) > 0,

0, otherwise.

Example
X = (X1,X2,X3) as before, A = {1, 2}, B = {3}

P(X1 = i ,X2 = j | X3 = k) =

{
pijk
p++k

, if p++k > 0,

0, otherwise.
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Conditional independence
Definition
A, B , C ⊆ [m] pairwise disjoint; XA is conditionally independent of
XB given XC , if

fA∪B|C (xA, xB | xC ) = fA|C (xA | xC ) · fB|C (xB | xC ).

Write XA ⊥⊥ XB | XC (sometimes also A ⊥⊥ B | C ).

If XA ⊥⊥ XB | XC and xC such that fC (xC ) > 0, then

fA|B∪C (xA | xB , xC ) =
fA∪B∪C (xA, xB , xC )

fB∪C (xB , xC )

=
fA∪B|C (xA, xB | xC )fC (xc)

fB|C (xB | xC )fC (xc)
= fA|C (xA | xC ).

“given XC , knowing XB does not give any information about XA”
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An introductory example (part 2)

I X1, X2, X3 Markov chain on {0, 1}, i.e., X3 ⊥⊥ X1 | X2, or

P(X3 = k | X1 = i ,X2 = j) = P(X3 = k | X2 = j).

I That is,

pijk
pij+

=
p+jk

p+j+
for all i , j , k ∈ {0, 1}

I . . . expanding and simplifying gives

p000p101 − p001p100 = 0, and
p010p111 − p011p110 = 0.
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An introductory example (part 2)

A vector (p000, p100, p010, p001, p110, p101, p011, p111) ∈ R8 is the
probability distribution from the Markov chain model iff:

I pijk ≥ 0 for all i , j , k ∈ {0, 1},

I
∑

i ,j ,k pijk = 1,

I p000p101 − p001p100 = 0, and

I p010p111 − p011p110 = 0.

statistical model ←→ (semi)algebraic set
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Dictionary (Seth Sullivant: Algebraic Statistics, 2018)

Probability/Statistics Algebra/Geometry

probability distribution point

statistical model (semi)algebraic set

exponential family toric variety

conditional inference lattice points in polytopes

maximum likelihood estimation polynomial optimization

model selection geometry of singularities

multivariate gaussian model spectrahedral geometry

phylogenetic model tensor networks

MAP estimates tropical geometry
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Conditional independence ideals
Q: Given a list of conditional indepenence statements, what other
constraints must the same random vector satisfy?
I assuming we do not know the density (otherwise we could test

all constraints)
I Which implications hold regardless of the distribution?
I A few obvious implications:

XA ⊥⊥ XB | XC =⇒ XB ⊥⊥ XA | XC Symmetry
XA ⊥⊥ XB∪D | XC =⇒ XA ⊥⊥ XB | XC Decomposition

...

I In general, finding such implications is difficult, and
I it is impossible to find a finite set of axioms from which all CI

statements can be deduced (Milan Studený, 1992)
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