

Primary decompositions, associated primes, and applications in algebraic statistics

Jutta Rath

Primary decompositions and associated primes

associated primes of $180\mathbb{Z}$: $\{2\mathbb{Z}, 3\mathbb{Z}, 5\mathbb{Z}\}\$ associated primes of $(X^3 - XY^3)$: $\{(X^2 - Y^3), (X)\}\$

edge ideals --> minimal vertex covers

associated primes of I: $\{(x_2), (x_1, x_3, x_4)\}$

Definition (primary ideal)

An ideal $Q \subsetneq R$ is called primary if whenever $f \cdot g \in Q$, then

- either $f \in Q$, or
- there exists an $n \in \mathbb{N}$ such that $g^n \in Q$.
- every irreducible ideal is primary
- every prime ideal is primary
- if Q is primary, then \sqrt{Q} is prime

Definition (primary decomposition)

Let $I \subseteq R$ be an ideal. A primary decomposition of I is a representation

$$I = Q_1 \cap \cdots \cap Q_r$$

as intersection of finitely many primary ideals Q_i . The decomposition is irredundant if no $Q_i \supseteq \bigcap_{i \neq j} Q_j$ and $\sqrt{Q_i}$ are all distinct.

Example

$$I = (x^{2}, xy) = (x^{2}, x) \cap (x^{2}, y)$$

= (x) \cap (x^{2}, y)
= (x) \cap (x^{2}, cx + y)

for any $c \in \mathbb{R}$.

Theorem (Lasker-Noether)

Every ideal I in a Noetherian ring has an irredundant primary decomposition $I = Q_1 \cap \cdots \cap Q_r$. The ideals in the set

$$\mathsf{Ass}(I) \coloneqq \left\{ \sqrt{Q_1}, \dots, \sqrt{Q_r} \right\}$$

are called associated primes of *I*. Ass(*I*) does not depend on the particular primary decomposition.

- ▶ for every $P \in Ass(I)$ there exists a $w \in R$ such that P = I: w
- w is called a witness of P in I

Example

$$I = (x^{2}, xy) = (x) \cap (x^{2}, y) = (x) \cap (x^{2}, x + y)$$

Ass $(I) = \left\{ \sqrt{(x)}, \sqrt{(x^{2}, y)} \right\} = \{(x), (x, y)\}$
 $= \left\{ \sqrt{(x)}, \sqrt{(x^{2}, x + y)} \right\} = \{(x), (x, y)\}$

$$(x) = I : (y),$$

 $(x, y) = I : (x).$

associated primes of binomial ideals

$$I = (x^{u_1} - \alpha_1 x^{v_1}, \dots, x^{u_s} - \alpha_s x^{v_s}) \subseteq K[x_1, \dots, x_r]$$

Theorem (Eisenbud, Sturmfels, 1994)

If I is a binomial ideal, then

- I has a primary decomposition such that all primary components are binomial,
- the radical of I is binomial,
- all associated primes of I are binomial.

associated primes of monomial ideals

Let I be a monomial ideal in $R = K[x_1, \ldots, x_r]$.

- I has a primary decomposition such that all primary components are monomial,
- ▶ all associated primes of *I* are monomial, i.e.,

 $\mathsf{Ass}(I) \subseteq \{(x_1), (x_2), \dots, (x_r), (x_1, x_2), \dots, (x_1, \dots, x_r)\},\$

► all witnesses are monomial, i.e., for every P ∈ Ass(I) there exists a monomial x^a such that P = I : x^a.

$$= (xy, yz, xz) = (x, y) \cap (x, z) \cap (y, z)$$

$$^{2} = (x^{2}y^{2}, xy^{2}z, x^{2}yz, y^{2}z^{2}, xyz^{2}, x^{2}z^{2})$$

$$P^{2} : x^{2}y = (y, z)$$

$$P^{2} : y^{2}x = (x, z)$$

$$P^{2} : z^{2}y = (x, y)$$

$$P^{2} : xyz = (x, y, z)$$

$$Ass(P^{2}) \subseteq \left\{ (x) (y) (z) (x, z) (y, z) \right\}$$

The set of associated primes of an ideal changes when looking at its powers.

Associated primes of powers of ideals

Example

$$P = (2 \times 2 \text{ minors of a } 3 \times 3 \text{ matrix})$$

= $(ae - bd, af - cd, ...)$
 $\subseteq K[a, b, c, d, e, f, g, h, i, j]$
$$\begin{pmatrix} a & b & c \\ d & e & f \\ h & i & j \end{pmatrix}$$

is a binomial prime ideal.

 P^2 has primary decomposition

$$P^2 = (P^2 + (\det M)) \cap (P^2 + \mathfrak{m}).$$

- Powers of prime ideals are not necessarily primary.
- Associated primes can change when looking at powers of an ideal:

$$\mathsf{Ass}(P) = \{P\},$$
$$\mathsf{Ass}(P^2) = \{P, \mathfrak{m}\}.$$

Theorem (Kim, Swanson, 2019)

Let $m \ge 3$, $v_1, \ldots, v_m \in \mathbb{N}$. Then there exists a polynomial ring R in $\sum v_i$ variables with a prime ideal P such that for all integers $e \ge 2$, P^e has $\prod v_i$ embedded primes.

Construction of such ideals:

$$(x^{3} - yz, y^{2} - xz, z^{2} - x^{2}y)$$

$$\downarrow spreading of I$$

$$(x^{3} - yz, y^{2} - xz, z^{2} - x^{2}y, z_{1} - z, \dots, z_{m-3} - z)$$

$$\downarrow \text{ splitting the variables } x_{i} \mapsto x_{11} \cdots x_{1v_{i}}$$

$$P$$

Example

There exists a prime ideal P in $11 \cdot 2 = 22$ variables such that P^e has $2^{11} = 2048$ embedded primes for all $e \ge 2$.

Theorem (Brodmann, 1979)

The sequence $(Ass(I^n))_{n \in \mathbb{N}}$ stabilizes.

Definition

stability index of *I*: smallest $B'_{=} \in \mathbb{N}$ such that for all $n \geq B'_{=}$

$$\mathsf{Ass}(I^n) = \mathsf{Ass}(I^{\mathsf{B}_{=}^l})$$

- How does the sequence (Ass(Iⁿ))_{n∈ℕ} behave? (increasing/decreasing?)
- When does (Ass(Iⁿ))_{n∈ℕ} stabilize?
- Can we give an upper bound for B¹₌ for monomial ideals?
- On which parameters does such a bound depend?

Example (Weinstein, Swanson, 2020) For every $d \in \mathbb{N}$:

$$I = (a^{d+2}y, a^{d+1}by, ab^{d+1}y, b^{d+2}y, a^{d}b^{2}xy) \subseteq K[a, b, x, y]$$

$$\mathsf{Ass}(I^n) = \begin{cases} \{(a, b), (y), (a, b, x)\}, & \text{for } n < d \\ \{(a, b), (y)\}, & \text{for } n \ge d \end{cases}$$

$$\mathsf{B}_{=}^{\prime}=d$$

degree

Example (Martínez-Bernal, Morey, Villarreal, 2012) Edge ideals of odd cycles of length 2s + 1:

$$I = (x_1x_2, x_2x_3, x_3x_4, \dots, x_{2s}x_{2s+1}, x_{2s+1}x_1) \subseteq K[x_1, \dots, x_{2s+1}].$$

n ≤ s: Ass(Iⁿ) = {prime ideals generated by s + 1 variables}
 n > s: Ass(Iⁿ) = Ass(I) ∪ {m}

$$\mathsf{B}_{=}^{\prime}=s$$

number of generators and variables

persistence index of *I*: smallest integer B_{\subseteq}^{I} such that Ass $(I^{n}) \subseteq Ass(I^{n+1})$ for all $n \ge B_{\subseteq}^{I}$.

copersistence index of *I*: smallest integer B_{\supset}^{I} such that

$$\operatorname{Ass}(I^n) \supseteq \operatorname{Ass}(I^{n+1})$$
 for all $n \ge \mathsf{B}_{\supseteq}^I$.

stability index = max{
$$B_{\subseteq}^{I}, B_{\supseteq}^{I}$$
}

I monomial ideal in $K[x_1, \ldots, x_r]$

- r number of variables
- s number of generators
- d maximal total degree of the generators

Theorem (Hoa, 2006)

Example

$$I = (a^{6}, b^{6}, a^{5}b, ab^{5}, ca^{4}b^{4}, a^{4}xy^{2}, b^{4}x^{2}y) \subseteq K[a, b, c, x, y]$$

• upper bound $\approx 10^{108}$

stability index: 4

Theorem (Heuberger, R., Rissner, 2024)

$$\mathsf{B}_{\supseteq}^{I} \leq (rs+r+2)(\sqrt{r})^{r+2}(d+1)^{rs} \coloneqq \sigma_{1}$$

Hoa: $\mathsf{B}_{\supseteq}^{I} \leq d(rs+s+d) \left(\sqrt{r}\right)^{r+1} \left(\sqrt{2}d\right)^{(r+1)(s-1)} \coloneqq \sigma_{2}$
$$\sigma_{2} \geq \left(\frac{d\sqrt{2}}{\sqrt{2}}\right)^{rs} \frac{1}{1-s} \sigma_{2}$$

$$\sigma_2 \ge \left(rac{d\sqrt{2}}{\sqrt{d^2+1}}
ight) \quad rac{1}{\sqrt{2r}} \cdot \sigma_1$$

Example

- $$\begin{split} I &= (a^6, b^6, a^5 b, a b^5, c a^4 b^4, a^4 x y^2, b^4 x^2 y) \subseteq K[a, b, c, x, y] \\ \blacktriangleright \ \sigma_1 \approx 3 \cdot 10^{37} \end{split}$$
 - $\sigma_2 \approx 3 \cdot 10^{44}$

Squarefree monomial ideals: edge ideals and cover ideals

Ass
$$(J) = \{ (x_1, x_5) (x_1, x_2) \\ (x_3, x_4) (x_2, x_3) \\ (x_4, x_5) (x_3, x_6) \\ (x_5, x_6) (x_4, x_6) \} \}$$

Connection to graph theory

Let G be a graph and I its edge ideal:

graph theoretical tools

minimal vertex covers \longrightarrow minimal associated primes of Imatching number \longrightarrow $(Ass(I^n))_{n \in \mathbb{N}}$ is increasing

generalized ear decompositions \longrightarrow fully describe $(Ass(I^n))_{n\in\mathbb{N}}$

Let *H* be a hypergraph and *J* its cover ideal: chromatic number \longrightarrow lower bound for the stability index graph colorings \longrightarrow fully describe $(Ass(J^n))_{n \in \mathbb{N}}$

Some known results about the changes of $Ass(I^n)$

- edge ideals [Martínez-Bernal, Morey, Villarreal, 2012]
- cover ideals of perfect graphs [Francisco, Hà, Tuyl, 2011]
- ideals with all powers integrally closed [Ratliff, 1984]

$(Ass(I^n))_{n\in\mathbb{N}}$ is increasing

- ideals can be constructed with
 - $(Ass(I^n))_{n \in \mathbb{N}}$ not increasing
 - (Ass(*Iⁿ*))_{*n*∈ℕ} not monotone [McAdam, Eakin, 1979]
 - B[/]₌ arbitrarily large [Hà, Nguyen, Trung, Trung, 2021]
- conjecture [J. Herzog]: if I square-free, $\mathsf{B}_{=}^{I} \leq r-1$
- upper bound for $B_{=}^{I}$ of general monomial ideals

Algebraic statistics: primary decompositions of conditional independence ideals

What is algebraic statistics?

 many questions in statistics are fundamentally problems of algebra and algebraic geometry

- apply tools from
 - algebraic geometry,
 - commutative algebra,
 - combinatorics, and
 - symbolic computation

to problems in probability theory, statistics, and their applications

Some history

First connections between algebra and statistics:

 Raj Chandra Bose, 1947: first link between the geometry of finite fields and construction of designs

"It is a startling idea that Galois fields might be helpful to provide people with more and better food"- Levi

- Ulf Grenander, 1963: algebraic structures to describe central limit theorems in complex settings
- Persi Diaconis, 1988: representation theoretic methods in the analysis of discrete data
- "Algebraic statistics" started with
 - Persi Diaconis and Bernd Sturmfels, 1998: Algebraic algorithms for sampling from conditional distributions
 - Giovanni Pistone, Eva Riccomagno, and Henry P. Wynn, 2001: Algebraic Statistics

An introductory example (part 1)

•
$$X_1$$
, X_2 , X_3 random variables on $\{0, 1\}$

• probability that $X_1 = i$, $X_2 = j$ and $X_3 = k$ is

$$P(X_1 = i, X_2 = j, X_3 = k) \eqqcolon p_{ijk}$$

• joint distribution of X_1 , X_2 and X_3 is a point

 $(p_{000}, p_{100}, p_{010}, p_{001}, p_{110}, p_{101}, p_{011}, p_{111}) \in \mathbb{R}^8$

probability distribution \longleftrightarrow point

Notation and some definitions

 $X = (X_1, \ldots, X_m)$ *m*-dimensional random vector

• values in
$$\mathcal{X} = \prod_{i=1}^{m} \mathcal{X}_i$$

assume that the joint probability distribution of X has a density function f

For $A \subseteq [m]$, write

•
$$X_A \coloneqq (X_a)_{a \in A}$$
, and

$$\blacktriangleright \ \mathcal{X}_A \coloneqq \prod_{a \in A} \mathcal{X}_a$$

Definition (marginal density)

$$f_{\mathcal{A}}(x) \coloneqq \int_{\mathcal{X}_{[m]\setminus \mathcal{A}}} f(x_{\mathcal{A}}, x_{[m]\setminus \mathcal{A}}) d
u_{[m]\setminus \mathcal{A}}(x_{[m]\setminus \mathcal{A}}), \quad x_{\mathcal{A}} \in \mathcal{X}_{\mathcal{A}}.$$

Example

 $X = (X_1, X_2, X_3)$ discrete random vector,

•
$$X_i$$
 takes values in $[r_i]$, $r_i \in \mathbb{N}$

• X takes values in
$$[r_1] \times [r_2] \times [r_3]$$
.

►
$$P(X_1 = i, X_2 = j, X_3 = k) = p_{ijk}$$

If $A = \{1, 2\}$, then

$$P(X_1 = i, X_2 = j) = \sum_{k \in [r_3]} p_{ijk} =: p_{ij+1}$$

Definition (conditional density)

A, $B \subseteq [m]$ disjoint and $x_B \in \mathcal{X}_B$. The conditional density of X_A given $X_B = x_B$ is

$$f_{A|B}(x_A \mid x_B) = egin{cases} rac{f_{A \cup B}(x_A, x_B)}{f_B(x_B)}, & ext{if } f_B(x_B) > 0, \ 0, & ext{otherwise}. \end{cases}$$

Example

$$X = (X_1, X_2, X_3)$$
 as before, $A = \{1, 2\}$, $B = \{3\}$

$$P(X_1 = i, X_2 = j \mid X_3 = k) = \begin{cases} \frac{p_{ijk}}{p_{++k}}, & \text{if } p_{++k} > 0, \\ 0, & \text{otherwise.} \end{cases}$$

Conditional independence

Definition

A, B, $C \subseteq [m]$ pairwise disjoint; X_A is conditionally independent of X_B given X_C , if

$$f_{A\cup B|C}(x_A, x_B \mid x_C) = f_{A|C}(x_A \mid x_C) \cdot f_{B|C}(x_B \mid x_C).$$

Write $X_A \perp\!\!\!\perp X_B \mid X_C$ (sometimes also $A \perp\!\!\!\perp B \mid C$).

If $X_A \perp\!\!\!\perp X_B \mid X_C$ and x_C such that $f_C(x_C) > 0$, then

$$f_{A|B\cup C}(x_A \mid x_B, x_C) = \frac{f_{A\cup B\cup C}(x_A, x_B, x_C)}{f_{B\cup C}(x_B, x_C)} \\ = \frac{f_{A\cup B|C}(x_A, x_B \mid x_C)f_C(x_c)}{f_{B|C}(x_B \mid x_C)f_C(x_c)} = f_{A|C}(x_A \mid x_C).$$

"given X_C , knowing X_B does not give any information about X_A "

An introductory example (part 2)

X₁, X₂, X₃ Markov chain on {0,1}, i.e., X₃ ⊥⊥ X₁ | X₂, or
$$P(X_3 = k \mid X_1 = i, X_2 = j) = P(X_3 = k \mid X_2 = j).$$

$$rac{ {m
ho}_{ijk}}{ {m
ho}_{ij+}} = rac{ {m
ho}_{+jk}}{ {m
ho}_{+j+}} \qquad ext{for all } i,j,k\in\{0,1\}$$

... expanding and simplifying gives

$$p_{000}p_{101} - p_{001}p_{100} = 0$$
, and
 $p_{010}p_{111} - p_{011}p_{110} = 0$.

An introductory example (part 2)

A vector $(p_{000}, p_{100}, p_{010}, p_{001}, p_{110}, p_{101}, p_{011}, p_{111}) \in \mathbb{R}^8$ is the probability distribution from the Markov chain model iff:

•
$$p_{ijk} \ge 0$$
 for all *i*, *j*, $k \in \{0, 1\}$,

$$\blacktriangleright \sum_{i,j,k} p_{ijk} = 1,$$

•
$$p_{000}p_{101} - p_{001}p_{100} = 0$$
, and

$$p_{010}p_{111}-p_{011}p_{110}=0.$$

statistical model
$$\iff$$
 (semi)algebraic set

Dictionary (Seth Sullivant: Algebraic Statistics, 2018)

Probability/Statistics

probability distribution statistical model exponential family conditional inference maximum likelihood estimation model selection multivariate gaussian model phylogenetic model MAP estimates

Algebra/Geometry

point

(semi)algebraic set

toric variety

lattice points in polytopes

polynomial optimization

geometry of singularities

spectrahedral geometry

tensor networks

tropical geometry

Conditional independence ideals

Q: Given a list of conditional indepenence statements, what other constraints must the same random vector satisfy?

- assuming we do not know the density (otherwise we could test all constraints)
- Which implications hold regardless of the distribution?
- ► A few obvious implications:

 $X_A \perp\!\!\!\perp X_B \mid X_C \Longrightarrow X_B \perp\!\!\!\perp X_A \mid X_C \quad \text{Symmetry} \\ X_A \perp\!\!\!\perp X_{B\cup D} \mid X_C \Longrightarrow X_A \perp\!\!\!\perp X_B \mid X_C \quad \text{Decomposition}$

- In general, finding such implications is difficult, and
- it is impossible to find a finite set of axioms from which all CI statements can be deduced (Milan Studený, 1992)