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Primary decompositions and associated primes
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(X17X3a X4)
-->
-->
I = (x1x2, X2X3, X2Xa) (x2)
edge ideals --> minimal vertex covers

associated primes of I: {(x2), (x1,x3,xa)}




Definition (primary ideal)

An ideal Q C R is called primary if whenever f - g € Q, then
- either f € Q, or
- there exists an n € N such that g” € Q.

> every irreducible ideal is primary
> every prime ideal is primary
» if Q is primary, then \/Q is prime



Definition (primary decomposition)

Let / € R be an ideal. A primary decomposition of [ is a

representation
I=@N---NQ

as intersection of finitely many primary ideals Q;.The decomposition
is irredundant if no Q; 2 ﬂl-# Qj and /Q; are all distinct.

Example
= (3 09) = () 0 (62, 7)
=(x)N (%)
= ()N (x% ox +y)
for any c € R.



Theorem (Lasker-Noether)

Every ideal | in a Noetherian ring has an irredundant primary
decomposition | = Q1 N ---N Q. The ideals in the set

Ass(l) = {\/61, e \/a,}

are called associated primes of I. Ass(l) does not depend on the
particular primary decomposition.

» for every P € Ass(/) there exists a w € R such that P=1/:w

» w is called a witness of P in /



Example
= () = ()N (2,y) = ()0 (62 x + )

pss() = {00 /20 | = 1060 )
= (Voo e = (0

(x)=1:(y),
(y)=1:(x).

> y is a witness of (x) in /,

> x is a witness of (x,y) in /.



associated primes of binomial ideals

I = (x" —agx", ..., x" —asx™) C K[x1,..., x|

Theorem (Eisenbud, Sturmfels, 1994)

If | is a binomial ideal, then

» | has a primary decomposition such that all primary
components are binomial,

» the radical of | is binomial,

» all associated primes of | are binomial.



associated primes of monomial ideals

Let / be a monomial ideal in R = K|[xq,...,x].

» | has a primary decomposition such that all primary
components are monomial,

> all associated primes of / are monomial, i.e.,
Ass(1) C {(x1),(x2)s -, (X)), (X1, %2)5 - oo (X125 - -y %) T

» all witnesses are monomial, i.e., for every P € Ass(/) there
exists a monomial x? such that P =/ : x°.



I'=(xy, vz, XZ) (X y) m(x z) m(y,Z)
12 = (x?y?,xy%z,x%yz, y?Zz?, xyz?, x*2?)

> 12 X.y:(y7)
>12yx—(xz)
> 12 2% = (x.y)

> /2-xyz= (x,y,2)

Ass(1?) C { (x) (v) (z)

(X,y\)/ (X,zz/ (y,Z\)/
(X,y,\Z)}

The set of associated primes of an ideal changes when looking at
its powers.



Associated primes of powers of ideals



Example

P = (2 x 2 minors of a 3 X 3 matrix)
= (ae — bd, af —cd,...)
g K[aa b7 C7d7e7 f7g7h7 I7.j]

> Qo
-0 o

~. 0

is a binomial prime ideal.
P? has primary decomposition
P? = (P? + (det M)) N (P? + m).

» Powers of prime ideals are not necessarily primary.

» Associated primes can change when looking at powers of an
ideal:

Ass(P) = {P},
Ass(P?) = {P,m}.



Theorem (Kim, Swanson, 2019)

Let m>3, vi, ..., viy € N. Then there exists a polynomial ring R
in Y v; variables with a prime ideal P such that for all integers
e > 2, P¢ has [ vi embedded primes.

Construction of such ideals:

(3 — yzy? — xz,2> — X%y)
1 spreading of |

3 2 2 2
(x> —yz,y° —xz,z2° — x°y,z1 — Z,...,Zm-3 — Z)
1 splitting the variables x; — x11 - - - x1,

P

Example

There exists a prime ideal P in 11 -2 = 22 variables such that P¢
has 211 = 2048 embedded primes for all e > 2.



Theorem (Brodmann, 1979)

The sequence (Ass(I™))nen stabilizes.

stability index of I: smallest BL € N such that for all n > BL

Ass(I") = Ass(IB’:)

» How does the sequence (Ass(/"))nen behave?
(increasing/decreasing?)

» When does (Ass(/"))nen stabilize?
» Can we give an upper bound for BL for monomial ideals?

» On which parameters does such a bound depend?



Example (Weinstein, Swanson, 2020)
For every d € N:

I = (a%"2y,a% by, ab?tly b92y a9b%xy) C Kla, b, x, y]

{(a, b),(y),(a,b,x)}, forn<d

Ass(l") = {{(a, b), ()}, forn>d’

BL =d

degree



Example (Martinez-Bernal, Morey, Villarreal, 2012)
Edge ideals of odd cycles of length 25 + 1 :

I = (x1x2, X2X3, X3X4., . . . , XosXas41, X2s+1X1) © K[x1, ..., X2s41].

» n <s: Ass(/") = {prime ideals generated by s + 1 variables}
» n>s: Ass(I") = Ass(/) U {m}

BL=s

number of generators and variables



persistence index of /: smallest integer B such that

Ass(1™) C Ass(1"1) for all n > Blg.

copersistence index of /: smallest integer BL, such that

Ass(I™) D Ass(1"1) for all n > BIQ.

stability index = max{B’g, B’Q}



I monomial ideal in K[xi, ..., x|
» r — number of variables
» s — number of generators

» d — maximal total degree of the generators

Theorem (Hoa, 2006)

> BL < s™3(s+r)*d? (2d2)52_erl

> B’2 < d(rs+s+d)(Vr) r+1 (v2d)(r+1)(s=1)

Example

I = (a® b, a%b, ab®, ca*b*, a*xy?, b*x?y) C K]a, b, c, x, y]
> r=5s=7,d=9
» upper bound ~ 10108
> stability index: 4



Theorem (Heuberger, R., Rissner, 2024)

BL < (rs+r+2)(vVr)"(d+1)* =01

Hoa: BL, < d(rs+s+d) (v/7) T (V2d) (DD = oy

oo > dv2 i 1 o
“\vezri) var !

Example

| = (&% b°,a%b, ab®, ca*b*, a*xy?, b*x%y) C K]a, b, ¢, x, y]
> o1~ 3-10%
> oy~ 3-10%



Squarefree monomial ideals: edge ideals and cover ideals

Ass(J ) = { (x1,%5) (x1,x2)

(x3, Xa) (x2,x3)
(x4, x5) (%3, X6)
(x5, X6) (x4, x6) }

J = ( minimal vertex covers )

= (X1X2XaX6 , X1X3XaX5, . . . )



Connection to graph theory

Let G be a graph and [ its edge ideal:

graph theoretical tools

minimal vertex covers — minimal associated primes of /
matching number —  (Ass(I™))nen is increasing

generalized ear decompositions —  fully describe (Ass(/"))nen

Let H be a hypergraph and J its cover ideal:
chromatic number ——  lower bound for the stability index

graph colorings —  fully describe (Ass(J"))nen



Some known results about the changes of Ass(/")

e edge ideals [Martinez-Bernal, Morey, Villarreal, 2012]
e cover ideals of perfect graphs [Francisco, Ha, Tuyl, 2011]
e ideals with all powers integrally closed [Ratliff, 1984]

(Ass(1"))nen is increasing

e ideals can be constructed with
o (Ass(1"))nen not increasing
® (Ass(/"))nen not monotone [McAdam, Eakin, 1979]
e BL arbitrarily large [Ha, Nguyen, Trung, Trung, 2021]

e conjecture [J. Herzog|: if I square-free, BL < r —1

e upper bound for BL of general monomial ideals



Algebraic statistics: primary decompositions of
conditional independence ideals



What is algebraic statistics?

» many questions in statistics are fundamentally problems of
algebra and algebraic geometry

> apply tools from
» algebraic geometry,

» commutative algebra,
» combinatorics, and

» symbolic computation

to problems in probability theory, statistics, and their
applications



Some history

First connections between algebra and statistics:

» Raj Chandra Bose, 1947: first link between the geometry of

finite fields and construction of designs
“It is a startling idea that Galois fields might be helpful to
provide people with more and better food - Levi

» UIf Grenander, 1963: algebraic structures to describe central
limit theorems in complex settings

» Persi Diaconis, 1988: representation theoretic methods in the
analysis of discrete data

“Algebraic statistics’ started with

» Persi Diaconis and Bernd Sturmfels, 1998: Algebraic
algorithms for sampling from conditional distributions

» Giovanni Pistone, Eva Riccomagno, and Henry P. Wynn, 2001:
Algebraic Statistics



An introductory example (part 1)

» Xji, X2, X3 random variables on {0,1}
» probability that X; =i, Xo =  and X3 =k is

P(Xl = i,X2 :_j,X3 = k) = Pijk
> joint distribution of Xj, X2 and X3 is a point

(P0007 P100, P010, Po01, P110, P101, P0O11, P111) €R®

probability distribution <«— point



Notation and some definitions

X = (X1,...,Xm) m-dimensional random vector
> values in X =[[12; &;

> assume that the joint probability distribution of X has a
density function f

For A C [m], write
» Xa = (X5)aca, and

> XA = HaeA _e



Definition (marginal density)

fa(x) = /X f(xa, X\ A) dV[mpA(Xm]\4), XA € Xa.
{m\A

Example

X = (X1, X2, X3) discrete random vector,
> X; takes valuesin [rj], rr € N
» X takes values in [r1] X [r2] X [r3].
> P(X1=1i,Xo=j,X3=k)=pji

If A={1,2}, then

P(Xi=i, % =j)= > pjk= pij+
kE[r3]



Definition (conditional density)
A, B C [m] disjoint and xg € Xg. The conditional density of Xa

given Xg = xg is

favebaxe) -~ if fo(xg) > 0,

Folxa | xa) = fe(xg)
AIB(A’ B) {o’ otherwise.

Example
X = (X1, X2, X3) as before, A= {1,2}, B = {3}

Pijk 'f <0
P(X1=1i,Xa=j| X3 =k) = Prix’ T Ptk >0,
0, otherwise.



Conditional independence

A, B, C C [m] pairwise disjoint; X4 is conditionally independent of
Xg given Xc, if

fau|c(xa, x8 | xc) = fajc(xa | xc) - fgjc(xs | xc)-
Write Xa L Xg | Xc (sometimes also A Il B | C).
If Xa 1L Xg | Xc and x¢ such that fc(xc) > 0, then

fauBuc(xa, xg, xc)
feuc(xs, xc)
faus|c(xa; x | xc)fc(xc)

fe|c(xB | xc)fc(xc) Alc(xa | xc)

fapuc(xa | xg,xc) =

“given X¢, knowing Xg does not give any information about X4"



An introductory example (part 2)

> Xi, X, X3 Markov chain on {0,1}, i.e., X3 1L X | X, or

P(Xs=k| Xy =i,X2=Jj)=P(X5=k| Xo=).

» That is,

Pijk_ Ptjk for all i,j, k € {0,1}
Pij+  P+j+

> ...expanding and simplifying gives

Pooop101 — Poo1P1oo = 0, and
po1op111 — Po11P110 = 0.



An introductory example (part 2)

A vector (pooo, P100; Po10, Poo1; P110; P1o1; Poi, Pii1) € RE is the
probability distribution from the Markov chain model iff:

> pjik > 0 forall i, j, k € {0,1},
> D ik Pik =1,
> poooP101 — Poo1Pioo = 0, and

» poiop111 — porrpiio = 0.

statistical model <+— (semi)algebraic set



Dictionary (Seth Sullivant: Algebraic Statistics, 2018)

Probability /Statistics

probability distribution
statistical model

exponential family

conditional inference
maximum likelihood estimation
model selection

multivariate gaussian model
phylogenetic model

MAP estimates

Algebra/Geometry
point

(semi)algebraic set

toric variety

lattice points in polytopes
polynomial optimization
geometry of singularities
spectrahedral geometry
tensor networks

tropical geometry



Conditional independence ideals

Q: Given a list of conditional indepenence statements, what other
constraints must the same random vector satisfy?

» assuming we do not know the density (otherwise we could test
all constraints)

» Which implications hold regardless of the distribution?
> A few obvious implications:

Xa L Xg | Xe = Xg 1L Xa | Xc  Symmetry
Xa 1L Xgup | Xe = Xa LL Xg | Xc Decomposition

» In general, finding such implications is difficult, and

» it is impossible to find a finite set of axioms from which all Cl
statements can be deduced (Milan Studeny, 1992)



