

May 16, 2024
Primary decompositions, associated primes, and applications in algebraic statistics

Jutta Rath

FUF

Primary decompositions and associated primes

$$
180=2^{2} \cdot 3^{2} \cdot 5 \quad-\cdots \quad 2 \quad 3
$$

$$
X^{3}-X Y^{3}
$$

$$
X^{2}-Y^{3}
$$

associated primes of $180 \mathbb{Z}: \quad\{2 \mathbb{Z}, 3 \mathbb{Z}, 5 \mathbb{Z}\}$ associated primes of $\left(X^{3}-X Y^{3}\right): \quad\left\{\left(X^{2}-Y^{3}\right),(X)\right\}$

$$
I=\left(x_{1} x_{2}, x_{2} x_{3}, x_{2} x_{4}\right)
$$

edge ideals

$\left(x_{1}, x_{3}, x_{4}\right)$

$-\rightarrow \quad$ minimal vertex covers
associated primes of $I:\left\{\left(x_{2}\right),\left(x_{1}, x_{3}, x_{4}\right)\right\}$

Definition (primary ideal)

An ideal $Q \subsetneq R$ is called primary if whenever $f \cdot g \in Q$, then

- either $f \in Q$, or
- there exists an $n \in \mathbb{N}$ such that $g^{n} \in Q$.
- every irreducible ideal is primary
- every prime ideal is primary
- if Q is primary, then \sqrt{Q} is prime

Definition (primary decomposition)

Let $I \subseteq R$ be an ideal. A primary decomposition of I is a representation

$$
I=Q_{1} \cap \cdots \cap Q_{r}
$$

as intersection of finitely many primary ideals Q_{i}. The decomposition is irredundant if no $Q_{i} \supseteq \bigcap_{i \neq j} Q_{j}$ and $\sqrt{Q_{i}}$ are all distinct.

Example

$$
\begin{aligned}
I=\left(x^{2}, x y\right) & =\left(x^{2}, x\right) \cap\left(x^{2}, y\right) \\
& =(x) \cap\left(x^{2}, y\right) \\
& =(x) \cap\left(x^{2}, c x+y\right)
\end{aligned}
$$

for any $c \in \mathbb{R}$.

Theorem (Lasker-Noether)

Every ideal I in a Noetherian ring has an irredundant primary decomposition $I=Q_{1} \cap \cdots \cap Q_{r}$. The ideals in the set

$$
\operatorname{Ass}(I):=\left\{\sqrt{Q_{1}}, \ldots, \sqrt{Q_{r}}\right\}
$$

are called associated primes of I. Ass (I) does not depend on the particular primary decomposition.

- for every $P \in \operatorname{Ass}(I)$ there exists a $w \in R$ such that $P=I: w$
- w is called a witness of P in I

Example

$$
\begin{aligned}
& I=\left(x^{2}, x y\right)=(x) \cap\left(x^{2}, y\right)=(x) \cap\left(x^{2}, x+y\right) \\
& \qquad \begin{aligned}
& \operatorname{Ass}(I)=\left\{\sqrt{(x)}, \sqrt{\left(x^{2}, y\right)}\right\}=\{(x),(x, y)\} \\
&=\left\{\sqrt{(x)}, \sqrt{\left(x^{2}, x+y\right)}\right\}=\{(x),(x, y)\} \\
&(x)=I:(y) \\
&(x, y)=I:(x) .
\end{aligned}
\end{aligned}
$$

- y is a witness of (x) in I,
- x is a witness of (x, y) in I.

associated primes of binomial ideals

$$
I=\left(x^{u_{1}}-\alpha_{1} x^{v_{1}}, \ldots, x^{u_{s}}-\alpha_{s} x^{v_{s}}\right) \subseteq K\left[x_{1}, \ldots, x_{r}\right]
$$

Theorem (Eisenbud, Sturmfels, 1994)

If I is a binomial ideal, then

- I has a primary decomposition such that all primary components are binomial,
- the radical of I is binomial,
- all associated primes of I are binomial.

associated primes of monomial ideals

Let l be a monomial ideal in $R=K\left[x_{1}, \ldots, x_{r}\right]$.

- I has a primary decomposition such that all primary components are monomial,
- all associated primes of I are monomial, i.e.,

$$
\operatorname{Ass}(I) \subseteq\left\{\left(x_{1}\right),\left(x_{2}\right), \ldots,\left(x_{r}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{1}, \ldots, x_{r}\right)\right\}
$$

- all witnesses are monomial, i.e., for every $P \in \operatorname{Ass}(I)$ there exists a monomial x^{a} such that $P=I: x^{a}$.
$I=(x y, y z, x z)=(x, y) \cap(x, z) \cap(y, z)$
$I^{2}=\left(x^{2} y^{2}, x y^{2} z, x^{2} y z, y^{2} z^{2}, x y z^{2}, x^{2} z^{2}\right)$
- $I^{2}: x^{2} y=(y, z)$
- $I^{2}: y^{2} x=(x, z)$
- $I^{2}: z^{2} y=(x, y)$
- $I^{2}: x y z=(x, y, z)$
$\operatorname{Ass}\left(I^{2}\right) \subseteq\{\quad(x) \quad(y) \quad(z)$
(x, y)

$$
\left.\begin{array}{l}
(x, z) \\
(x, y, z)
\end{array}\right\}
$$

(y, z)

The set of associated primes of an ideal changes when looking at its powers.

Associated primes of powers of ideals

Example

$$
\begin{aligned}
P & =(2 \times 2 \text { minors of a } 3 \times 3 \text { matrix }) \\
& =(a e-b d, a f-c d, \ldots) \\
& \subseteq K[a, b, c, d, e, f, g, h, i, j] \quad\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
h & i & j
\end{array}\right)
\end{aligned}
$$

is a binomial prime ideal.
P^{2} has primary decomposition

$$
P^{2}=\left(P^{2}+(\operatorname{det} M)\right) \cap\left(P^{2}+\mathfrak{m}\right) .
$$

- Powers of prime ideals are not necessarily primary.
- Associated primes can change when looking at powers of an ideal:

$$
\begin{aligned}
\operatorname{Ass}(P) & =\{P\} \\
\operatorname{Ass}\left(P^{2}\right) & =\{P, \mathfrak{m}\}
\end{aligned}
$$

Theorem (Kim, Swanson, 2019)

Let $m \geq 3, v_{1}, \ldots, v_{m} \in \mathbb{N}$. Then there exists a polynomial ring R in $\sum v_{i}$ variables with a prime ideal P such that for all integers $e \geq 2$, P^{e} has $\prod v_{i}$ embedded primes.

Construction of such ideals:

$$
\begin{gathered}
\left(x^{3}-y z, y^{2}-x z, z^{2}-x^{2} y\right) \\
\downarrow \text { spreading of } / \\
\left(x^{3}-y z, y^{2}-x z, z^{2}-x^{2} y, z_{1}-z, \ldots, z_{m-3}-z\right) \\
\downarrow \text { splitting the variables } x_{i} \mapsto x_{11} \cdots x_{1 v_{i}} \\
P
\end{gathered}
$$

Example

There exists a prime ideal P in $11 \cdot 2=22$ variables such that P^{e} has $2^{11}=2048$ embedded primes for all $e \geq 2$.

Theorem (Brodmann, 1979)

The sequence $\left(\operatorname{Ass}\left(I^{n}\right)\right)_{n \in \mathbb{N}}$ stabilizes.

Definition

stability index of I : smallest $B_{=}^{I} \in \mathbb{N}$ such that for all $n \geq B_{=}^{I}$

$$
\operatorname{Ass}\left(I^{n}\right)=\operatorname{Ass}\left(I^{\mathrm{B}^{\prime}}\right)
$$

- How does the sequence $\left(\operatorname{Ass}\left(I^{n}\right)\right)_{n \in \mathbb{N}}$ behave? (increasing/decreasing?)
- When does $\left(\operatorname{Ass}\left(I^{n}\right)\right)_{n \in \mathbb{N}}$ stabilize?
- Can we give an upper bound for $\mathrm{B}_{=}^{l}$ for monomial ideals?
- On which parameters does such a bound depend?

Example (Weinstein, Swanson, 2020)

For every $d \in \mathbb{N}$:

$$
I=\left(a^{d+2} y, a^{d+1} b y, a b^{d+1} y, b^{d+2} y, a^{d} b^{2} x y\right) \subseteq K[a, b, x, y]
$$

$$
\operatorname{Ass}\left(I^{n}\right)=\left\{\begin{array}{ll}
\{(a, b),(y),(a, b, x)\}, & \text { for } n<d \\
\{(a, b),(y)\}, & \text { for } n \geq d
\end{array} .\right.
$$

$$
\mathrm{B}_{=}^{\prime}=d
$$

degree

Example (Martínez-Bernal, Morey, Villarreal, 2012)

Edge ideals of odd cycles of length $2 s+1$:

$$
I=\left(x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}, \ldots, x_{2 s} x_{2 s+1}, x_{2 s+1} x_{1}\right) \subseteq K\left[x_{1}, \ldots, x_{2 s+1}\right] .
$$

- $n \leq s: \operatorname{Ass}\left(I^{n}\right)=\{$ prime ideals generated by $s+1$ variables $\}$
- $n>s: \operatorname{Ass}\left(I^{n}\right)=\operatorname{Ass}(I) \cup\{\mathfrak{m}\}$

$$
\mathrm{B}_{=}^{\prime}=s
$$

number of generators and variables
persistence index of I : smallest integer B_{\subseteq}^{\prime} such that

$$
\operatorname{Ass}\left(I^{n}\right) \subseteq \operatorname{Ass}\left(I^{n+1}\right) \text { for all } n \geq \mathrm{B}_{\subseteq}^{\prime}
$$

copersistence index of I : smallest integer B_{\supseteq}^{\prime} such that

$$
\operatorname{Ass}\left(I^{n}\right) \supseteq \operatorname{Ass}\left(I^{n+1}\right) \text { for all } n \geq \mathrm{B}_{\supseteq}^{\prime} \text {. }
$$

$$
\text { stability index }=\max \left\{\mathrm{B}_{\subseteq}^{\prime}, \mathrm{B}_{\supseteq}^{\prime}\right\}
$$

I monomial ideal in $K\left[x_{1}, \ldots, x_{r}\right]$

- r - number of variables
- s - number of generators
- d - maximal total degree of the generators

Theorem (Hoa, 2006)

- $\mathrm{B}_{\subseteq}^{\prime} \leq s^{r+3}(s+r)^{4} d^{2}\left(2 d^{2}\right)^{s^{2}-s+1}$
- $\mathrm{B}_{\supseteq}^{\prime} \leq d(r s+s+d)(\sqrt{r})^{r+1}(\sqrt{2} d)^{(r+1)(s-1)}$

Example

$I=\left(a^{6}, b^{6}, a^{5} b, a b^{5}, c a^{4} b^{4}, a^{4} x y^{2}, b^{4} x^{2} y\right) \subseteq K[a, b, c, x, y]$

- $r=5, s=7, d=9$
- upper bound $\approx 10^{108}$
- stability index: 4

Theorem (Heuberger, R., Rissner, 2024)

$$
\mathrm{B}_{\supseteq}^{\prime} \leq(r s+r+2)(\sqrt{r})^{r+2}(d+1)^{r s}:=\sigma_{1}
$$

Hoa: $\mathrm{B}_{\supseteq}^{\prime} \leq d(r s+s+d)(\sqrt{r})^{r+1}(\sqrt{2} d)^{(r+1)(s-1)}:=\sigma_{2}$

$$
\sigma_{2} \geq\left(\frac{d \sqrt{2}}{\sqrt{d^{2}+1}}\right)^{r s} \frac{1}{\sqrt{2 r}} \cdot \sigma_{1}
$$

Example
$I=\left(a^{6}, b^{6}, a^{5} b, a b^{5}, c a^{4} b^{4}, a^{4} x y^{2}, b^{4} x^{2} y\right) \subseteq K[a, b, c, x, y]$

- $\sigma_{1} \approx 3 \cdot 10^{37}$
- $\sigma_{2} \approx 3 \cdot 10^{44}$

Squarefree monomial ideals: edge ideals and cover ideals

$$
\begin{aligned}
\operatorname{Ass}(J)=\left\{\begin{array}{ll}
\left(x_{1}, x_{5}\right) & \left(x_{1}, x_{2}\right) \\
\left(x_{3}, x_{4}\right) & \left(x_{2}, x_{3}\right) \\
\left(x_{4}, x_{5}\right) & \left(x_{3}, x_{6}\right) \\
& \left(x_{5}, x_{6}\right) \\
\left(x_{4}, x_{6}\right)
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
J & =(\text { minimal vertex covers }) \\
& =\left(x_{1} x_{2} x_{4} x_{6}, x_{1} x_{3} x_{4} x_{5}, \ldots\right)
\end{aligned}
$$

Connection to graph theory

Let G be a graph and I its edge ideal:
graph theoretical tools
minimal vertex covers $\quad \longrightarrow \quad$ minimal associated primes of I
matching number
$\longrightarrow \quad\left(\operatorname{Ass}\left(I^{n}\right)\right)_{n \in \mathbb{N}}$ is increasing
generalized ear decompositions \longrightarrow fully describe $\left(\operatorname{Ass}\left(I^{n}\right)\right)_{n \in \mathbb{N}}$

Let H be a hypergraph and J its cover ideal:
chromatic number \longrightarrow lower bound for the stability index
graph colorings $\quad \longrightarrow$ fully describe $\left(\operatorname{Ass}\left(J^{n}\right)\right)_{n \in \mathbb{N}}$

Some known results about the changes of $\operatorname{Ass}\left(I^{n}\right)$

- edge ideals [Martínez-Bernal, Morey, Villarreal, 2012]
- cover ideals of perfect graphs [Francisco, Hà, Tuyl, 2011]
- ideals with all powers integrally closed [Ratliff, 1984]

$$
\left(\operatorname{Ass}\left(I^{n}\right)\right)_{n \in \mathbb{N}} \text { is increasing }
$$

- ideals can be constructed with
- $\left(\operatorname{Ass}\left(I^{n}\right)\right)_{n \in \mathbb{N}}$ not increasing
- $\left(\text { Ass }\left(I^{n}\right)\right)_{n \in \mathbb{N}}$ not monotone [McAdam, Eakin, 1979]
- $B_{=}^{I}$ arbitrarily large [Hà, Nguyen, Trung, Trung, 2021]
- conjecture [J. Herzog]: if I square-free, $\mathrm{B}_{=}^{\prime} \leq r-1$
- upper bound for $B_{=}^{I}$ of general monomial ideals

Algebraic statistics: primary decompositions of conditional independence ideals

What is algebraic statistics?

- many questions in statistics are fundamentally problems of algebra and algebraic geometry
- apply tools from
- algebraic geometry,
- commutative algebra,
- combinatorics, and
- symbolic computation
to problems in probability theory, statistics, and their applications

Some history

First connections between algebra and statistics:

- Raj Chandra Bose, 1947: first link between the geometry of finite fields and construction of designs
> "It is a startling idea that Galois fields might be helpful to provide people with more and better food'"- Levi
- Ulf Grenander, 1963: algebraic structures to describe central limit theorems in complex settings
- Persi Diaconis, 1988: representation theoretic methods in the analysis of discrete data
"Algebraic statistics" started with
- Persi Diaconis and Bernd Sturmfels, 1998: Algebraic algorithms for sampling from conditional distributions
- Giovanni Pistone, Eva Riccomagno, and Henry P. Wynn, 2001: Algebraic Statistics

An introductory example (part 1)

- X_{1}, X_{2}, X_{3} random variables on $\{0,1\}$
- probability that $X_{1}=i, X_{2}=j$ and $X_{3}=k$ is

$$
P\left(X_{1}=i, X_{2}=j, X_{3}=k\right)=: p_{i j k}
$$

- joint distribution of X_{1}, X_{2} and X_{3} is a point

$$
\left(p_{000}, p_{100}, p_{010}, p_{001}, p_{110}, p_{101}, p_{011}, p_{111}\right) \in \mathbb{R}^{8}
$$

probability distribution \longleftrightarrow point

Notation and some definitions

$X=\left(X_{1}, \ldots, X_{m}\right) m$-dimensional random vector

- values in $\mathcal{X}=\prod_{i=1}^{m} \mathcal{X}_{i}$
- assume that the joint probability distribution of X has a density function f

For $A \subseteq[m]$, write

- $X_{A}:=\left(X_{a}\right)_{a \in A}$, and
- $\mathcal{X}_{A}:=\prod_{a \in A} \mathcal{X}_{a}$

Definition (marginal density)

$$
f_{A}(x):=\int_{\mathcal{X}_{[m] \backslash A}} f\left(x_{A}, x_{[m] \backslash A}\right) d \nu_{[m] \backslash A}\left(x_{[m] \backslash A}\right), \quad x_{A} \in \mathcal{X}_{A} .
$$

Example

$X=\left(X_{1}, X_{2}, X_{3}\right)$ discrete random vector,

- X_{i} takes values in $\left[r_{i}\right], r_{i} \in \mathbb{N}$
- X takes values in $\left[r_{1}\right] \times\left[r_{2}\right] \times\left[r_{3}\right]$.
- $P\left(X_{1}=i, X_{2}=j, X_{3}=k\right)=p_{i j k}$

If $A=\{1,2\}$, then

$$
P\left(X_{1}=i, X_{2}=j\right)=\sum_{k \in\left[r_{3}\right]} p_{i j k}=: p_{i j+}
$$

Definition (conditional density)

$A, B \subseteq[m]$ disjoint and $x_{B} \in \mathcal{X}_{B}$. The conditional density of X_{A} given $X_{B}=x_{B}$ is

$$
f_{A \mid B}\left(x_{A} \mid x_{B}\right)= \begin{cases}\frac{f_{A \cup B}\left(x_{A}, x_{B}\right)}{f_{B}\left(x_{B}\right)}, & \text { if } f_{B}\left(x_{B}\right)>0, \\ 0, & \text { otherwise }\end{cases}
$$

Example
$X=\left(X_{1}, X_{2}, X_{3}\right)$ as before, $A=\{1,2\}, B=\{3\}$

$$
P\left(X_{1}=i, X_{2}=j \mid X_{3}=k\right)= \begin{cases}\frac{p_{i j k}}{p_{++k}}, & \text { if } p_{++k}>0 \\ 0, & \text { otherwise }\end{cases}
$$

Conditional independence

Definition

$A, B, C \subseteq[m]$ pairwise disjoint; X_{A} is conditionally independent of X_{B} given X_{C}, if

$$
f_{A \cup B \mid C}\left(x_{A}, x_{B} \mid x_{C}\right)=f_{A \mid C}\left(x_{A} \mid x_{C}\right) \cdot f_{B \mid C}\left(x_{B} \mid x_{C}\right)
$$

Write $X_{A} \Perp X_{B} \mid X_{C}$ (sometimes also $A \Perp B \mid C$).
If $X_{A} \Perp X_{B} \mid X_{C}$ and x_{C} such that $f_{C}\left(x_{C}\right)>0$, then

$$
\begin{aligned}
f_{A \mid B \cup C}\left(x_{A} \mid x_{B}, x_{C}\right) & =\frac{f_{A \cup B \cup C}\left(x_{A}, x_{B}, x_{C}\right)}{f_{B \cup C}\left(x_{B}, x_{C}\right)} \\
& =\frac{f_{A \cup B \mid C}\left(x_{A}, x_{B} \mid x_{C}\right) f_{C}\left(x_{C}\right)}{f_{B \mid C}\left(x_{B} \mid x_{C}\right) f_{C}\left(x_{C}\right)}=f_{A \mid C}\left(x_{A} \mid x_{C}\right) .
\end{aligned}
$$

"given X_{C}, knowing X_{B} does not give any information about X_{A} "

An introductory example (part 2)

- X_{1}, X_{2}, X_{3} Markov chain on $\{0,1\}$, i.e., $X_{3} \Perp X_{1} \mid X_{2}$, or

$$
P\left(X_{3}=k \mid X_{1}=i, X_{2}=j\right)=P\left(X_{3}=k \mid X_{2}=j\right)
$$

- That is,

$$
\frac{p_{i j k}}{p_{i j+}}=\frac{p_{+j k}}{p_{+j+}} \quad \text { for all } i, j, k \in\{0,1\}
$$

- ...expanding and simplifying gives

$$
\begin{aligned}
& p_{000} p_{101}-p_{001} p_{100}=0, \text { and } \\
& p_{010} p_{111}-p_{011} p_{110}=0 .
\end{aligned}
$$

An introductory example (part 2)

A vector $\left(p_{000}, p_{100}, p_{010}, p_{001}, p_{110}, p_{101}, p_{011}, p_{111}\right) \in \mathbb{R}^{8}$ is the probability distribution from the Markov chain model iff:

- $p_{i j k} \geq 0$ for all $i, j, k \in\{0,1\}$,
- $\sum_{i, j, k} p_{i j k}=1$,
- $p_{000} p_{101}-p_{001} p_{100}=0$, and
- $p_{010} p_{111}-p_{011} p_{110}=0$.
statistical model \longleftrightarrow (semi)algebraic set

Dictionary (Seth Sullivant: Algebraic Statistics, 2018)

Probability/Statisticsprobability distributionstatistical modelexponential familyconditional inferencemaximum likelihood estimationmodel selectionmultivariate gaussian modelphylogenetic modelMAP estimates

Algebra/Geometry

point
(semi)algebraic set
toric variety
lattice points in polytopes
polynomial optimization geometry of singularities
spectrahedral geometry
tensor networks
tropical geometry

Conditional independence ideals

Q: Given a list of conditional indepenence statements, what other constraints must the same random vector satisfy?

- assuming we do not know the density (otherwise we could test all constraints)
- Which implications hold regardless of the distribution?
- A few obvious implications:

$$
\begin{aligned}
X_{A} \Perp X_{B} \mid X_{C} & \Longrightarrow X_{B} \Perp X_{A} \mid X_{C} \\
X_{A} \Perp X_{B \cup D} \mid X_{C} & \Longrightarrow X_{A} \Perp X_{B} \mid X_{C}
\end{aligned} \quad \text { Decomposition }
$$

- In general, finding such implications is difficult, and
- it is impossible to find a finite set of axioms from which all Cl statements can be deduced (Milan Studený, 1992)

