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Sumsets

Let G be an abelian group.

Definition
For A,B ⊆ G , their sumset is

A+ B = {a+ b : a ∈ A, b ∈ B}, 2A := A+ A

Small Sumset =⇒ “Structure”

Theorem (Folklore)

For finite, nonempty A, B ⊆ Z, we have

|A+ B| ≥ |A|+ |B| − 1.

If equality holds, then A and B are arithmetic progressions with common
difference (or |A| = 1 or |B| = 1).
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3k − 4 Theorem

Theorem (3k − 4 Theorem)
Let A, B ⊆ Z be finite and nonempty with |A| ≥ |B| and

|A+ B| = |A|+ |B|+ r ≤ |A|+ 2|B| − 3− δ,

where

δ =

{
1 if A = (minA−minB) + B,
0 otherwise.

Then there are arithmetic progressions PA, PB , PA+B ⊆ Z having
common difference such that

X ⊆ PX and |PX | ≤ |A|+ r + 1 for all X ∈ {A,B},

PA+B ⊆ A+ B and |PA+B | ≥ |A|+ |B| − 1.

Freiman (1962); Lev and Smeliansky (1995); Freiman (2009); Bardaji
and G (2010); G (2013)
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Some Examples: r is tight

A :

|A| − r − 1

︸ ︷︷ ︸
2(r + 1)︷ ︸︸ ︷s s s s s s s c s c s c s c s c s c s c s

B :

|B| − r − 1

︸ ︷︷ ︸
2(r + 1)︷ ︸︸ ︷s s s s s c s c s c s c s c s c s c s

A+ B :

|A|+ |B| − 1

︸ ︷︷ ︸
2(r + 1)︷ ︸︸ ︷s s s s s s s c s c s c s c s c s c s c s



Extension modulo p

Definition (General Setup)
G = Z/pZ with p ≥ 2 prime, A,B ⊆ G nonempty, A+ B ̸= G ,
|A| ≥ |B|, C := −(A+B)c = −G \ (A+B) and |A+B| = |A|+ |B|+ r .

Definition (Target Conclusion)
There exist arithmetic progressions PA, PB , PC ⊆ G of common
difference with X ⊆ PX and |PX | ≤ |X |+ r + 1 for all X ∈ {A,B,C}.

Conjecture
Assume General Setup. If

|A+ B| ≤ (|A|+ |B|) + |B| − 3− δB and |A+ B| ≤ p − r − 3− δC ,

then Target Conclusions hold.

▶ Upshot: 3k − 4 Theorem should in Z/pZ too so long as A+ B isn’t
too large

▶ Much partial Progress. General Idea: Impose additional small
doubling and density constraints to obtain Target Conclusions.
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PC vs. PA+B

▶ Why does PC replace PA+B?

▶ For X ⊆ G , let X c := G \ X .

▶ Recall C = −(A+ B)c.

▶ Set PA+B = −(PC )
c

▶ C ⊆ PC ⇐⇒

PA+B =

− (PC )
c ⊆ −C c

= A+ B

▶ |PC | ≤ |C |+ r + 1 ⇐⇒ |PA+B | ≥ |A|+ |B| − 1

|PA+B | = p − |PC | ≥ p − |C | − r − 1 = |A+ B| − r − 1 = |A|+ |B| − 1
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Ideal Density implies (1− ϵ) Density

▶ Suppose Target Conclusions holds if |A+ B| ≤ p − r − 3 and
|A+ B| ≤ (|A|+ |B|) + α|B| − 3

▶ Goal: Given any small ϵ > 0, we want to show there is some α′ > 0
such that |A+ B| ≤ (1− ϵ)p and
|A+ B| = (|A|+ |B|) + r ≤ (|A|+ |B|) + α′|B| − 3 also yields
Target Conclusions.

▶ If (1− ϵ)p ≤ p − r − 3, we can take α′ = α.

▶ So we need r + 3 ≤ ϵp

▶ Since A+ B ̸= G , easy pigeonhole argument shows
2|B| ≤ |A|+ |B| ≤ p. Hence |B| ≤ p

2 .

▶ Thus r + 3 ≤ α′|B| < α′ p
2 , so its true for α′ ≤ 2ϵ

▶ Summary:

|A+ B| ≤ (|A|+ |B|) + 2ϵ|B| − 3 and |A+ B| ≤ (1− ϵ)p

ensure A, B and C contained in small length arithmetic progressions
(for small ϵ < 1

2α.)
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Partial Progress: Low Density

|A+ B| = |A|+ |B|+ r ≤ (|A|+ |B|) + α|B| − 3, where α ∈ (0, 1]

▶ Results for very low density follow from more general “rectification”
principles.

▶ Low density implies “isomorphic” to a sumset A′ + B ′ ⊆ Z.
▶ |A ∪ B| ≤ log4 p −→ Bilu, Lev, Ruzsa (1998)

▶ |A ∪ B| ≤ ⌈log2 p⌉ −→ Lev (2008), + technical issue G. (2013)

▶ A = B and |A| ≤ cp with c = (1/96)108 −→ Green, Ruzsa
(2006)
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Partial Progress: Mid-Range Density

|A+ B| = |A|+ |B|+ r ≤ (|A|+ |B|) + α|B| − 3, where α ∈ (0, 1]

▶ “Balanced” approach with tangible constants both for the density
and small doubling constraints

▶ A = B: Freiman (1960s), Rodseth (2006), Candela, Serra and
Spiegel (2020), Lev and Shkredov (2020), Lev and Serra (2020)
▶ |A+ A| ≤ 2|A|+ (0.4)|A| − 3 and |A| ≤ (0.02857)p
▶ |A+ A| ≤ 2|A|+ (0.4)|A| − 3 and |A| ≤ (0.093457)p
▶ |A+ A| ≤ 2|A|+ (0.48)|A| − 7 and |A| < (0.0000000001)p
▶ |A+ A| ≤ 2|A|+ (0.59)|A| − 3 and 101 ≤ |A| < (0.0045)p
▶ |A+ A| < 2|A|+ (0.7652)|A| − 3 and 10 ≤ |A| < (0.00000125)p

▶ In many cases, “flexible” versions are available: density restriction
grows stronger as small doubling constraint gets weaker.

▶ (0.001)|A|2/3 ≤ |B| ≤ |A|, |A+ B| ≤ (|A|+ |B|) + (0.03)|B| and
|A| < (0.0045)p −→ Huichochea (2022)
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|A| < (0.0045)p −→ Huichochea (2022)



Partial Progress: High/Ideal Density

|A+ B| = |A|+ |B|+ r ≤ (|A|+ |B|) + α|B| − 3, where α ∈ (0, 1]

▶ A = B, |A+ A| ≤ 2|A|+ (0.136)|A| − 3 and |A+ A| ≤ (0.75)p.
−→ Candela, González-Sánchez and G. (2022)

▶ r ≤ cp − 1.2 with c = 1.4× 10−63951

▶ Why does a r ≤ cp restriction count as High density?

▶ A+ B ̸= G implies |B| ≤ p
2 (easy pigeonhole argument)

▶ If α ≤ 2c , small doubling hypothesi rephrases as
r ≤ α|B| − 3 ≤ (2c) p2 − 3 = cp − 3.

▶ This gives no density restriction for |A+ B| ≤ |A|+ (1 + 2c)|B| − 3.
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−→ Candela, González-Sánchez and G. (2022)

▶ r ≤ cp − 1.2 with c = 1.4× 10−63951

▶ Why does a r ≤ cp restriction count as High density?

▶ A+ B ̸= G implies |B| ≤ p
2 (easy pigeonhole argument)

▶ If α ≤ 2c , small doubling hypothesi rephrases as
r ≤ α|B| − 3 ≤ (2c) p2 − 3 = cp − 3.

▶ This gives no density restriction for |A+ B| ≤ |A|+ (1 + 2c)|B| − 3.



Partial Progress: High/Ideal Density

|A+ B| = |A|+ |B|+ r ≤ (|A|+ |B|) + α|B| − 3, where α ∈ (0, 1]

▶ A = B, |A+ A| ≤ 2|A|+ (0.136)|A| − 3 and |A+ A| ≤ (0.75)p.
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Ideal Density

Theorem (Serra and Zémor 2009)
Assume General Setup. If |A| ≥ 4, p > 294,

|A+ A| ≤ 2|A|+ (0.0001)|A| and |A+ A| ≤ p − r − 3,

then Target Conclusions hold.

Theorem (G. 2024)
Assume General Setup. If

|A+ B| ≤ (|A|+ |B|) + (0.01)|A| − 3 and |A+ B| ≤ p − r − 3,

then Target Conclusions hold.
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Ideas for the Proof: Additive Trios

Definition (Boothbay, DeVos, Montejano 2015)
Let G be a finite abelian group; let A,B,C ⊆ G be nonempty sets. Then
(A,B,C ) is and additive trio if A+ B + C ̸= G with
r(A,B,C ) := |G | − |A| − |B| − |C |.

Example
A,B ⊆ G , C := −(A+ B)c, |A+ B| = |A|+ |B|+ r . Then (A,B,C ) is
an additive trio, since

0 /∈ (A+ B)− (A+ B)c = A+ B + C ,

with r(A,B,C ) = |G | − |A| − |B| − (|G | − |A| − |B| − r) = r

▶ |A+ B| = |A|+ |B|+ r ≤ (|A|+ |B|) + α|B| − 3 and
|A+ B| ≤ p − α(r + 3) equivalent to |A|, |B|, |C | ≥ α−1(r + 3).
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Ideas for the Proof: Huicochea’s Reduction

Definition
For A ⊆ G and d ∈ G , let ℓd(A) be the minimal length of an arithmetic
progression with difference d containing A.

Theorem (Huicochea 2017; modified by G. 2024)
Let G = Z/pZ with p ≥ 2 prime, let (A,B,C ) be an additive trio from
G , and let r , h ∈ Z be integers.

1. If ℓd(A) ≤ |A|+ h for some d ∈ G \ {0}, r(A,B,C ) ≤ r ,
|A| ≥ r + 3 + h and |B| ≥ r + 3 + 2h with strict inequality in one of
these estimates, and |C | ≥ r + 3, then

ℓd(A) ≤ |A|+ r+1, ℓd(B) ≤ |B|+ r+1, and ℓd(C ) ≤ |C |+ r+1.

2. If ℓd(A) ≤ |A|+ h for some d ∈ G \ {0}, r(A,B,C ) ≤ h − 1,
h + 2 ≤ |A| ≤ max{|B|, |C |}, |B|, |C | ≥ h + 3 and 35h + 10 ≤ p,
then

ℓd(B) ≤ |B|+ h and ℓd(C ) ≤ |C |+ h.



Ideas for the Proof: Fourier Analysis

▶ Original Idea of Freiman: Use fourier analysis on G to get a “large”
subset A′ ⊆ A contained in an AP with length ≤ p+1

2 .

▶ This ensures A′ + A′ canonically isomorphic to an integer sumset.

▶ Apply the 3k − 4 Theorem in Z to A′ + A′ to get A′ contained in an
even smaller arithmetic progression

▶ Choose A′ ⊆ A maximal and show via a combinatorial argument
A′ = A forced.

▶ Problem 1: Simple extremal combinatorial argument for showing
A = A′ fails at higher densities |A+ A| > p+1

2 .

▶ Problem 2: Issues with Fourier calculation estimates when A ̸= B
and adapting the combinatorial argument for showing A = A′.
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Ideas for the Proof: Combinatorial Reduction

▶ Problem 1 resolved by Candela, González-Sánchez and G. (2022) for
A = B using vosper duality (i.e., additive trios).

▶ These arguments needed to be adapted from A+ A to A+ B (G.
2024)

Theorem (G. 2024)
Let p be prime, let A, B ⊆ Z/pZ be nonempty subsets with

|A+ B| = |A|+ |B|+ r ≤ 3

4
(p + 1) and p ≥ 4r + 9,

and set C = −(A+ B)c. Suppose there exist subsets A′ ⊆ A and B ′ ⊆ B
or A′ ⊆ B and B ′ ⊆ A such that A′ + B ′ rectifies, |B ′| ≤ |A′| and

|A′|+ 2|B ′| − 4 ≥ |A+ B|. (1)

Then Target Conclusions hold.
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Ideas for the Proof: Fourier Analysis

▶ Problem 2 resolved by modifying standard fourier sum estimates for
A+ A to improve constants for A+ B.

Definition
For A ⊆ G = Z/pZ, let SA(x) =

∑
a∈A exp(ax/p), where

exp(x) = e2πix ∈ C.

Lemma
If z1, . . . , zN ∈ C is a sequence of points lying on the complex unit circle
such that every open half-arc contains at most n of the terms zi for

i ∈ [1,N], then |
N∑
i=1

zi | ≤ 2n − N.
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The “Base Case”

Theorem (G. 2024)
Assume General Setup. Let β ∈ [0.731, 1] and α ∈ (0, 0.212] be real
numbers. Suppose

|A+ B| ≤ |A|+ (1 + α)|B| − 3 and β|A| ≤ |B| ≤ |A| ≤ f (α, β) p.

Then Target Conclusions hold.



Ideas for the proof: The Isoperimetric Method
▶ G abelian group, B ⊆ G finite and nonempty, k ≥ 1

▶ B is k-separable if there is some finite X ⊆ G with

|X | ≥ k and |(X + B)c| ≥ k .

▶ A k-fragment is a subset X ⊆ G (satisfying above constraints) with
|X + B| − |X | minimal.

▶ A minimal cardinality k-fragment is called a k-atom. We will need
good upper bounds for their size. (Serra and Zémor 2000, G. 2013).

▶ |A+ B| = |A|+ |B|+ r ≤ p − r − 3 with |B| ≥ r + 3 shows B is
(r + 3)-separable.

▶ Replace A by a (r + 3)-atom X . Then |X + B| ≤ |X |+ |B|+ r and
|X + B| ≤ p − r − 3.

▶ Repeat and replace B with a (r + 3)-atom Y for X .

▶ Strengthen the hypotheses and use 9(r + 3)-atoms instead. Then
X + Y satisfies the “base case” result hypotheses (calculation).

▶ Used Huichochea reduction argument transfers desired structure
back to A, B and C .
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▶ Strengthen the hypotheses and use 9(r + 3)-atoms instead. Then
X + Y satisfies the “base case” result hypotheses (calculation).

▶ Used Huichochea reduction argument transfers desired structure
back to A, B and C .
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Near Optimal Density

Theorem (G. 2024)
Assume General Setup. If

|A+ B| ≤ (|A|+ |B|) + 1

9
|B| − 3 and |A+ B| ≤ p − 29(r + 3),

then Target Conclusions hold.



Moving from near-optimal to optimal density
▶ Replace B by a (r + 3)-atom X .

▶ Then |A+ X | ≤ |A|+ |X |+ r and |X | ≲ 3.077(r + 3)

Theorem (Ruzsa-Plünnecke Bounds)
Let G be an abelian group, let A, B ⊆ G be finite, nonempty subsets and
let A′ ⊆ A be a nonempty subset attaining the minimum

α := min
{ |A′ + B|

|A′|
: ∅ ≠ A′ ⊆ A

}
≤ |A+ B|

|A|
.

Then |A′ + nB| ≤ αn|A′| ≤ αn|A| for all n ≥ 0.

▶ Apply Ruzsa-Plünnecke and Vosper’s Theorem to estimate |A′+nX |:

|A′+nX | ≤ |A′|+(|A′|/|A|)n(|X |+r)
(
1+0.01434·n

)
for all n ∈ [2, 8].

▶ If A′ contained in short AP, then apply Huicochea to A′ + X , then
to A+ X , then to A+ B to get A, B and C all in short AP’s.

▶ Use near-ideal density result on A′ + nX to improve lower bound for
|A′ + nX |, thus improving upper bound for |nX |:

|A′ + nX | > |A′|+ 10

9
|nX | − 3
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Moving from near-optimal to optimal density

▶ Apply Lev-Shkredov Result (modified doubling constant ∼ 2.55) to
X + X or 4X = 2X + 2X or 8X = 4X + 4X .

▶ Upper bound for 8X ensures that we can apply this result to at least
one of these sumsets (long calculation).

▶ Conclusion implies ℓd(2X ) < p
2 , so 2X + 2X isomorphic to integer

sumset

▶ We now apply the integer version of the 3k − 4 to X + X and
2X + 2X .

▶ If |X + X | < 3|X | − 3, we apply huicochea to X + A then A+ B to
complete the proof. Thus

|2X | ≥ 2|X | − 3

.

▶ Repeat for 4X = 2X + 2X to get improved lower bound for |4X |.
▶ Compare with upper bound, and obtain a contradiction.
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Thanks!


