Inverse Sumset Results mod p at High Density

David J. Grynkiewicz

University of Memphis
June 14, 2024

Sumsets

Let G be an abelian group.
Definition
For $A, B \subseteq G$, their sumset is

$$
A+B=\{a+b: a \in A, b \in B\}, \quad 2 A:=A+A
$$

Sumsets

Let G be an abelian group.
Definition
For $A, B \subseteq G$, their sumset is

$$
A+B=\{a+b: a \in A, b \in B\}, \quad 2 A:=A+A
$$

Small Sumset \Longrightarrow "Structure"

Sumsets

Let G be an abelian group.
Definition
For $A, B \subseteq G$, their sumset is

$$
A+B=\{a+b: a \in A, b \in B\}, \quad 2 A:=A+A
$$

Small Sumset \Longrightarrow "Structure"
Theorem (Folklore)
For finite, nonempty $A, B \subseteq \mathbb{Z}$, we have

$$
|A+B| \geq|A|+|B|-1
$$

If equality holds, then A and B are arithmetic progressions with common difference (or $|A|=1$ or $|B|=1$).

$3 k-4$ Theorem

Theorem (3k-4 Theorem)
Let $A, B \subseteq \mathbb{Z}$ be finite and nonempty with $|A| \geq|B|$ and

$$
|A+B|=|A|+|B|+r \leq|A|+2|B|-3-\delta,
$$

where

$$
\delta= \begin{cases}1 & \text { if } A=(\min A-\min B)+B \\ 0 & \text { otherwise. }\end{cases}
$$

$3 k-4$ Theorem

Theorem (3k-4 Theorem)

Let $A, B \subseteq \mathbb{Z}$ be finite and nonempty with $|A| \geq|B|$ and

$$
|A+B|=|A|+|B|+r \leq|A|+2|B|-3-\delta,
$$

where

$$
\delta= \begin{cases}1 & \text { if } A=(\min A-\min B)+B \\ 0 & \text { otherwise. }\end{cases}
$$

Then there are arithmetic progressions $P_{A}, P_{B}, P_{A+B} \subseteq \mathbb{Z}$ having common difference such that

$$
\begin{aligned}
& X \subseteq P_{X} \quad \text { and } \quad\left|P_{X}\right| \leq|A|+r+1 \quad \text { for all } X \in\{A, B\}, \\
& P_{A+B} \subseteq A+B \quad \text { and } \quad\left|P_{A+B}\right| \geq|A|+|B|-1
\end{aligned}
$$

Freiman (1962); Lev and Smeliansky (1995); Freiman (2009); Bardaji and G (2010); G (2013)

Some Examples: r is tight

Extension modulo p

Definition (General Setup)
$G=\mathbb{Z} / p \mathbb{Z}$ with $p \geq 2$ prime, $A, B \subseteq G$ nonempty, $A+B \neq G$,
$|A| \geq|B|, \quad C:=-(A+B)^{c}=-G \backslash(A+B)$ and $|A+B|=|A|+|B|+r$.

Extension modulo p

Definition (General Setup)
$G=\mathbb{Z} / p \mathbb{Z}$ with $p \geq 2$ prime, $A, B \subseteq G$ nonempty, $A+B \neq G$, $|A| \geq|B|, \quad C:=-(A+B)^{c}=-G \backslash(A+B)$ and $|A+B|=|A|+|B|+r$.

Definition (Target Conclusion)
There exist arithmetic progressions $P_{A}, P_{B}, P_{C} \subseteq G$ of common difference with $X \subseteq P_{X}$ and $\left|P_{X}\right| \leq|X|+r+1$ for all $X \in\{A, B, C\}$.

Extension modulo p

Definition (General Setup)
$G=\mathbb{Z} / p \mathbb{Z}$ with $p \geq 2$ prime, $A, B \subseteq G$ nonempty, $A+B \neq G$, $|A| \geq|B|, \quad C:=-(A+B)^{c}=-G \backslash(A+B)$ and $|A+B|=|A|+|B|+r$.

Definition (Target Conclusion)
There exist arithmetic progressions $P_{A}, P_{B}, P_{C} \subseteq G$ of common difference with $X \subseteq P_{X}$ and $\left|P_{X}\right| \leq|X|+r+1$ for all $X \in\{A, B, C\}$.

Conjecture
Assume General Setup. If

$$
|A+B| \leq(|A|+|B|)+|B|-3-\delta_{B} \quad \text { and } \quad|A+B| \leq p-r-3-\delta_{C},
$$

then Target Conclusions hold.

Extension modulo p

Definition (General Setup)
$G=\mathbb{Z} / p \mathbb{Z}$ with $p \geq 2$ prime, $A, B \subseteq G$ nonempty, $A+B \neq G$, $|A| \geq|B|, \quad C:=-(A+B)^{c}=-G \backslash(A+B)$ and $|A+B|=|A|+|B|+r$.

Definition (Target Conclusion)
There exist arithmetic progressions $P_{A}, P_{B}, P_{C} \subseteq G$ of common difference with $X \subseteq P_{X}$ and $\left|P_{X}\right| \leq|X|+r+1$ for all $X \in\{A, B, C\}$.

Conjecture
Assume General Setup. If

$$
|A+B| \leq(|A|+|B|)+|B|-3-\delta_{B} \quad \text { and } \quad|A+B| \leq p-r-3-\delta_{C},
$$

then Target Conclusions hold.

- Upshot: $3 k-4$ Theorem should in $\mathbb{Z} / p \mathbb{Z}$ too so long as $A+B$ isn't too large

Extension modulo p

Definition (General Setup)

$G=\mathbb{Z} / p \mathbb{Z}$ with $p \geq 2$ prime, $A, B \subseteq G$ nonempty, $A+B \neq G$, $|A| \geq|B|, \quad C:=-(A+B)^{c}=-G \backslash(A+B)$ and $|A+B|=|A|+|B|+r$.

Definition (Target Conclusion)
There exist arithmetic progressions $P_{A}, P_{B}, P_{C} \subseteq G$ of common difference with $X \subseteq P_{X}$ and $\left|P_{X}\right| \leq|X|+r+1$ for all $X \in\{A, B, C\}$.

Conjecture
Assume General Setup. If

$$
|A+B| \leq(|A|+|B|)+|B|-3-\delta_{B} \quad \text { and } \quad|A+B| \leq p-r-3-\delta_{C},
$$

then Target Conclusions hold.

- Upshot: $3 k-4$ Theorem should in $\mathbb{Z} / p \mathbb{Z}$ too so long as $A+B$ isn't too large
- Much partial Progress. General Idea: Impose additional small doubling and density constraints to obtain Target Conclusions.
P_{C} vs. P_{A+B}
- Why does P_{C} replace P_{A+B} ?
P_{C} vs. P_{A+B}
- Why does P_{C} replace P_{A+B} ?
- For $X \subseteq G$, let $X^{c}:=G \backslash X$.
P_{C} vs. P_{A+B}
- Why does P_{C} replace P_{A+B} ?
- For $X \subseteq G$, let $X^{c}:=G \backslash X$.
- Recall $C=-(A+B)^{c}$.
P_{C} vs. P_{A+B}
- Why does P_{C} replace P_{A+B} ?
- For $X \subseteq G$, let $X^{c}:=G \backslash X$.
- Recall $C=-(A+B)^{c}$.
- Set $P_{A+B}=-\left(P_{C}\right)^{c}$
P_{C} vs. P_{A+B}
- Why does P_{C} replace P_{A+B} ?
- For $X \subseteq G$, let $X^{c}:=G \backslash X$.
- Recall $C=-(A+B)^{c}$.
- Set $P_{A+B}=-\left(P_{C}\right)^{c}$
- $C \subseteq P_{C}$
\Longleftrightarrow

$$
-\left(P_{C}\right)^{c} \subseteq-C^{c}
$$

P_{C} vs. P_{A+B}

- Why does P_{C} replace P_{A+B} ?
- For $X \subseteq G$, let $X^{c}:=G \backslash X$.
- Recall $C=-(A+B)^{c}$.
- Set $P_{A+B}=-\left(P_{C}\right)^{c}$
$\checkmark C \subseteq P_{C} \quad \Longleftrightarrow \quad P_{A+B}=-\left(P_{C}\right)^{c} \subseteq-C^{c}=A+B$
P_{C} vs. P_{A+B}
- Why does P_{C} replace P_{A+B} ?
- For $X \subseteq G$, let $X^{c}:=G \backslash X$.
- Recall $C=-(A+B)^{c}$.
- Set $P_{A+B}=-\left(P_{C}\right)^{c}$
- $C \subseteq P_{C} \quad \Longleftrightarrow \quad P_{A+B}=-\left(P_{C}\right)^{c} \subseteq-C^{c}=A+B$
- $\left|P_{C}\right| \leq|C|+r+1 \quad \Longleftrightarrow \quad\left|P_{A+B}\right| \geq|A|+|B|-1$

$$
\left|P_{A+B}\right|=p-\left|P_{C}\right| \geq p-|C|-r-1=|A+B|-r-1=|A|+|B|-1
$$

Ideal Density implies $(1-\epsilon)$ Density

- Suppose Target Conclusions holds if $|A+B| \leq p-r-3$ and $|A+B| \leq(|A|+|B|)+\alpha|B|-3$

Ideal Density implies $(1-\epsilon)$ Density

- Suppose Target Conclusions holds if $|A+B| \leq p-r-3$ and $|A+B| \leq(|A|+|B|)+\alpha|B|-3$
- Goal: Given any small $\epsilon>0$, we want to show there is some $\alpha^{\prime}>0$ such that $|A+B| \leq(1-\epsilon) p$ and
$|A+B|=(|A|+|B|)+r \leq(|A|+|B|)+\alpha^{\prime}|B|-3$ also yields Target Conclusions.

Ideal Density implies $(1-\epsilon)$ Density

- Suppose Target Conclusions holds if $|A+B| \leq p-r-3$ and $|A+B| \leq(|A|+|B|)+\alpha|B|-3$
- Goal: Given any small $\epsilon>0$, we want to show there is some $\alpha^{\prime}>0$ such that $|A+B| \leq(1-\epsilon) p$ and
$|A+B|=(|A|+|B|)+r \leq(|A|+|B|)+\alpha^{\prime}|B|-3$ also yields
Target Conclusions.
- If $(1-\epsilon) p \leq p-r-3$, we can take $\alpha^{\prime}=\alpha$.

Ideal Density implies $(1-\epsilon)$ Density

- Suppose Target Conclusions holds if $|A+B| \leq p-r-3$ and $|A+B| \leq(|A|+|B|)+\alpha|B|-3$
- Goal: Given any small $\epsilon>0$, we want to show there is some $\alpha^{\prime}>0$ such that $|A+B| \leq(1-\epsilon) p$ and
$|A+B|=(|A|+|B|)+r \leq(|A|+|B|)+\alpha^{\prime}|B|-3$ also yields
Target Conclusions.
- If $(1-\epsilon) p \leq p-r-3$, we can take $\alpha^{\prime}=\alpha$.
- So we need $r+3 \leq \epsilon p$

Ideal Density implies $(1-\epsilon)$ Density

- Suppose Target Conclusions holds if $|A+B| \leq p-r-3$ and $|A+B| \leq(|A|+|B|)+\alpha|B|-3$
- Goal: Given any small $\epsilon>0$, we want to show there is some $\alpha^{\prime}>0$ such that $|A+B| \leq(1-\epsilon) p$ and
$|A+B|=(|A|+|B|)+r \leq(|A|+|B|)+\alpha^{\prime}|B|-3$ also yields Target Conclusions.
- If $(1-\epsilon) p \leq p-r-3$, we can take $\alpha^{\prime}=\alpha$.
- So we need $r+3 \leq \epsilon p$
- Since $A+B \neq G$, easy pigeonhole argument shows $2|B| \leq|A|+|B| \leq p$. Hence $|B| \leq \frac{p}{2}$.

Ideal Density implies $(1-\epsilon)$ Density

- Suppose Target Conclusions holds if $|A+B| \leq p-r-3$ and $|A+B| \leq(|A|+|B|)+\alpha|B|-3$
- Goal: Given any small $\epsilon>0$, we want to show there is some $\alpha^{\prime}>0$ such that $|A+B| \leq(1-\epsilon) p$ and
$|A+B|=(|A|+|B|)+r \leq(|A|+|B|)+\alpha^{\prime}|B|-3$ also yields Target Conclusions.
- If $(1-\epsilon) p \leq p-r-3$, we can take $\alpha^{\prime}=\alpha$.
- So we need $r+3 \leq \epsilon p$
- Since $A+B \neq G$, easy pigeonhole argument shows $2|B| \leq|A|+|B| \leq p$. Hence $|B| \leq \frac{p}{2}$.
- Thus $r+3 \leq \alpha^{\prime}|B|<\alpha^{\prime} \frac{p}{2}$, so its true for $\alpha^{\prime} \leq 2 \epsilon$

Ideal Density implies $(1-\epsilon)$ Density

- Suppose Target Conclusions holds if $|A+B| \leq p-r-3$ and $|A+B| \leq(|A|+|B|)+\alpha|B|-3$
- Goal: Given any small $\epsilon>0$, we want to show there is some $\alpha^{\prime}>0$ such that $|A+B| \leq(1-\epsilon) p$ and
$|A+B|=(|A|+|B|)+r \leq(|A|+|B|)+\alpha^{\prime}|B|-3$ also yields Target Conclusions.
- If $(1-\epsilon) p \leq p-r-3$, we can take $\alpha^{\prime}=\alpha$.
- So we need $r+3 \leq \epsilon p$
- Since $A+B \neq G$, easy pigeonhole argument shows $2|B| \leq|A|+|B| \leq p$. Hence $|B| \leq \frac{p}{2}$.
- Thus $r+3 \leq \alpha^{\prime}|B|<\alpha^{\prime} \frac{p}{2}$, so its true for $\alpha^{\prime} \leq 2 \epsilon$
- Summary:

$$
|A+B| \leq(|A|+|B|)+2 \epsilon|B|-3 \quad \text { and } \quad|A+B| \leq(1-\epsilon) p
$$

ensure A, B and C contained in small length arithmetic progressions (for small $\epsilon<\frac{1}{2} \alpha$.)

Partial Progress: Low Density

$$
|A+B|=|A|+|B|+r \leq(|A|+|B|)+\alpha|B|-3, \quad \text { where } \alpha \in(0,1]
$$

- Results for very low density follow from more general "rectification" principles.

Partial Progress: Low Density

$$
|A+B|=|A|+|B|+r \leq(|A|+|B|)+\alpha|B|-3, \quad \text { where } \alpha \in(0,1]
$$

- Results for very low density follow from more general "rectification" principles.
- Low density implies "isomorphic" to a sumset $A^{\prime}+B^{\prime} \subseteq \mathbb{Z}$.

Partial Progress: Low Density

$|A+B|=|A|+|B|+r \leq(|A|+|B|)+\alpha|B|-3, \quad$ where $\alpha \in(0,1]$

- Results for very low density follow from more general "rectification" principles.
- Low density implies "isomorphic" to a sumset $A^{\prime}+B^{\prime} \subseteq \mathbb{Z}$.
- $|A \cup B| \leq \log _{4} p \quad \longrightarrow \quad$ Bilu, Lev, Ruzsa (1998)
- $|A \cup B| \leq\left\lceil\log _{2} p\right\rceil \quad \longrightarrow \quad$ Lev (2008), + technical issue G. (2013)
- $A=B$ and $|A| \leq c p$ with $c=(1 / 96)^{108} \quad \longrightarrow \quad$ Green, Ruzsa (2006)

Partial Progress: Mid-Range Density

$|A+B|=|A|+|B|+r \leq(|A|+|B|)+\alpha|B|-3, \quad$ where $\alpha \in(0,1]$

- "Balanced" approach with tangible constants both for the density and small doubling constraints

Partial Progress: Mid-Range Density

$|A+B|=|A|+|B|+r \leq(|A|+|B|)+\alpha|B|-3, \quad$ where $\alpha \in(0,1]$

- "Balanced" approach with tangible constants both for the density and small doubling constraints
- $A=B$: Freiman (1960s), Rodseth (2006), Candela, Serra and Spiegel (2020), Lev and Shkredov (2020), Lev and Serra (2020)
- $|A+A| \leq 2|A|+(0.4)|A|-3$ and $|A| \leq(0.02857) p$
- $|A+A| \leq 2|A|+(0.4)|A|-3$ and $|A| \leq(0.093457) p$
- $|A+A| \leq 2|A|+(0.48)|A|-7$ and $|A|<(0.0000000001) p$
- $|A+A| \leq 2|A|+(0.59)|A|-3$ and $101 \leq|A|<(0.0045) p$
- $|A+A|<2|A|+(0.7652)|A|-3$ and $10 \leq|A|<(0.00000125) p$

Partial Progress: Mid-Range Density

$|A+B|=|A|+|B|+r \leq(|A|+|B|)+\alpha|B|-3, \quad$ where $\alpha \in(0,1]$

- "Balanced" approach with tangible constants both for the density and small doubling constraints
- $A=B$: Freiman (1960s), Rodseth (2006), Candela, Serra and Spiegel (2020), Lev and Shkredov (2020), Lev and Serra (2020)
- $|A+A| \leq 2|A|+(0.4)|A|-3$ and $|A| \leq(0.02857) p$
- $|A+A| \leq 2|A|+(0.4)|A|-3$ and $|A| \leq(0.093457) p$
- $|A+A| \leq 2|A|+(0.48)|A|-7$ and $|A|<(0.0000000001) p$
$-|A+A| \leq 2|A|+(0.59)|A|-3$ and $101 \leq|A|<(0.0045) p$
- $|A+A|<2|A|+(0.7652)|A|-3$ and $10 \leq|A|<(0.00000125) p$
- In many cases, "flexible" versions are available: density restriction grows stronger as small doubling constraint gets weaker.

Partial Progress: Mid-Range Density

$|A+B|=|A|+|B|+r \leq(|A|+|B|)+\alpha|B|-3, \quad$ where $\alpha \in(0,1]$

- "Balanced" approach with tangible constants both for the density and small doubling constraints
- $A=B$: Freiman (1960s), Rodseth (2006), Candela, Serra and Spiegel (2020), Lev and Shkredov (2020), Lev and Serra (2020)
- $|A+A| \leq 2|A|+(0.4)|A|-3$ and $|A| \leq(0.02857) p$
- $|A+A| \leq 2|A|+(0.4)|A|-3$ and $|A| \leq(0.093457) p$
- $|A+A| \leq 2|A|+(0.48)|A|-7$ and $|A|<(0.0000000001) p$
$-|A+A| \leq 2|A|+(0.59)|A|-3$ and $101 \leq|A|<(0.0045) p$
- $|A+A|<2|A|+(0.7652)|A|-3$ and $10 \leq|A|<(0.00000125) p$
- In many cases, "flexible" versions are available: density restriction grows stronger as small doubling constraint gets weaker.
- $(0.001)|A|^{2 / 3} \leq|B| \leq|A|, \quad|A+B| \leq(|A|+|B|)+(0.03)|B|$ and $|A|<(0.0045) p \quad \longrightarrow \quad$ Huichochea (2022)

Partial Progress: High/Ideal Density

$|A+B|=|A|+|B|+r \leq(|A|+|B|)+\alpha|B|-3, \quad$ where $\alpha \in(0,1]$

- $A=B,|A+A| \leq 2|A|+(0.136)|A|-3$ and $|A+A| \leq(0.75) p$. $\longrightarrow \quad$ Candela, González-Sánchez and G. (2022)

Partial Progress: High/Ideal Density

$|A+B|=|A|+|B|+r \leq(|A|+|B|)+\alpha|B|-3, \quad$ where $\alpha \in(0,1]$

- $A=B,|A+A| \leq 2|A|+(0.136)|A|-3$ and $|A+A| \leq(0.75) p$. $\longrightarrow \quad$ Candela, González-Sánchez and G. (2022)
- $r \leq c p-1.2$ with $c=1.4 \times 10^{-63951}$

Partial Progress: High/Ideal Density

$|A+B|=|A|+|B|+r \leq(|A|+|B|)+\alpha|B|-3, \quad$ where $\alpha \in(0,1]$

- $A=B,|A+A| \leq 2|A|+(0.136)|A|-3$ and $|A+A| \leq(0.75) p$. $\longrightarrow \quad$ Candela, González-Sánchez and G. (2022)
- $r \leq c p-1.2$ with $c=1.4 \times 10^{-63951}$
- Why does a $r \leq c p$ restriction count as High density?

Partial Progress: High/Ideal Density

$|A+B|=|A|+|B|+r \leq(|A|+|B|)+\alpha|B|-3, \quad$ where $\alpha \in(0,1]$

- $A=B,|A+A| \leq 2|A|+(0.136)|A|-3$ and $|A+A| \leq(0.75) p$. $\longrightarrow \quad$ Candela, González-Sánchez and G. (2022)
- $r \leq c p-1.2$ with $c=1.4 \times 10^{-63951}$
- Why does a $r \leq c p$ restriction count as High density?
- $A+B \neq G$ implies $|B| \leq \frac{p}{2}$ (easy pigeonhole argument)

Partial Progress: High/Ideal Density

$|A+B|=|A|+|B|+r \leq(|A|+|B|)+\alpha|B|-3, \quad$ where $\alpha \in(0,1]$

- $A=B,|A+A| \leq 2|A|+(0.136)|A|-3$ and $|A+A| \leq(0.75) p$. $\longrightarrow \quad$ Candela, González-Sánchez and G. (2022)
- $r \leq c p-1.2$ with $c=1.4 \times 10^{-63951}$
- Why does a $r \leq c p$ restriction count as High density?
- $A+B \neq G$ implies $|B| \leq \frac{p}{2}$ (easy pigeonhole argument)
- If $\alpha \leq 2 c$, small doubling hypothesi rephrases as

$$
r \leq \alpha|B|-3 \leq(2 c) \frac{p}{2}-3=c p-3 .
$$

Partial Progress: High/Ideal Density

$|A+B|=|A|+|B|+r \leq(|A|+|B|)+\alpha|B|-3, \quad$ where $\alpha \in(0,1]$

- $A=B,|A+A| \leq 2|A|+(0.136)|A|-3$ and $|A+A| \leq(0.75) p$. $\longrightarrow \quad$ Candela, González-Sánchez and G. (2022)
- $r \leq c p-1.2$ with $c=1.4 \times 10^{-63951}$
- Why does a $r \leq c p$ restriction count as High density?
- $A+B \neq G$ implies $|B| \leq \frac{p}{2}$ (easy pigeonhole argument)
- If $\alpha \leq 2 c$, small doubling hypothesi rephrases as

$$
r \leq \alpha|B|-3 \leq(2 c) \frac{p}{2}-3=c p-3 .
$$

- This gives no density restriction for $|A+B| \leq|A|+(1+2 c)|B|-3$.

Ideal Density

Theorem (Serra and Zémor 2009)
Assume General Setup. If $|A| \geq 4, p>2^{94}$,

$$
|A+A| \leq 2|A|+(0.0001)|A| \quad \text { and } \quad|A+A| \leq p-r-3,
$$

then Target Conclusions hold.

Ideal Density

Theorem (Serra and Zémor 2009)
Assume General Setup. If $|A| \geq 4, p>2^{94}$,

$$
|A+A| \leq 2|A|+(0.0001)|A| \quad \text { and } \quad|A+A| \leq p-r-3,
$$

then Target Conclusions hold.
Theorem (G. 2024)
Assume General Setup. If

$$
|A+B| \leq(|A|+|B|)+(0.01)|A|-3 \quad \text { and } \quad|A+B| \leq p-r-3,
$$

then Target Conclusions hold.

Ideas for the Proof: Additive Trios

Definition (Boothbay, DeVos, Montejano 2015)
Let G be a finite abelian group; let $A, B, C \subseteq G$ be nonempty sets. Then
(A, B, C) is and additive trio if $A+B+C \neq G$ with $r(A, B, C):=|G|-|A|-|B|-|C|$.

Ideas for the Proof: Additive Trios

Definition (Boothbay, DeVos, Montejano 2015)

Let G be a finite abelian group; let $A, B, C \subseteq G$ be nonempty sets. Then
(A, B, C) is and additive trio if $A+B+C \neq G$ with $\mathrm{r}(A, B, C):=|G|-|A|-|B|-|C|$.

Example

$A, B \subseteq G, C:=-(A+B)^{c},|A+B|=|A|+|B|+r$. Then (A, B, C) is an additive trio, since

$$
0 \notin(A+B)-(A+B)^{c}=A+B+C
$$

with $r(A, B, C)=|G|-|A|-|B|-(|G|-|A|-|B|-r)=r$

Ideas for the Proof: Additive Trios

Definition (Boothbay, DeVos, Montejano 2015)

Let G be a finite abelian group; let $A, B, C \subseteq G$ be nonempty sets. Then (A, B, C) is and additive trio if $A+B+C \neq G$ with $\mathrm{r}(A, B, C):=|G|-|A|-|B|-|C|$.

Example

$A, B \subseteq G, C:=-(A+B)^{c},|A+B|=|A|+|B|+r$. Then (A, B, C) is an additive trio, since

$$
0 \notin(A+B)-(A+B)^{c}=A+B+C
$$

with $r(A, B, C)=|G|-|A|-|B|-(|G|-|A|-|B|-r)=r$

- $|A+B|=|A|+|B|+r \leq(|A|+|B|)+\alpha|B|-3$ and $|A+B| \leq p-\alpha(r+3)$ equivalent to $|A|,|B|,|C| \geq \alpha^{-1}(r+3)$.

Ideas for the Proof: Huicochea's Reduction

Definition

For $A \subseteq G$ and $d \in G$, let $\ell_{d}(A)$ be the minimal length of an arithmetic progression with difference d containing A.

Theorem (Huicochea 2017; modified by G. 2024)
Let $G=\mathbb{Z} / p \mathbb{Z}$ with $p \geq 2$ prime, let (A, B, C) be an additive trio from G, and let $r, h \in \mathbb{Z}$ be integers.

1. If $\ell_{d}(A) \leq|A|+h$ for some $d \in G \backslash\{0\}, r(A, B, C) \leq r$,
$|A| \geq r+3+h$ and $|B| \geq r+3+2 h$ with strict inequality in one of these estimates, and $|C| \geq r+3$, then
$\ell_{d}(A) \leq|A|+r+1, \ell_{d}(B) \leq|B|+r+1, \quad$ and $\quad \ell_{d}(C) \leq|C|+r+1$.
2. If $\ell_{d}(A) \leq|A|+h$ for some $d \in G \backslash\{0\}$, $r(A, B, C) \leq h-1$, $h+2 \leq|A| \leq \max \{|B|,|C|\},|B|,|C| \geq h+3$ and $35 h+10 \leq p$, then

$$
\ell_{d}(B) \leq|B|+h \quad \text { and } \quad \ell_{d}(C) \leq|C|+h .
$$

Ideas for the Proof: Fourier Analysis

- Original Idea of Freiman: Use fourier analysis on G to get a "large" subset $A^{\prime} \subseteq A$ contained in an AP with length $\leq \frac{p+1}{2}$.

Ideas for the Proof: Fourier Analysis

- Original Idea of Freiman: Use fourier analysis on G to get a "large" subset $A^{\prime} \subseteq A$ contained in an AP with length $\leq \frac{p+1}{2}$.
- This ensures $A^{\prime}+A^{\prime}$ canonically isomorphic to an integer sumset.

Ideas for the Proof: Fourier Analysis

- Original Idea of Freiman: Use fourier analysis on G to get a "large" subset $A^{\prime} \subseteq A$ contained in an AP with length $\leq \frac{p+1}{2}$.
- This ensures $A^{\prime}+A^{\prime}$ canonically isomorphic to an integer sumset.
- Apply the $3 k-4$ Theorem in \mathbb{Z} to $A^{\prime}+A^{\prime}$ to get A^{\prime} contained in an even smaller arithmetic progression

Ideas for the Proof: Fourier Analysis

- Original Idea of Freiman: Use fourier analysis on G to get a "large" subset $A^{\prime} \subseteq A$ contained in an AP with length $\leq \frac{p+1}{2}$.
- This ensures $A^{\prime}+A^{\prime}$ canonically isomorphic to an integer sumset.
- Apply the $3 k-4$ Theorem in \mathbb{Z} to $A^{\prime}+A^{\prime}$ to get A^{\prime} contained in an even smaller arithmetic progression
- Choose $A^{\prime} \subseteq A$ maximal and show via a combinatorial argument $A^{\prime}=A$ forced.

Ideas for the Proof: Fourier Analysis

- Original Idea of Freiman: Use fourier analysis on G to get a "large" subset $A^{\prime} \subseteq A$ contained in an AP with length $\leq \frac{p+1}{2}$.
- This ensures $A^{\prime}+A^{\prime}$ canonically isomorphic to an integer sumset.
- Apply the $3 k-4$ Theorem in \mathbb{Z} to $A^{\prime}+A^{\prime}$ to get A^{\prime} contained in an even smaller arithmetic progression
- Choose $A^{\prime} \subseteq A$ maximal and show via a combinatorial argument $A^{\prime}=A$ forced.
- Problem 1: Simple extremal combinatorial argument for showing $A=A^{\prime}$ fails at higher densities $|A+A|>\frac{p+1}{2}$.

Ideas for the Proof: Fourier Analysis

- Original Idea of Freiman: Use fourier analysis on G to get a "large" subset $A^{\prime} \subseteq A$ contained in an AP with length $\leq \frac{p+1}{2}$.
- This ensures $A^{\prime}+A^{\prime}$ canonically isomorphic to an integer sumset.
- Apply the $3 k-4$ Theorem in \mathbb{Z} to $A^{\prime}+A^{\prime}$ to get A^{\prime} contained in an even smaller arithmetic progression
- Choose $A^{\prime} \subseteq A$ maximal and show via a combinatorial argument $A^{\prime}=A$ forced.
- Problem 1: Simple extremal combinatorial argument for showing $A=A^{\prime}$ fails at higher densities $|A+A|>\frac{p+1}{2}$.
- Problem 2: Issues with Fourier calculation estimates when $A \neq B$ and adapting the combinatorial argument for showing $A=A^{\prime}$.

Ideas for the Proof: Combinatorial Reduction

- Problem 1 resolved by Candela, González-Sánchez and G. (2022) for $A=B$ using vosper duality (i.e., additive trios).

Ideas for the Proof: Combinatorial Reduction

- Problem 1 resolved by Candela, González-Sánchez and G. (2022) for $A=B$ using vosper duality (i.e., additive trios).
- These arguments needed to be adapted from $A+A$ to $A+B$ (G. 2024)

Theorem (G. 2024)
Let p be prime, let $A, B \subseteq \mathbb{Z} / p \mathbb{Z}$ be nonempty subsets with

$$
|A+B|=|A|+|B|+r \leq \frac{3}{4}(p+1) \quad \text { and } \quad p \geq 4 r+9
$$

and set $C=-(A+B)^{c}$. Suppose there exist subsets $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$ or $A^{\prime} \subseteq B$ and $B^{\prime} \subseteq A$ such that $A^{\prime}+B^{\prime}$ rectifies, $\left|B^{\prime}\right| \leq\left|A^{\prime}\right|$ and

$$
\begin{equation*}
\left|A^{\prime}\right|+2\left|B^{\prime}\right|-4 \geq|A+B| \tag{1}
\end{equation*}
$$

Then Target Conclusions hold.

Ideas for the Proof: Fourier Analysis

Ideas for the Proof: Fourier Analysis

- Problem 2 resolved by modifying standard fourier sum estimates for $A+A$ to improve constants for $A+B$.

Ideas for the Proof: Fourier Analysis

- Problem 2 resolved by modifying standard fourier sum estimates for $A+A$ to improve constants for $A+B$.

Definition
For $A \subseteq G=\mathbb{Z} / p \mathbb{Z}$, let $S_{A}(x)=\sum_{a \in A} \exp (a x / p)$, where $\exp (x)=e^{2 \pi i x} \in \mathbb{C}$.

Ideas for the Proof: Fourier Analysis

- Problem 2 resolved by modifying standard fourier sum estimates for $A+A$ to improve constants for $A+B$.

Definition
For $A \subseteq G=\mathbb{Z} / p \mathbb{Z}$, let $S_{A}(x)=\sum_{a \in A} \exp (a x / p)$, where $\exp (x)=e^{2 \pi i x} \in \mathbb{C}$.

Lemma
If $z_{1}, \ldots, z_{N} \in \mathbb{C}$ is a sequence of points lying on the complex unit circle such that every open half-arc contains at most n of the terms z_{i} for $i \in[1, N]$, then $\left|\sum_{i=1}^{N} z_{i}\right| \leq 2 n-N$.

The "Base Case"

Theorem (G. 2024)
Assume General Setup. Let $\beta \in[0.731,1]$ and $\alpha \in(0,0.212]$ be real numbers. Suppose

$$
|A+B| \leq|A|+(1+\alpha)|B|-3 \quad \text { and } \quad \beta|A| \leq|B| \leq|A| \leq f(\alpha, \beta) p .
$$

Then Target Conclusions hold.

Ideas for the proof: The Isoperimetric Method

- G abelian group, $B \subseteq G$ finite and nonempty, $k \geq 1$

Ideas for the proof: The Isoperimetric Method

- G abelian group, $B \subseteq G$ finite and nonempty, $k \geq 1$
- B is k-separable if there is some finite $X \subseteq G$ with

$$
|X| \geq k \quad \text { and } \quad\left|(X+B)^{c}\right| \geq k .
$$

Ideas for the proof: The Isoperimetric Method

- G abelian group, $B \subseteq G$ finite and nonempty, $k \geq 1$
- B is k-separable if there is some finite $X \subseteq G$ with

$$
|X| \geq k \quad \text { and } \quad\left|(X+B)^{c}\right| \geq k .
$$

- A k-fragment is a subset $X \subseteq G$ (satisfying above constraints) with $|X+B|-|X|$ minimal.

Ideas for the proof: The Isoperimetric Method

- G abelian group, $B \subseteq G$ finite and nonempty, $k \geq 1$
- B is k-separable if there is some finite $X \subseteq G$ with

$$
|X| \geq k \quad \text { and } \quad\left|(X+B)^{c}\right| \geq k .
$$

- A k-fragment is a subset $X \subseteq G$ (satisfying above constraints) with $|X+B|-|X|$ minimal.
- A minimal cardinality k-fragment is called a k-atom. We will need good upper bounds for their size. (Serra and Zémor 2000, G. 2013).

Ideas for the proof: The Isoperimetric Method

- G abelian group, $B \subseteq G$ finite and nonempty, $k \geq 1$
- B is k-separable if there is some finite $X \subseteq G$ with

$$
|X| \geq k \quad \text { and } \quad\left|(X+B)^{c}\right| \geq k .
$$

- A k-fragment is a subset $X \subseteq G$ (satisfying above constraints) with $|X+B|-|X|$ minimal.
- A minimal cardinality k-fragment is called a k-atom. We will need good upper bounds for their size. (Serra and Zémor 2000, G. 2013).
- $|A+B|=|A|+|B|+r \leq p-r-3$ with $|B| \geq r+3$ shows B is $(r+3)$-separable.

Ideas for the proof: The Isoperimetric Method

- G abelian group, $B \subseteq G$ finite and nonempty, $k \geq 1$
- B is k-separable if there is some finite $X \subseteq G$ with

$$
|X| \geq k \quad \text { and } \quad\left|(X+B)^{c}\right| \geq k
$$

- A k-fragment is a subset $X \subseteq G$ (satisfying above constraints) with $|X+B|-|X|$ minimal.
- A minimal cardinality k-fragment is called a k-atom. We will need good upper bounds for their size. (Serra and Zémor 2000, G. 2013).
- $|A+B|=|A|+|B|+r \leq p-r-3$ with $|B| \geq r+3$ shows B is ($r+3$)-separable.
- Replace A by a $(r+3)$-atom X. Then $|X+B| \leq|X|+|B|+r$ and $|X+B| \leq p-r-3$.

Ideas for the proof: The Isoperimetric Method

- G abelian group, $B \subseteq G$ finite and nonempty, $k \geq 1$
- B is k-separable if there is some finite $X \subseteq G$ with

$$
|X| \geq k \quad \text { and } \quad\left|(X+B)^{c}\right| \geq k
$$

- A k-fragment is a subset $X \subseteq G$ (satisfying above constraints) with $|X+B|-|X|$ minimal.
- A minimal cardinality k-fragment is called a k-atom. We will need good upper bounds for their size. (Serra and Zémor 2000, G. 2013).
- $|A+B|=|A|+|B|+r \leq p-r-3$ with $|B| \geq r+3$ shows B is ($r+3$)-separable.
- Replace A by a $(r+3)$-atom X. Then $|X+B| \leq|X|+|B|+r$ and $|X+B| \leq p-r-3$.
- Repeat and replace B with a $(r+3)$-atom Y for X.

Ideas for the proof: The Isoperimetric Method

- G abelian group, $B \subseteq G$ finite and nonempty, $k \geq 1$
- B is k-separable if there is some finite $X \subseteq G$ with

$$
|X| \geq k \quad \text { and } \quad\left|(X+B)^{c}\right| \geq k
$$

- A k-fragment is a subset $X \subseteq G$ (satisfying above constraints) with $|X+B|-|X|$ minimal.
- A minimal cardinality k-fragment is called a k-atom. We will need good upper bounds for their size. (Serra and Zémor 2000, G. 2013).
- $|A+B|=|A|+|B|+r \leq p-r-3$ with $|B| \geq r+3$ shows B is ($r+3$)-separable.
- Replace A by a $(r+3)$-atom X. Then $|X+B| \leq|X|+|B|+r$ and $|X+B| \leq p-r-3$.
- Repeat and replace B with a $(r+3)$-atom Y for X.
- Strengthen the hypotheses and use $9(r+3)$-atoms instead. Then $X+Y$ satisfies the "base case" result hypotheses (calculation).

Ideas for the proof: The Isoperimetric Method

- G abelian group, $B \subseteq G$ finite and nonempty, $k \geq 1$
- B is k-separable if there is some finite $X \subseteq G$ with

$$
|X| \geq k \quad \text { and } \quad\left|(X+B)^{c}\right| \geq k
$$

- A k-fragment is a subset $X \subseteq G$ (satisfying above constraints) with $|X+B|-|X|$ minimal.
- A minimal cardinality k-fragment is called a k-atom. We will need good upper bounds for their size. (Serra and Zémor 2000, G. 2013).
- $|A+B|=|A|+|B|+r \leq p-r-3$ with $|B| \geq r+3$ shows B is ($r+3$)-separable.
- Replace A by a $(r+3)$-atom X. Then $|X+B| \leq|X|+|B|+r$ and $|X+B| \leq p-r-3$.
- Repeat and replace B with a $(r+3)$-atom Y for X.
- Strengthen the hypotheses and use $9(r+3)$-atoms instead. Then $X+Y$ satisfies the "base case" result hypotheses (calculation).
- Used Huichochea reduction argument transfers desired structure back to A, B and C.

Near Optimal Density

Theorem (G. 2024)
Assume General Setup. If

$$
|A+B| \leq(|A|+|B|)+\frac{1}{9}|B|-3 \quad \text { and } \quad|A+B| \leq p-29(r+3)
$$

then Target Conclusions hold.

Moving from near-optimal to optimal density

- Replace B by a $(r+3)$-atom X.

Moving from near-optimal to optimal density

- Replace B by a $(r+3)$-atom X.
- Then $|A+X| \leq|A|+|X|+r$ and $|X| \lesssim 3.077(r+3)$

Moving from near-optimal to optimal density

- Replace B by a $(r+3)$-atom X.
- Then $|A+X| \leq|A|+|X|+r$ and $|X| \lesssim 3.077(r+3)$

Theorem (Ruzsa-Plünnecke Bounds)
Let G be an abelian group, let $A, B \subseteq G$ be finite, nonempty subsets and let $A^{\prime} \subseteq A$ be a nonempty subset attaining the minimum

$$
\alpha:=\min \left\{\frac{\left|A^{\prime}+B\right|}{\left|A^{\prime}\right|}: \emptyset \neq A^{\prime} \subseteq A\right\} \leq \frac{|A+B|}{|A|}
$$

Then $\left|A^{\prime}+n B\right| \leq \alpha^{n}\left|A^{\prime}\right| \leq \alpha^{n}|A|$ for all $n \geq 0$.

Moving from near-optimal to optimal density

- Replace B by a $(r+3)$-atom X.
- Then $|A+X| \leq|A|+|X|+r$ and $|X| \lesssim 3.077(r+3)$

Theorem (Ruzsa-Plünnecke Bounds)
Let G be an abelian group, let $A, B \subseteq G$ be finite, nonempty subsets and let $A^{\prime} \subseteq A$ be a nonempty subset attaining the minimum

$$
\alpha:=\min \left\{\frac{\left|A^{\prime}+B\right|}{\left|A^{\prime}\right|}: \emptyset \neq A^{\prime} \subseteq A\right\} \leq \frac{|A+B|}{|A|} .
$$

Then $\left|A^{\prime}+n B\right| \leq \alpha^{n}\left|A^{\prime}\right| \leq \alpha^{n}|A|$ for all $n \geq 0$.

- Apply Ruzsa-Plünnecke and Vosper's Theorem to estimate $\left|A^{\prime}+n X\right|$:

$$
\left|A^{\prime}+n X\right| \leq\left|A^{\prime}\right|+\left(\left|A^{\prime}\right| /|A|\right) n(|X|+r)(1+0.01434 \cdot n) \quad \text { for all } n \in[2,8] .
$$

Moving from near-optimal to optimal density

- Replace B by a $(r+3)$-atom X.
- Then $|A+X| \leq|A|+|X|+r$ and $|X| \lesssim 3.077(r+3)$

Theorem (Ruzsa-Plünnecke Bounds)
Let G be an abelian group, let $A, B \subseteq G$ be finite, nonempty subsets and let $A^{\prime} \subseteq A$ be a nonempty subset attaining the minimum

$$
\alpha:=\min \left\{\frac{\left|A^{\prime}+B\right|}{\left|A^{\prime}\right|}: \emptyset \neq A^{\prime} \subseteq A\right\} \leq \frac{|A+B|}{|A|} .
$$

Then $\left|A^{\prime}+n B\right| \leq \alpha^{n}\left|A^{\prime}\right| \leq \alpha^{n}|A|$ for all $n \geq 0$.

- Apply Ruzsa-Plünnecke and Vosper's Theorem to estimate $\left|A^{\prime}+n X\right|$:

$$
\left|A^{\prime}+n X\right| \leq\left|A^{\prime}\right|+\left(\left|A^{\prime}\right| /|A|\right) n(|X|+r)(1+0.01434 \cdot n) \quad \text { for all } n \in[2,8] .
$$

- If A^{\prime} contained in short AP, then apply Huicochea to $A^{\prime}+X$, then to $A+X$, then to $A+B$ to get A, B and C all in short AP's.

Moving from near-optimal to optimal density

- Replace B by a $(r+3)$-atom X.
- Then $|A+X| \leq|A|+|X|+r$ and $|X| \lesssim 3.077(r+3)$

Theorem (Ruzsa-Plünnecke Bounds)
Let G be an abelian group, let $A, B \subseteq G$ be finite, nonempty subsets and let $A^{\prime} \subseteq A$ be a nonempty subset attaining the minimum

$$
\alpha:=\min \left\{\frac{\left|A^{\prime}+B\right|}{\left|A^{\prime}\right|}: \emptyset \neq A^{\prime} \subseteq A\right\} \leq \frac{|A+B|}{|A|} .
$$

Then $\left|A^{\prime}+n B\right| \leq \alpha^{n}\left|A^{\prime}\right| \leq \alpha^{n}|A|$ for all $n \geq 0$.

- Apply Ruzsa-Plünnecke and Vosper's Theorem to estimate $\left|A^{\prime}+n X\right|$:

$$
\left|A^{\prime}+n X\right| \leq\left|A^{\prime}\right|+\left(\left|A^{\prime}\right| /|A|\right) n(|X|+r)(1+0.01434 \cdot n) \quad \text { for all } n \in[2,8] .
$$

- If A^{\prime} contained in short AP, then apply Huicochea to $A^{\prime}+X$, then to $A+X$, then to $A+B$ to get A, B and C all in short AP's.
- Use near-ideal density result on $A^{\prime}+n X$ to improve lower bound for $\left|A^{\prime}+n X\right|$, thus improving upper bound for $|n X|$:

$$
\left|A^{\prime}+n X\right|>\left|A^{\prime}\right|+\frac{10}{9}|n X|-3
$$

Moving from near-optimal to optimal density

- Apply Lev-Shkredov Result (modified doubling constant ~ 2.55) to $X+X$ or $4 X=2 X+2 X$ or $8 X=4 X+4 X$.

Moving from near-optimal to optimal density

- Apply Lev-Shkredov Result (modified doubling constant ~ 2.55) to $X+X$ or $4 X=2 X+2 X$ or $8 X=4 X+4 X$.
- Upper bound for $8 X$ ensures that we can apply this result to at least one of these sumsets (long calculation).

Moving from near-optimal to optimal density

- Apply Lev-Shkredov Result (modified doubling constant ~ 2.55) to $X+X$ or $4 X=2 X+2 X$ or $8 X=4 X+4 X$.
- Upper bound for $8 X$ ensures that we can apply this result to at least one of these sumsets (long calculation).
- Conclusion implies $\ell_{d}(2 X)<\frac{p}{2}$, so $2 X+2 X$ isomorphic to integer sumset

Moving from near-optimal to optimal density

- Apply Lev-Shkredov Result (modified doubling constant ~ 2.55) to $X+X$ or $4 X=2 X+2 X$ or $8 X=4 X+4 X$.
- Upper bound for $8 X$ ensures that we can apply this result to at least one of these sumsets (long calculation).
- Conclusion implies $\ell_{d}(2 X)<\frac{p}{2}$, so $2 X+2 X$ isomorphic to integer sumset
- We now apply the integer version of the $3 k-4$ to $X+X$ and $2 X+2 X$.

Moving from near-optimal to optimal density

- Apply Lev-Shkredov Result (modified doubling constant ~ 2.55) to $X+X$ or $4 X=2 X+2 X$ or $8 X=4 X+4 X$.
- Upper bound for $8 X$ ensures that we can apply this result to at least one of these sumsets (long calculation).
- Conclusion implies $\ell_{d}(2 X)<\frac{p}{2}$, so $2 X+2 X$ isomorphic to integer sumset
- We now apply the integer version of the $3 k-4$ to $X+X$ and $2 X+2 X$.
- If $|X+X|<3|X|-3$, we apply huicochea to $X+A$ then $A+B$ to complete the proof. Thus

$$
|2 X| \geq 2|X|-3
$$

Moving from near-optimal to optimal density

- Apply Lev-Shkredov Result (modified doubling constant ~ 2.55) to $X+X$ or $4 X=2 X+2 X$ or $8 X=4 X+4 X$.
- Upper bound for $8 X$ ensures that we can apply this result to at least one of these sumsets (long calculation).
- Conclusion implies $\ell_{d}(2 X)<\frac{p}{2}$, so $2 X+2 X$ isomorphic to integer sumset
- We now apply the integer version of the $3 k-4$ to $X+X$ and $2 X+2 X$.
- If $|X+X|<3|X|-3$, we apply huicochea to $X+A$ then $A+B$ to complete the proof. Thus

$$
|2 X| \geq 2|X|-3
$$

- Repeat for $4 X=2 X+2 X$ to get improved lower bound for $|4 X|$.

Moving from near-optimal to optimal density

- Apply Lev-Shkredov Result (modified doubling constant ~ 2.55) to $X+X$ or $4 X=2 X+2 X$ or $8 X=4 X+4 X$.
- Upper bound for $8 X$ ensures that we can apply this result to at least one of these sumsets (long calculation).
- Conclusion implies $\ell_{d}(2 X)<\frac{p}{2}$, so $2 X+2 X$ isomorphic to integer sumset
- We now apply the integer version of the $3 k-4$ to $X+X$ and $2 X+2 X$.
- If $|X+X|<3|X|-3$, we apply huicochea to $X+A$ then $A+B$ to complete the proof. Thus

$$
|2 X| \geq 2|X|-3
$$

- Repeat for $4 X=2 X+2 X$ to get improved lower bound for $|4 X|$.
- Compare with upper bound, and obtain a contradiction.

Thanks!

[^0]
[^0]:

