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Small Sumset = “Structure”

Theorem (Folklore)
For finite, nonempty A, B C 7Z, we have

|A+ B| > |A|+|B| — 1.

If equality holds, then A and B are arithmetic progressions with common
difference (or |A|=1or |B| =1).
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3k — 4 Theorem
Theorem (3k — 4 Theorem)
Let A, B C Z be finite and nonempty with |A| > |B| and
|A+ B| = |Al+|B|+r < |A[+2|B] =3 -4,
where

{ 1 if A=(minA—minB)+ B,
§= .
0 otherwise.

Then there are arithmetic progressions Pa, Pg, Parg C 7Z having
common difference such that

X CPx and |Px|<|Al+r+1 forallX e {A B},

Pars CA+B and |Paig| > |Al+|B|—1.

Freiman (1962); Lev and Smeliansky (1995); Freiman (2009); Bardaji
and G (2010); G (2013)



Some Examples: r is tight
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Extension modulo p

Definition (General Setup)
G = Z/pZ with p > 2 prime, A, B C G nonempty, A+ B # G,
|A| >1|B|, C:=—(A+B)*=—-G\(A+B)and |[A+B|=|A|+|B|+r.

Definition (Target Conclusion)
There exist arithmetic progressions Pa, Pg, Pc C G of common

difference with X C Px and |Px| < |X|+r+ 1 for all X € {A, B, C}.

Conjecture
Assume General Setup. If

A+ B| < (Al +|B|)+|B|—3—0s and |A+B|<p—r—3—dc,

then Target Conclusions hold.

» Upshot: 3k — 4 Theorem should in Z/pZ too so long as A+ B isn't
too large

» Much partial Progress. General Idea: Impose additional small
doubling and density constraints to obtain Target Conclusions.
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PC VS. PA+B

Why does P¢ replace Paig?

For X C G, let X°:= G\ X.

Recall C = —(A+ B)“.

Set Parg = —(Pc)°

C C P¢ < Pag= —(Pc)*C—-C-=A+B
|Pc| <|Cl+r+1 < |Paig|>|Al+|Bl-1

vvyvyVvVYyyYyy

Passl =p = |Pc| = p—|Cl = r—1=|A+B|~r—1=|A|+|B] -1
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|deal Density implies (1 — ¢) Density

» Suppose Target Conclusions holds if |[A+ B| < p—r —3 and
A+ Bl < (JA[+|B]) +alB| =3

» Goal: Given any small € > 0, we want to show there is some o > 0
such that |[A+ B| < (1 —€)p and
|A+ B| = (|A| + |B]) + r < (JA] +|B]) + &'|B| — 3 also yields
Target Conclusions.

> If (1—€)p < p—r—3, wecan take o/ = .

> So we need r+3 < ep

» Since A+ B # G, easy pigeonhole argument shows
2|B| < |A|+|B| < p. Hence |B| < 5.

» Thus r +3 < o/|B| < &%, so its true for o' < 2¢

> Summary:
[A+ B| < (|JA|+|B])+2¢B]—3 and |[A+B|<(l—¢€)p

ensure A, B and C contained in small length arithmetic progressions
(for small e < 1av)



Partial Progress: Low Density

|A+B|=|A|+|B|+r<(JA+|B|)+a|B| -3, where ac (0,1]

» Results for very low density follow from more general “rectification”
principles.



Partial Progress: Low Density

|A+B|=|A|+|B|+r<(JA+|B|)+a|B| -3, where ac (0,1]

» Results for very low density follow from more general “rectification”
principles.
> Low density implies “isomorphic” to a sumset A’ + B’ C Z.



Partial Progress: Low Density

|A+B|=|A|+|B|+r<(JA+|B|)+a|B| -3, where ac (0,1]

Results for very low density follow from more general “rectification”
principles.

Low density implies “isomorphic” to a sumset A’ + B’ C Z.

|JAUB| <log,p — Bilu, Lev, Ruzsa (1998)

|[AUB| < [logy p] — Lev (2008), + technical issue G. (2013)
A= B and |A| < cp with ¢ = (1/96)1%® —  Green, Ruzsa
(2006)
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|[A+ B|=|Al+|B|+r<(JA+]|B|)+alB|—3, where aec(0,1]

» “Balanced” approach with tangible constants both for the density
and small doubling constraints

» A= B: Freiman (1960s), Rodseth (2006), Candela, Serra and
Spiegel (2020), Lev and Shkredov (2020), Lev and Serra (2020)

> |A+ A| < 2|A| + (0.4)|A| — 3 and |A| < (0.02857)p

|A+ A| < 2|A| + (0.4)|A] — 3 and |A| < (0.093457)p

|A+ A < 2|A| + (0.48)|A] — 7 and |A| < (0.0000000001)p

|A+ A < 2|A| + (0.59)|A] — 3 and 101 < |A| < (0.0045)p

|A+ A| < 2|A| + (0.7652)|A| — 3 and 10 < |A| < (0.00000125)p

» In many cases, “flexible” versions are available: density restriction
grows stronger as small doubling constraint gets weaker.

> (0.001)|A[>/3 < |B| <|Al, |A+ B|<(|A+|B|)+ (0.03)|B] and
|A] < (0.0045)p —  Huichochea (2022)

vVvyy
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Partial Progress: High/ldeal Density

[A+ B|=|Al+|Bl+r<(JAl+|B|)+ «|B| =3, where « € (0,1]

> A= B, |A+ Al < 2|A| + (0.136)|A| — 3 and |A+ A] < (0.75)p.
—  Candela, Gonzélez-Sénchez and G. (2022)
r<cp—1.2 with ¢ = 1.4 x 1073%1

>

» Why does a r < ¢p restriction count as High density?
> A+ B # G implies |B| < § (easy pigeonhole argument)
>

If « < 2¢, small doubling hypothesi rephrases as
r<alBl-3<(2c)5§ -3=cp-3.
» This gives no density restriction for |A+ B| < |A] + (1 +2¢)|B| — 3.
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Theorem (Serra and Zémor 2009)
Assume General Setup. If |A| >4, p > 2%,

|A+ Al < 2]A] 4 (0.0001)|A| and |[A+ A <p—r—3,
then Target Conclusions hold.

Theorem (G. 2024)

Assume General Setup. If
|[A+ B| < (|JA]+|B|) + (0.01)|A| =3 and |[A+B|<p—r—3,

then Target Conclusions hold.
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Ideas for the Proof: Additive Trios

Definition (Boothbay, DeVos, Montejano 2015)

Let G be a finite abelian group; let A, B, C C G be nonempty sets. Then
(A, B, C) is and additive trio if A+ B+ C # G with
r(A7Bv C) = |G| - ‘A| - |B‘ - |C|

Example
ABCG C:=—A+B), |A+B|=|A+|B|+r. Then (A, B,C)is
an additive trio, since

0¢(A+B)—(A+B)f=A+B+C,

with r(A, B, C) = |G| — |A| = |B| = (G| = |A[ = |B| = r) = r

> |A+B| = |A|+|B|+r < (JAl+|B|) + a|B| — 3 and
|A+ B| < p—a(r+3) equivalent to |A,|B|,|C| > a=(r + 3).



Ideas for the Proof: Huicochea's Reduction

Definition
For AC G and d € G, let £4(A) be the minimal length of an arithmetic
progression with difference d containing A.

Theorem (Huicochea 2017; modified by G. 2024)
Let G =7Z/pZ with p > 2 prime, let (A, B, C) be an additive trio from
G, and let r, h € Z be integers.
1. Ift4(A) < |A|+ h for some d € G\ {0}, r(A,B,C)<r,
|Al > r+ 3+ h and |B| > r + 3 + 2h with strict inequality in one of
these estimates, and |C| > r + 3, then

Lg(A) < |Al4+r+1, L4(B) < |B|+r+1, and (4(C) <|C|+r+1.

2. IfL4(A) < |A| + h for some d € G\ {0}, r(A,B,C) < h—-1,
h+2 < |Al < max{|B|,|C|}, |B|,|C|> h+3 and 35h+10 < p,

then
4(B) <|B|+h and £4(C) <|C|+ h.
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» Original Idea of Freiman: Use fourier analysis on G to get a “large”
subset A’ C A contained in an AP with length < pT“.

» This ensures A’ + A’ canonically isomorphic to an integer sumset.

» Apply the 3k — 4 Theorem in Z to A’ + A’ to get A’ contained in an
even smaller arithmetic progression

» Choose A’ C A maximal and show via a combinatorial argument
A’ = A forced.

» Problem 1: Simple extremal combinatorial argument for showing
A = A’ fails at higher densities |A + A] > 251,

» Problem 2: Issues with Fourier calculation estimates when A # B
and adapting the combinatorial argument for showing A = A’
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Ideas for the Proof: Combinatorial Reduction

> Problem 1 resolved by Candela, Gonzilez-Sanchez and G. (2022) for
A = B using vosper duality (i.e., additive trios).

> These arguments needed to be adapted from A+ A to A+ B (G.
2024)

Theorem (G. 2024)
Let p be prime, let A, B C Z/pZ be nonempty subsets with

3
|A+B|:|A|+|B|+r§1(p+1) and p>4r+9,

and set C = —(A+ B)°. Suppose there exist subsets A C A and B C B
or A C B and B’ C A such that A’ + B’ rectifies, |B’| < |A’| and

|A|+2|B'|—4>|A+ B (1)

Then Target Conclusions hold.
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|deas for the Proof: Fourier Analysis

» Problem 2 resolved by modifying standard fourier sum estimates for
A+ A to improve constants for A + B.

Definition
For AC G = 7Z/pZ, let Sa(x) = > ,caexp(ax/p), where
exp(x) = e?™* € C.

Lemma
If z1,...,zy € C is a sequence of points lying on the complex unit circle
such that every open half-arc contains at most n of the terms z; for

N
i €[1,N], then |> z| <2n—N.
i-1



The “Base Case”

Theorem (G. 2024)

Assume General Setup. Let 5 € [0.731,1] and o € (0,0.212] be real
numbers. Suppose

A+B|<|Al+(1+a)|B| =3 and BIA|<|B| <|A| < f(a.6)p.

Then Target Conclusions hold.
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» G abelian group, B C G finite and nonempty, k > 1
» B is k-separable if there is some finite X C G with

|X| >k and |(X+ B)| > k.

> A k-fragment is a subset X C G (satisfying above constraints) with
|X + B| — |X| minimal.

» A minimal cardinality k-fragment is called a k-atom. We will need
good upper bounds for their size. (Serra and Zémor 2000, G. 2013).

» |[A+B|=|Al+|B|+r<p—r—3with |B| > r+ 3 shows B is

(r + 3)-separable.

Replace A by a (r 4 3)-atom X. Then |X + B| < |X|+ |B| + r and

IX+Bl<p-r-3.

» Repeat and replace B with a (r + 3)-atom Y for X.

Strengthen the hypotheses and use 9(r + 3)-atoms instead. Then
X + Y satisfies the “base case” result hypotheses (calculation).
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» G abelian group, B C G finite and nonempty, k > 1
» B is k-separable if there is some finite X C G with

|X| >k and |(X+ B)| > k.

> A k-fragment is a subset X C G (satisfying above constraints) with
|X + B| — |X| minimal.

» A minimal cardinality k-fragment is called a k-atom. We will need
good upper bounds for their size. (Serra and Zémor 2000, G. 2013).

» |[A+B|=|Al+|B|+r<p—r—3with |B| > r+ 3 shows B is
(r + 3)-separable.

» Replace A by a (r + 3)-atom X. Then |X + B| < |X|+|B|+ r and
IX+Bl<p-r-3.

» Repeat and replace B with a (r + 3)-atom Y for X.

» Strengthen the hypotheses and use 9(r + 3)-atoms instead. Then
X + Y satisfies the “base case” result hypotheses (calculation).

» Used Huichochea reduction argument transfers desired structure
back to A, B and C.



Near Optimal Density

Theorem (G. 2024)

Assume General Setup. If
1
|A+ B| < (|A| +|B]) + §\B| —3 and |A+ B|<p—29(r+3),

then Target Conclusions hold.
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Moving from near-optimal to optimal density
» Replace B by a (r + 3)-atom X.
> Then |[A+ X| < |A| +|X]| + r and | X| £ 3.077(r + 3)
Theorem (Ruzsa-Pliinnecke Bounds)

Let G be an abelian group, let A, B C G be finite, nonempty subsets and
let A C A be a nonempty subset attaining the minimum

A+ Bl

|A+ B|
Al '

Al

o= min{

b#ACAL<

Then |A" + nB| < a"|A'| < a"|A| for all n > 0.
» Apply Ruzsa-Pliinnecke and Vosper's Theorem to estimate |A’' + nX]|:
A 4+nX| < |A’\+(\A’|/\A|)n(|X\+r)(1+o.01434-n) for all n € [2,8].

» If A’ contained in short AP, then apply Huicochea to A’ + X, then
to A+ X, then to A+ B to get A, B and C all in short AP’s.

> Use near-ideal density result on A’ + nX to improve lower bound for
|A” 4+ nX|, thus improving upper bound for [nX|:

10
|A" 4+ nX]| > |A/|+E\nX|73
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>

>

>

Apply Lev-Shkredov Result (modified doubling constant ~ 2.55) to
X+ X or 4X =2X+2X or 8X =4X +4X.

Upper bound for 8X ensures that we can apply this result to at least
one of these sumsets (long calculation).

Conclusion implies £4(2X) < §, so 2X 42X isomorphic to integer
sumset

We now apply the integer version of the 3k — 4 to X + X and
2X +2X.

If | X + X| < 3]X| — 3, we apply huicochea to X + A then A+ B to
complete the proof. Thus

2X| > 2/X| -3

Repeat for 4X = 2X + 2X to get improved lower bound for |4.X].

Compare with upper bound, and obtain a contradiction.



Thanks!



