Inverse Sumset Results mod p at High Density

David J. Grynkiewicz

University of Memphis

June 14, 2024

Sumsets

Let G be an abelian group.

For $A, B \subseteq G$, their sumset is

$$A + B = \{a + b : a \in A, b \in B\}, \quad 2A := A + A$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Sumsets

Let G be an abelian group. Definition

For $A, B \subseteq G$, their sumset is

$$A + B = \{a + b : a \in A, b \in B\}, \quad 2A := A + A$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Small Sumset \implies "Structure"

Sumsets

Let G be an abelian group.

Definition For $A, B \subseteq G$, their sumset is

$$A + B = \{a + b : a \in A, b \in B\}, \quad 2A := A + A$$

Small Sumset \implies "Structure"

Theorem (Folklore)

For finite, nonempty $A, B \subseteq \mathbb{Z}$, we have

 $|A + B| \ge |A| + |B| - 1.$

If equality holds, then A and B are arithmetic progressions with common difference (or |A| = 1 or |B| = 1).

3k - 4 Theorem

Theorem (3k - 4 Theorem)Let $A, B \subseteq \mathbb{Z}$ be finite and nonempty with $|A| \ge |B|$ and $|A + B| = |A| + |B| + r \le |A| + 2|B| - 3 - \delta$, where $\delta = \begin{cases} 1 & \text{if } A = (\min A - \min B) + B, \\ 0 & \text{otherwise.} \end{cases}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

3k - 4 Theorem

Theorem (3k - 4 Theorem) Let $A, B \subseteq \mathbb{Z}$ be finite and nonempty with $|A| \ge |B|$ and $|A + B| = |A| + |B| + r \le |A| + 2|B| - 3 - \delta$, where

$$\delta = \begin{cases} 1 & \text{if } A = (\min A - \min B) + B, \\ 0 & \text{otherwise.} \end{cases}$$

Then there are arithmetic progressions P_A , P_B , $P_{A+B} \subseteq \mathbb{Z}$ having common difference such that

$$X \subseteq P_X$$
 and $|P_X| \le |A| + r + 1$ for all $X \in \{A, B\}$,

$$P_{A+B} \subseteq A+B$$
 and $|P_{A+B}| \ge |A|+|B|-1$.

Freiman (1962); Lev and Smeliansky (1995); Freiman (2009); Bardaji and G (2010); G (2013)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Some Examples: r is tight

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition (General Setup) $G = \mathbb{Z}/p\mathbb{Z}$ with $p \ge 2$ prime, $A, B \subseteq G$ nonempty, $A + B \neq G$, $|A| \ge |B|, C := -(A+B)^{c} = -G \setminus (A+B)$ and |A+B| = |A| + |B| + r.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition (General Setup) $G = \mathbb{Z}/p\mathbb{Z}$ with $p \ge 2$ prime, $A, B \subseteq G$ nonempty, $A + B \ne G$, $|A| \ge |B|, C := -(A+B)^{c} = -G \setminus (A+B)$ and |A+B| = |A| + |B| + r.

Definition (Target Conclusion)

There exist arithmetic progressions P_A , P_B , $P_C \subseteq G$ of common difference with $X \subseteq P_X$ and $|P_X| \leq |X| + r + 1$ for all $X \in \{A, B, C\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $\begin{array}{l} \mbox{Definition (General Setup)} \\ G = \mathbb{Z}/p\mathbb{Z} \mbox{ with } p \geq 2 \mbox{ prime, } A, B \subseteq G \mbox{ nonempty, } A + B \neq G, \\ |A| \geq |B|, \ C := -(A+B)^c = -G \setminus (A+B) \mbox{ and } |A+B| = |A| + |B| + r. \end{array}$

Definition (Target Conclusion)

There exist arithmetic progressions P_A , P_B , $P_C \subseteq G$ of common difference with $X \subseteq P_X$ and $|P_X| \leq |X| + r + 1$ for all $X \in \{A, B, C\}$.

Conjecture

Assume General Setup. If

$$|A+B| \leq (|A|+|B|) + |B| - 3 - \delta_B \quad \text{and} \quad |A+B| \leq p-r-3 - \delta_C,$$

then Target Conclusions hold.

$\begin{array}{l} \mbox{Definition (General Setup)} \\ G = \mathbb{Z}/p\mathbb{Z} \mbox{ with } p \geq 2 \mbox{ prime, } A, B \subseteq G \mbox{ nonempty, } A + B \neq G, \\ |A| \geq |B|, \ C := -(A+B)^c = -G \setminus (A+B) \mbox{ and } |A+B| = |A| + |B| + r. \end{array}$

Definition (Target Conclusion)

There exist arithmetic progressions P_A , P_B , $P_C \subseteq G$ of common difference with $X \subseteq P_X$ and $|P_X| \leq |X| + r + 1$ for all $X \in \{A, B, C\}$.

Conjecture

Assume General Setup. If

$$|A+B| \leq (|A|+|B|) + |B| - 3 - \delta_B \quad \text{and} \quad |A+B| \leq p-r-3 - \delta_C,$$

then Target Conclusions hold.

▶ Upshot: 3k - 4 Theorem should in Z/pZ too so long as A + B isn't too large

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition (General Setup) $G = \mathbb{Z}/p\mathbb{Z}$ with $p \ge 2$ prime, $A, B \subseteq G$ nonempty, $A + B \ne G$, $|A| \ge |B|, C := -(A+B)^{c} = -G \setminus (A+B)$ and |A+B| = |A| + |B| + r.

Definition (Target Conclusion)

There exist arithmetic progressions P_A , P_B , $P_C \subseteq G$ of common difference with $X \subseteq P_X$ and $|P_X| \leq |X| + r + 1$ for all $X \in \{A, B, C\}$.

Conjecture

Assume General Setup. If

$$|A+B| \leq (|A|+|B|) + |B| - 3 - \delta_B \quad \text{and} \quad |A+B| \leq p-r-3 - \delta_C,$$

then Target Conclusions hold.

- ▶ Upshot: 3k 4 Theorem should in Z/pZ too so long as A + B isn't too large
- Much partial Progress. General Idea: Impose additional small doubling and density constraints to obtain Target Conclusions.

• Why does P_C replace P_{A+B} ?

Why does P_C replace P_{A+B}?
For X ⊆ G, let X^c := G \ X.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Why does P_C replace P_{A+B} ?
- ▶ For $X \subseteq G$, let $X^c := G \setminus X$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• Recall $C = -(A + B)^{c}$.

Why does P_C replace P_{A+B}?
For X ⊆ G, let X^c := G \ X.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

▶ Recall $C = -(A + B)^{c}$.

► Set
$$P_{A+B} = -(P_C)^c$$

Why does P_C replace P_{A+B}?
 For X ⊆ G, let X^c := G \ X.
 Recall C = -(A + B)^c.
 Set P_{A+B} = -(P_C)^c

$$\blacktriangleright \ C \subseteq P_C \qquad \iff \qquad -(P_C)^{\mathsf{c}} \subseteq -C^{\mathsf{c}}$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Why does P_C replace P_{A+B}?
 For X ⊆ G, let X^c := G \ X.
 Recall C = -(A + B)^c.
 Set P_{A+B} = -(P_C)^c
 C ⊆ P_C ⇔ P_{A+B} = -(P_C)^c ⊆ -C^c = A + B

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $|P_{A+B}| = p - |P_C| \ge p - |C| - r - 1 = |A+B| - r - 1 = |A| + |B| - 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Suppose Target Conclusions holds if $|A + B| \le p - r - 3$ and $|A + B| \le (|A| + |B|) + \alpha |B| - 3$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Suppose Target Conclusions holds if $|A + B| \le p r 3$ and $|A + B| \le (|A| + |B|) + \alpha |B| 3$
- ► Goal: Given any small $\epsilon > 0$, we want to show there is some $\alpha' > 0$ such that $|A + B| \le (1 \epsilon)p$ and $|A + B| = (|A| + |B|) + r \le (|A| + |B|) + \alpha'|B| 3$ also yields Target Conclusions.

Suppose Target Conclusions holds if $|A + B| \le p - r - 3$ and $|A + B| \le (|A| + |B|) + \alpha |B| - 3$

▶ Goal: Given any small $\epsilon > 0$, we want to show there is some $\alpha' > 0$ such that $|A + B| \le (1 - \epsilon)p$ and $|A + B| = (|A| + |B|) + r \le (|A| + |B|) + \alpha'|B| - 3$ also yields Target Conclusions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• If
$$(1-\epsilon)p \le p-r-3$$
, we can take $\alpha' = \alpha$.

- Suppose Target Conclusions holds if $|A + B| \le p r 3$ and $|A + B| \le (|A| + |B|) + \alpha |B| 3$
- ▶ Goal: Given any small $\epsilon > 0$, we want to show there is some $\alpha' > 0$ such that $|A + B| \le (1 \epsilon)p$ and $|A + B| = (|A| + |B|) + r \le (|A| + |B|) + \alpha'|B| 3$ also yields Target Conclusions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• If
$$(1-\epsilon)p \leq p-r-3$$
, we can take $\alpha' = \alpha$.

So we need
$$r + 3 \le \epsilon p$$

- Suppose Target Conclusions holds if $|A + B| \le p r 3$ and $|A + B| \le (|A| + |B|) + \alpha |B| 3$
- ▶ Goal: Given any small $\epsilon > 0$, we want to show there is some $\alpha' > 0$ such that $|A + B| \le (1 \epsilon)p$ and $|A + B| = (|A| + |B|) + r \le (|A| + |B|) + \alpha'|B| 3$ also yields Target Conclusions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• If
$$(1-\epsilon)p \leq p-r-3$$
, we can take $\alpha' = \alpha$.

So we need
$$r + 3 \le \epsilon p$$

Since $A + B \neq G$, easy pigeonhole argument shows $2|B| \leq |A| + |B| \leq p$. Hence $|B| \leq \frac{p}{2}$.

- Suppose **Target Conclusions** holds if $|A + B| \le p r 3$ and $|A + B| \le (|A| + |B|) + \alpha |B| 3$
- ▶ Goal: Given any small $\epsilon > 0$, we want to show there is some $\alpha' > 0$ such that $|A + B| \le (1 \epsilon)p$ and $|A + B| = (|A| + |B|) + r \le (|A| + |B|) + \alpha'|B| 3$ also yields Target Conclusions.

• If
$$(1-\epsilon)p \leq p-r-3$$
, we can take $\alpha' = \alpha$

So we need
$$r + 3 \le \epsilon p$$

- Since $A + B \neq G$, easy pigeonhole argument shows $2|B| \leq |A| + |B| \leq p$. Hence $|B| \leq \frac{p}{2}$.
- Thus $r + 3 \le \alpha' |B| < \alpha' \frac{p}{2}$, so its true for $\alpha' \le 2\epsilon$

- Suppose **Target Conclusions** holds if $|A + B| \le p r 3$ and $|A + B| \le (|A| + |B|) + \alpha |B| 3$
- ▶ Goal: Given any small $\epsilon > 0$, we want to show there is some $\alpha' > 0$ such that $|A + B| \le (1 \epsilon)p$ and $|A + B| = (|A| + |B|) + r \le (|A| + |B|) + \alpha'|B| 3$ also yields Target Conclusions.

• If
$$(1-\epsilon)p \leq p-r-3$$
, we can take $\alpha' = \alpha$

So we need
$$r + 3 \le \epsilon p$$

- Since $A + B \neq G$, easy pigeonhole argument shows $2|B| \leq |A| + |B| \leq p$. Hence $|B| \leq \frac{p}{2}$.
- Thus $r + 3 \le \alpha' |B| < \alpha' \frac{p}{2}$, so its true for $\alpha' \le 2\epsilon$

Summary:

$$|A+B| \leq (|A|+|B|) + 2\epsilon |B| - 3$$
 and $|A+B| \leq (1-\epsilon)p$

ensure A, B and C contained in small length arithmetic progressions (for small $\epsilon < \frac{1}{2}\alpha$.)

Partial Progress: Low Density

 $|A+B| = |A|+|B|+r \leq (|A|+|B|) + \alpha |B|-3, \quad \text{ where } \alpha \in (0,1]$

 Results for very low density follow from more general "rectification" principles.

Partial Progress: Low Density

$$|A+B| = |A| + |B| + r \leq (|A| + |B|) + \alpha |B| - 3, \quad \text{ where } \alpha \in (0,1]$$

 Results for very low density follow from more general "rectification" principles.

▶ Low density implies "isomorphic" to a sumset $A' + B' \subseteq \mathbb{Z}$.

Partial Progress: Low Density

 $|A + B| = |A| + |B| + r \le (|A| + |B|) + \alpha |B| - 3$, where $\alpha \in (0, 1]$

- Results for very low density follow from more general "rectification" principles.
- ▶ Low density implies "isomorphic" to a sumset $A' + B' \subseteq \mathbb{Z}$.
- ▶ $|A \cup B| \le \log_4 p \longrightarrow$ Bilu, Lev, Ruzsa (1998)
- ▶ $|A \cup B| \leq \lceil \log_2 p \rceil$ → Lev (2008), + technical issue G. (2013)

▶ A = B and $|A| \le cp$ with $c = (1/96)^{108}$ \longrightarrow Green, Ruzsa (2006)

$$|A+B| = |A| + |B| + r \le (|A| + |B|) + \alpha |B| - 3$$
, where $\alpha \in (0, 1]$

 "Balanced" approach with tangible constants both for the density and small doubling constraints

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $|A + B| = |A| + |B| + r \le (|A| + |B|) + \alpha |B| - 3$, where $\alpha \in (0, 1]$

 "Balanced" approach with tangible constants both for the density and small doubling constraints

 A = B: Freiman (1960s), Rodseth (2006), Candela, Serra and Spiegel (2020), Lev and Shkredov (2020), Lev and Serra (2020)

▶
$$|A + A| \le 2|A| + (0.4)|A| - 3$$
 and $|A| \le (0.02857)p$

▶
$$|A + A| \le 2|A| + (0.4)|A| - 3$$
 and $|A| \le (0.093457)p$

- ▶ $|A + A| \le 2|A| + (0.48)|A| 7$ and |A| < (0.000000001)p
- ▶ $|A + A| \le 2|A| + (0.59)|A| 3$ and $101 \le |A| < (0.0045)p$
- ▶ |A + A| < 2|A| + (0.7652)|A| 3 and $10 \le |A| < (0.0000125)p$

 $|A + B| = |A| + |B| + r \le (|A| + |B|) + \alpha |B| - 3$, where $\alpha \in (0, 1]$

 "Balanced" approach with tangible constants both for the density and small doubling constraints

 A = B: Freiman (1960s), Rodseth (2006), Candela, Serra and Spiegel (2020), Lev and Shkredov (2020), Lev and Serra (2020)

▶
$$|A + A| \le 2|A| + (0.4)|A| - 3$$
 and $|A| \le (0.02857)p$

▶
$$|A + A| \le 2|A| + (0.4)|A| - 3$$
 and $|A| \le (0.093457)p$

▶
$$|A + A| \le 2|A| + (0.48)|A| - 7$$
 and $|A| < (0.0000000001)p$

►
$$|A + A| \le 2|A| + (0.59)|A| - 3$$
 and $101 \le |A| < (0.0045)p$

▶ |A + A| < 2|A| + (0.7652)|A| - 3 and $10 \le |A| < (0.0000125)p$

In many cases, "flexible" versions are available: density restriction grows stronger as small doubling constraint gets weaker.

 $|A + B| = |A| + |B| + r \le (|A| + |B|) + \alpha |B| - 3$, where $\alpha \in (0, 1]$

 "Balanced" approach with tangible constants both for the density and small doubling constraints

 A = B: Freiman (1960s), Rodseth (2006), Candela, Serra and Spiegel (2020), Lev and Shkredov (2020), Lev and Serra (2020)

▶
$$|A + A| \le 2|A| + (0.4)|A| - 3$$
 and $|A| \le (0.02857)p$

▶
$$|A + A| \le 2|A| + (0.4)|A| - 3$$
 and $|A| \le (0.093457)p$

▶
$$|A + A| \le 2|A| + (0.48)|A| - 7$$
 and $|A| < (0.000000001)p$

- ► $|A + A| \le 2|A| + (0.59)|A| 3$ and $101 \le |A| < (0.0045)p$
- ▶ |A + A| < 2|A| + (0.7652)|A| 3 and $10 \le |A| < (0.00000125)p$
- In many cases, "flexible" versions are available: density restriction grows stronger as small doubling constraint gets weaker.

▶
$$(0.001)|A|^{2/3} \le |B| \le |A|$$
, $|A + B| \le (|A| + |B|) + (0.03)|B|$ and $|A| < (0.0045)p \longrightarrow$ Huichochea (2022)

Partial Progress: High/Ideal Density

$$|A + B| = |A| + |B| + r \le (|A| + |B|) + \alpha |B| - 3$$
, where $\alpha \in (0, 1]$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

► A = B, $|A + A| \le 2|A| + (0.136)|A| - 3$ and $|A + A| \le (0.75)p$. → Candela, González-Sánchez and G. (2022) Partial Progress: High/Ideal Density

$$|A + B| = |A| + |B| + r \le (|A| + |B|) + \alpha |B| - 3$$
, where $\alpha \in (0, 1]$

►
$$A = B$$
, $|A + A| \le 2|A| + (0.136)|A| - 3$ and $|A + A| \le (0.75)p$.
 \rightarrow Candela, González-Sánchez and G. (2022)
► $A = 1.2$ if $a = 1.4 + 10^{-63951}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

•
$$r \le cp - 1.2$$
 with $c = 1.4 \times 10^{-6395}$

Partial Progress: High/Ideal Density

$$|A + B| = |A| + |B| + r \le (|A| + |B|) + \alpha |B| - 3$$
, where $\alpha \in (0, 1]$

►
$$A = B$$
, $|A + A| \le 2|A| + (0.136)|A| - 3$ and $|A + A| \le (0.75)p$.
→ Candela, González-Sánchez and G. (2022)
► $r \le cn - 1.2$ with $c = 1.4 \times 10^{-63951}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

•
$$r \le cp - 1.2$$
 with $c = 1.4 \times 10^{-6395}$

• Why does a $r \leq cp$ restriction count as High density?
Partial Progress: High/Ideal Density

$$|A + B| = |A| + |B| + r \le (|A| + |B|) + \alpha |B| - 3$$
, where $\alpha \in (0, 1]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\begin{array}{l} \blacktriangleright A = B, \ |A + A| \leq 2|A| + (0.136)|A| - 3 \ \text{and} \ |A + A| \leq (0.75)p. \\ \rightarrow \quad \text{Candela, González-Sánchez and G. (2022)} \end{array}$$

•
$$r \le cp - 1.2$$
 with $c = 1.4 \times 10^{-63951}$

- ▶ Why does a *r* ≤ *cp* restriction count as High density?
- $A + B \neq G$ implies $|B| \leq \frac{p}{2}$ (easy pigeonhole argument)

Partial Progress: High/Ideal Density

$$|A + B| = |A| + |B| + r \le (|A| + |B|) + \alpha |B| - 3$$
, where $\alpha \in (0, 1]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

►
$$A = B$$
, $|A + A| \le 2|A| + (0.136)|A| - 3$ and $|A + A| \le (0.75)p$.
→ Candela, González-Sánchez and G. (2022)

•
$$r \le cp - 1.2$$
 with $c = 1.4 \times 10^{-63951}$

- ▶ Why does a r ≤ cp restriction count as High density?
- $A + B \neq G$ implies $|B| \leq \frac{p}{2}$ (easy pigeonhole argument)
- If $\alpha \leq 2c$, small doubling hypothesi rephrases as $r \leq \alpha |B| 3 \leq (2c)\frac{p}{2} 3 = cp 3$.

Partial Progress: High/Ideal Density

$$|A + B| = |A| + |B| + r \le (|A| + |B|) + \alpha |B| - 3$$
, where $\alpha \in (0, 1]$

►
$$A = B$$
, $|A + A| \le 2|A| + (0.136)|A| - 3$ and $|A + A| \le (0.75)p$.
→ Candela, González-Sánchez and G. (2022)

•
$$r \le cp - 1.2$$
 with $c = 1.4 \times 10^{-63951}$

- ▶ Why does a r ≤ cp restriction count as High density?
- $A + B \neq G$ implies $|B| \leq \frac{p}{2}$ (easy pigeonhole argument)
- If α ≤ 2c, small doubling hypothesi rephrases as r ≤ α|B| − 3 ≤ (2c)^p/₂ − 3 = cp − 3.
- ▶ This gives no density restriction for $|A + B| \le |A| + (1 + 2c)|B| 3$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Ideal Density

Theorem (Serra and Zémor 2009) Assume General Setup. If $|A| \ge 4$, $p > 2^{94}$,

 $|A + A| \le 2|A| + (0.0001)|A|$ and $|A + A| \le p - r - 3$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

then Target Conclusions hold.

Ideal Density

Theorem (Serra and Zémor 2009) Assume General Setup. If $|A| \ge 4$, $p > 2^{94}$,

 $|A + A| \le 2|A| + (0.0001)|A|$ and $|A + A| \le p - r - 3$,

then Target Conclusions hold.

Theorem (G. 2024) Assume General Setup. If

 $|A + B| \le (|A| + |B|) + (0.01)|A| - 3$ and $|A + B| \le p - r - 3$,

then Target Conclusions hold.

Ideas for the Proof: Additive Trios

Definition (Boothbay, DeVos, Montejano 2015)

Let G be a finite abelian group; let $A, B, C \subseteq G$ be nonempty sets. Then (A, B, C) is and **additive trio** if $A + B + C \neq G$ with r(A, B, C) := |G| - |A| - |B| - |C|.

Ideas for the Proof: Additive Trios

Definition (Boothbay, DeVos, Montejano 2015)

Let G be a finite abelian group; let $A, B, C \subseteq G$ be nonempty sets. Then (A, B, C) is and **additive trio** if $A + B + C \neq G$ with r(A, B, C) := |G| - |A| - |B| - |C|.

Example

 $A, B \subseteq G, C := -(A + B)^c$, |A + B| = |A| + |B| + r. Then (A, B, C) is an additive trio, since

$$0 \notin (A+B) - (A+B)^{c} = A + B + C,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

with r(A, B, C) = |G| - |A| - |B| - (|G| - |A| - |B| - r) = r

Ideas for the Proof: Additive Trios

Definition (Boothbay, DeVos, Montejano 2015)

Let G be a finite abelian group; let $A, B, C \subseteq G$ be nonempty sets. Then (A, B, C) is and **additive trio** if $A + B + C \neq G$ with r(A, B, C) := |G| - |A| - |B| - |C|.

Example

 $A, B \subseteq G, C := -(A + B)^{c}, |A + B| = |A| + |B| + r$. Then (A, B, C) is an additive trio, since

$$0 \notin (A+B) - (A+B)^{\mathsf{c}} = A + B + C,$$

with r(A, B, C) = |G| - |A| - |B| - (|G| - |A| - |B| - r) = r

►
$$|A + B| = |A| + |B| + r \le (|A| + |B|) + \alpha |B| - 3$$
 and
 $|A + B| \le p - \alpha (r + 3)$ equivalent to $|A|, |B|, |C| \ge \alpha^{-1} (r + 3)$.

Ideas for the Proof: Huicochea's Reduction

Definition

For $A \subseteq G$ and $d \in G$, let $\ell_d(A)$ be the minimal length of an arithmetic progression with difference d containing A.

Theorem (Huicochea 2017; modified by G. 2024)

Let $G = \mathbb{Z}/p\mathbb{Z}$ with $p \ge 2$ prime, let (A, B, C) be an additive trio from G, and let $r, h \in \mathbb{Z}$ be integers.

1. If $\ell_d(A) \leq |A| + h$ for some $d \in G \setminus \{0\}$, $r(A, B, C) \leq r$, $|A| \geq r + 3 + h$ and $|B| \geq r + 3 + 2h$ with strict inequality in one of these estimates, and $|C| \geq r + 3$, then

 $\ell_d(A) \le |A| + r + 1, \ \ell_d(B) \le |B| + r + 1, \ \text{ and } \ \ell_d(C) \le |C| + r + 1.$

2. If $\ell_d(A) \le |A| + h$ for some $d \in G \setminus \{0\}$, $r(A, B, C) \le h - 1$, $h + 2 \le |A| \le \max\{|B|, |C|\}, |B|, |C| \ge h + 3$ and $35h + 10 \le p$, then

 $\ell_d(B) \leq |B| + h$ and $\ell_d(C) \leq |C| + h$.

Original Idea of Freiman: Use fourier analysis on G to get a "large" subset A' ⊆ A contained in an AP with length ≤ ^{p+1}/₂.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Original Idea of Freiman: Use fourier analysis on G to get a "large" subset A' ⊆ A contained in an AP with length ≤ ^{p+1}/₂.

• This ensures A' + A' canonically isomorphic to an integer sumset.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Original Idea of Freiman: Use fourier analysis on G to get a "large" subset A' ⊆ A contained in an AP with length ≤ ^{p+1}/₂.
- This ensures A' + A' canonically isomorphic to an integer sumset.
- Apply the 3k 4 Theorem in \mathbb{Z} to A' + A' to get A' contained in an even smaller arithmetic progression

- Original Idea of Freiman: Use fourier analysis on G to get a "large" subset A' ⊆ A contained in an AP with length ≤ ^{p+1}/₂.
- This ensures A' + A' canonically isomorphic to an integer sumset.
- Apply the 3k 4 Theorem in \mathbb{Z} to A' + A' to get A' contained in an even smaller arithmetic progression

Choose A' ⊆ A maximal and show via a combinatorial argument A' = A forced.

- Original Idea of Freiman: Use fourier analysis on G to get a "large" subset A' ⊆ A contained in an AP with length ≤ ^{p+1}/₂.
- This ensures A' + A' canonically isomorphic to an integer sumset.
- Apply the 3k 4 Theorem in \mathbb{Z} to A' + A' to get A' contained in an even smaller arithmetic progression
- Choose A' ⊆ A maximal and show via a combinatorial argument A' = A forced.
- ▶ Problem 1: Simple extremal combinatorial argument for showing A = A' fails at higher densities $|A + A| > \frac{p+1}{2}$.

- Original Idea of Freiman: Use fourier analysis on G to get a "large" subset A' ⊆ A contained in an AP with length ≤ ^{p+1}/₂.
- This ensures A' + A' canonically isomorphic to an integer sumset.
- Apply the 3k 4 Theorem in \mathbb{Z} to A' + A' to get A' contained in an even smaller arithmetic progression
- Choose A' ⊆ A maximal and show via a combinatorial argument A' = A forced.
- ▶ Problem 1: Simple extremal combinatorial argument for showing A = A' fails at higher densities $|A + A| > \frac{p+1}{2}$.
- Problem 2: Issues with Fourier calculation estimates when A ≠ B and adapting the combinatorial argument for showing A = A'.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Ideas for the Proof: Combinatorial Reduction

Problem 1 resolved by Candela, González-Sánchez and G. (2022) for A = B using vosper duality (i.e., additive trios).

Ideas for the Proof: Combinatorial Reduction

- Problem 1 resolved by Candela, González-Sánchez and G. (2022) for A = B using vosper duality (i.e., additive trios).
- These arguments needed to be adapted from A + A to A + B (G. 2024)
- Theorem (G. 2024)

Let p be prime, let A, $B \subseteq \mathbb{Z}/p\mathbb{Z}$ be nonempty subsets with

$$|A + B| = |A| + |B| + r \le \frac{3}{4}(p+1)$$
 and $p \ge 4r + 9$,

and set $C = -(A + B)^c$. Suppose there exist subsets $A' \subseteq A$ and $B' \subseteq B$ or $A' \subseteq B$ and $B' \subseteq A$ such that A' + B' rectifies, $|B'| \leq |A'|$ and

$$|A'| + 2|B'| - 4 \ge |A + B|.$$
(1)

Then Target Conclusions hold.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Problem 2 resolved by modifying standard fourier sum estimates for A + A to improve constants for A + B.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Problem 2 resolved by modifying standard fourier sum estimates for A + A to improve constants for A + B.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition

For $A \subseteq G = \mathbb{Z}/p\mathbb{Z}$, let $S_A(x) = \sum_{a \in A} \exp(ax/p)$, where $\exp(x) = e^{2\pi i x} \in \mathbb{C}$.

Problem 2 resolved by modifying standard fourier sum estimates for A + A to improve constants for A + B.

Definition

For $A \subseteq G = \mathbb{Z}/p\mathbb{Z}$, let $S_A(x) = \sum_{a \in A} \exp(ax/p)$, where $\exp(x) = e^{2\pi i x} \in \mathbb{C}$.

Lemma

If $z_1, \ldots, z_N \in \mathbb{C}$ is a sequence of points lying on the complex unit circle such that every open half-arc contains at most n of the terms z_i for $i \in [1, N]$, then $|\sum_{i=1}^N z_i| \le 2n - N$.

(日)(1)

Theorem (G. 2024)

Assume General Setup. Let $\beta \in [0.731, 1]$ and $\alpha \in (0, 0.212]$ be real numbers. Suppose

 $|A+B| \leq |A| + (1+\alpha)|B| - 3$ and $\beta|A| \leq |B| \leq |A| \leq f(\alpha, \beta) p$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Then Target Conclusions hold.

• G abelian group, $B \subseteq G$ finite and nonempty, $k \ge 1$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- G abelian group, $B \subseteq G$ finite and nonempty, $k \ge 1$
- *B* is *k*-separable if there is some finite $X \subseteq G$ with

$$|X| \ge k$$
 and $|(X+B)^{\mathsf{c}}| \ge k$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- G abelian group, $B \subseteq G$ finite and nonempty, $k \ge 1$
- *B* is *k*-separable if there is some finite $X \subseteq G$ with

$$|X| \ge k$$
 and $|(X+B)^{\mathsf{c}}| \ge k$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A *k*-fragment is a subset $X \subseteq G$ (satisfying above constraints) with |X + B| - |X| minimal.

- G abelian group, $B \subseteq G$ finite and nonempty, $k \ge 1$
- *B* is *k*-separable if there is some finite $X \subseteq G$ with

$$|X| \ge k$$
 and $|(X+B)^{c}| \ge k$.

- A *k*-fragment is a subset $X \subseteq G$ (satisfying above constraints) with |X + B| |X| minimal.
- A minimal cardinality k-fragment is called a k-atom. We will need good upper bounds for their size. (Serra and Zémor 2000, G. 2013).

- G abelian group, $B \subseteq G$ finite and nonempty, $k \ge 1$
- *B* is *k*-separable if there is some finite $X \subseteq G$ with

$$|X| \ge k$$
 and $|(X+B)^{c}| \ge k$.

- A *k*-fragment is a subset $X \subseteq G$ (satisfying above constraints) with |X + B| |X| minimal.
- A minimal cardinality k-fragment is called a k-atom. We will need good upper bounds for their size. (Serra and Zémor 2000, G. 2013).
- ► $|A + B| = |A| + |B| + r \le p r 3$ with $|B| \ge r + 3$ shows B is (r + 3)-separable.

- ▶ G abelian group, $B \subseteq G$ finite and nonempty, $k \ge 1$
- *B* is *k*-separable if there is some finite $X \subseteq G$ with

$$|X| \ge k$$
 and $|(X+B)^{c}| \ge k$.

- A *k*-fragment is a subset $X \subseteq G$ (satisfying above constraints) with |X + B| |X| minimal.
- A minimal cardinality k-fragment is called a k-atom. We will need good upper bounds for their size. (Serra and Zémor 2000, G. 2013).
- ► $|A + B| = |A| + |B| + r \le p r 3$ with $|B| \ge r + 3$ shows B is (r + 3)-separable.
- ▶ Replace *A* by a (r + 3)-atom *X*. Then $|X + B| \le |X| + |B| + r$ and $|X + B| \le p r 3$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ G abelian group, $B \subseteq G$ finite and nonempty, $k \ge 1$
- *B* is *k*-separable if there is some finite $X \subseteq G$ with

$$|X| \ge k$$
 and $|(X+B)^{c}| \ge k$.

- A *k*-fragment is a subset $X \subseteq G$ (satisfying above constraints) with |X + B| |X| minimal.
- A minimal cardinality k-fragment is called a k-atom. We will need good upper bounds for their size. (Serra and Zémor 2000, G. 2013).
- ► $|A + B| = |A| + |B| + r \le p r 3$ with $|B| \ge r + 3$ shows B is (r + 3)-separable.
- Replace A by a (r+3)-atom X. Then $|X + B| \le |X| + |B| + r$ and $|X + B| \le p r 3$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Repeat and replace B with a (r + 3)-atom Y for X.

- G abelian group, $B \subseteq G$ finite and nonempty, $k \ge 1$
- *B* is *k*-separable if there is some finite $X \subseteq G$ with

$$|X| \ge k$$
 and $|(X+B)^{c}| \ge k$.

- A *k*-fragment is a subset $X \subseteq G$ (satisfying above constraints) with |X + B| |X| minimal.
- A minimal cardinality k-fragment is called a k-atom. We will need good upper bounds for their size. (Serra and Zémor 2000, G. 2013).
- ► $|A + B| = |A| + |B| + r \le p r 3$ with $|B| \ge r + 3$ shows B is (r + 3)-separable.
- Replace A by a (r+3)-atom X. Then $|X + B| \le |X| + |B| + r$ and $|X + B| \le p r 3$.
- Repeat and replace B with a (r+3)-atom Y for X.
- Strengthen the hypotheses and use 9(r + 3)-atoms instead. Then X + Y satisfies the "base case" result hypotheses (calculation).

- G abelian group, $B \subseteq G$ finite and nonempty, $k \ge 1$
- *B* is *k*-separable if there is some finite $X \subseteq G$ with

$$|X| \ge k$$
 and $|(X+B)^{c}| \ge k$.

- A *k*-fragment is a subset $X \subseteq G$ (satisfying above constraints) with |X + B| |X| minimal.
- A minimal cardinality k-fragment is called a k-atom. We will need good upper bounds for their size. (Serra and Zémor 2000, G. 2013).
- ► $|A + B| = |A| + |B| + r \le p r 3$ with $|B| \ge r + 3$ shows B is (r + 3)-separable.
- Replace A by a (r+3)-atom X. Then $|X + B| \le |X| + |B| + r$ and $|X + B| \le p r 3$.
- Repeat and replace B with a (r+3)-atom Y for X.
- Strengthen the hypotheses and use 9(r + 3)-atoms instead. Then X + Y satisfies the "base case" result hypotheses (calculation).
- Used Huichochea reduction argument transfers desired structure back to A, B and C.

Near Optimal Density

Theorem (G. 2024)

Assume General Setup. If

$$|A+B| \le (|A|+|B|) + \frac{1}{9}|B| - 3$$
 and $|A+B| \le p - 29(r+3),$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

then Target Conclusions hold.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▶ Replace *B* by a (r + 3)-atom *X*.

- ▶ Replace *B* by a (r + 3)-atom *X*.
- Then $|A + X| \le |A| + |X| + r$ and $|X| \le 3.077(r+3)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Replace B by a (r+3)-atom X.

• Then
$$|A + X| \le |A| + |X| + r$$
 and $|X| \le 3.077(r+3)$

Theorem (Ruzsa-Plünnecke Bounds)

Let G be an abelian group, let A, $B \subseteq G$ be finite, nonempty subsets and let $A' \subseteq A$ be a nonempty subset attaining the minimum

$$\alpha := \min\left\{\frac{|A'+B|}{|A'|}: \ \emptyset \neq A' \subseteq A\right\} \leq \frac{|A+B|}{|A|}.$$

Then $|A' + nB| \le \alpha^n |A'| \le \alpha^n |A|$ for all $n \ge 0$.

• Replace B by a (r+3)-atom X.

• Then
$$|A + X| \le |A| + |X| + r$$
 and $|X| \le 3.077(r+3)$

Theorem (Ruzsa-Plünnecke Bounds)

Let G be an abelian group, let A, $B \subseteq G$ be finite, nonempty subsets and let $A' \subseteq A$ be a nonempty subset attaining the minimum

$$\alpha := \min\left\{\frac{|A'+B|}{|A'|}: \ \emptyset \neq A' \subseteq A\right\} \leq \frac{|A+B|}{|A|}.$$

Then $|A' + nB| \le \alpha^n |A'| \le \alpha^n |A|$ for all $n \ge 0$.

Apply Ruzsa-Plünnecke and Vosper's Theorem to estimate |A' + nX|:

$$|A'+nX| \le |A'|+(|A'|/|A|)n(|X|+r)(1+0.01434\cdot n)$$
 for all $n \in [2,8]$.
- Replace B by a (r+3)-atom X.
- Then $|A + X| \le |A| + |X| + r$ and $|X| \le 3.077(r+3)$

Theorem (Ruzsa-Plünnecke Bounds)

Let G be an abelian group, let A, $B \subseteq G$ be finite, nonempty subsets and let $A' \subseteq A$ be a nonempty subset attaining the minimum

$$\alpha:=\min\Big\{\frac{|A'+B|}{|A'|}:\; \emptyset\neq A'\subseteq A\Big\}\leq \frac{|A+B|}{|A|}.$$

Then $|A' + nB| \le \alpha^n |A'| \le \alpha^n |A|$ for all $n \ge 0$.

Apply Ruzsa-Plünnecke and Vosper's Theorem to estimate |A' + nX|:

$$|\mathcal{A}'+nX| \leq |\mathcal{A}'| + (|\mathcal{A}'|/|\mathcal{A}|)n(|X|+r) \Big(1 + 0.01434 \cdot n \Big) \quad ext{ for all } n \in [2,8].$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

► If A' contained in short AP, then apply Huicochea to A' + X, then to A + X, then to A + B to get A, B and C all in short AP's.

• Replace B by a (r+3)-atom X.

• Then
$$|A + X| \le |A| + |X| + r$$
 and $|X| \le 3.077(r+3)$

Theorem (Ruzsa-Plünnecke Bounds)

Let G be an abelian group, let A, $B \subseteq G$ be finite, nonempty subsets and let $A' \subseteq A$ be a nonempty subset attaining the minimum

$$\alpha := \min\left\{\frac{|A'+B|}{|A'|}: \ \emptyset \neq A' \subseteq A\right\} \leq \frac{|A+B|}{|A|}.$$

Then $|A' + nB| \le \alpha^n |A'| \le \alpha^n |A|$ for all $n \ge 0$.

Apply Ruzsa-Plünnecke and Vosper's Theorem to estimate |A' + nX|:

$$|A'+nX| \le |A'|+(|A'|/|A|)n(|X|+r)\Big(1+0.01434\cdot n\Big) \quad ext{ for all } n\in [2,8].$$

- ► If A' contained in short AP, then apply Huicochea to A' + X, then to A + X, then to A + B to get A, B and C all in short AP's.
- Use near-ideal density result on A' + nX to improve lower bound for |A' + nX|, thus improving upper bound for |nX|:

$$|A' + nX| > |A'| + \frac{10}{9}|nX| - 3$$

Apply Lev-Shkredov Result (modified doubling constant ~ 2.55) to X + X or 4X = 2X + 2X or 8X = 4X + 4X.

- Apply Lev-Shkredov Result (modified doubling constant ~ 2.55) to X + X or 4X = 2X + 2X or 8X = 4X + 4X.
- Upper bound for 8X ensures that we can apply this result to at least one of these sumsets (long calculation).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Apply Lev-Shkredov Result (modified doubling constant ~ 2.55) to X + X or 4X = 2X + 2X or 8X = 4X + 4X.
- Upper bound for 8X ensures that we can apply this result to at least one of these sumsets (long calculation).
- Conclusion implies ℓ_d(2X) < ^p/₂, so 2X + 2X isomorphic to integer sumset

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Apply Lev-Shkredov Result (modified doubling constant ~ 2.55) to X + X or 4X = 2X + 2X or 8X = 4X + 4X.
- Upper bound for 8X ensures that we can apply this result to at least one of these sumsets (long calculation).
- ► Conclusion implies l_d(2X) < p/2, so 2X + 2X isomorphic to integer sumset</p>

• We now apply the integer version of the 3k - 4 to X + X and 2X + 2X.

- Apply Lev-Shkredov Result (modified doubling constant ~ 2.55) to X + X or 4X = 2X + 2X or 8X = 4X + 4X.
- Upper bound for 8X ensures that we can apply this result to at least one of these sumsets (long calculation).
- Conclusion implies ℓ_d(2X) < ^p/₂, so 2X + 2X isomorphic to integer sumset
- We now apply the integer version of the 3k 4 to X + X and 2X + 2X.
- If |X + X| < 3|X| − 3, we apply huicochea to X + A then A + B to complete the proof. Thus</p>

$$|2X| \ge 2|X| - 3$$

- Apply Lev-Shkredov Result (modified doubling constant ~ 2.55) to X + X or 4X = 2X + 2X or 8X = 4X + 4X.
- Upper bound for 8X ensures that we can apply this result to at least one of these sumsets (long calculation).
- ► Conclusion implies l_d(2X) < p/2, so 2X + 2X isomorphic to integer sumset</p>
- We now apply the integer version of the 3k 4 to X + X and 2X + 2X.
- If |X + X| < 3|X| − 3, we apply huicochea to X + A then A + B to complete the proof. Thus</p>

$$|2X| \ge 2|X| - 3$$

• Repeat for 4X = 2X + 2X to get improved lower bound for |4X|.

- Apply Lev-Shkredov Result (modified doubling constant ~ 2.55) to X + X or 4X = 2X + 2X or 8X = 4X + 4X.
- Upper bound for 8X ensures that we can apply this result to at least one of these sumsets (long calculation).
- ► Conclusion implies l_d(2X) < p/2, so 2X + 2X isomorphic to integer sumset</p>
- We now apply the integer version of the 3k 4 to X + X and 2X + 2X.
- If |X + X| < 3|X| − 3, we apply huicochea to X + A then A + B to complete the proof. Thus</p>

$$|2X| \ge 2|X| - 3$$

- Repeat for 4X = 2X + 2X to get improved lower bound for |4X|.
- Compare with upper bound, and obtain a contradiction.

Thanks!