
History
Preliminaries

Results

Introduction to Algebraic Coding Theory

Hashem Bordbar

Center for Information Technologies and Applied Mathematics,
The University of Nova Gorica, Slovenia.

Hashem.bordbar@ung.si

Ring Theory Seminar,
Institute for Mathematics and Scientific Computing,

University of Graz.

Hashem Bordbar University of Graz - Jun 2025



History
Preliminaries

Results

Contents

1 History

2 Preliminaries

3 Results

Hashem Bordbar University of Graz - Jun 2025



History
Preliminaries

Results

Claude Shannon

In 1948, Claude Shannon published his seminal paper, “A
Mathematical Theory of Communication”, which marked the
foundation of both information theory and coding theory.

C. E. Shannon, “A Mathematical Theory of Communication,”
Bell System Technical Journal, vol. 27, 1948, pp. 379–423.
Available at:
https://people.math.harvard.edu/~ctm/home/
text/others/shannon/entropy/entropy.pdf
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Claude Shannon

Shannon defined channel capacity and proved that reliable
communication is possible at any rate below it, even with
potential distortion.
Shannon’s results guarantee that data can be encoded before
transmission and decoded with the desired accuracy, despite
any alterations.
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Channel

A fundamental characteristic of any communication channel is
that information originates from a source and is transmitted
through the channel to a receiver on the other end.
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Channel

A fundamental characteristic of any communication channel is
that information originates from a source and is transmitted
through the channel to a receiver on the other end.
Communication channels encompass a wide range of systems,
including magnetic storage devices, compact discs, and
electronic communication technologies such as cellular phones
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Noise

Take a compact disc as an example. The message could be
music, speech, or data that’s recorded on the disc. The disc
itself acts as the channel, and the person listening is the
receiver. But this channel isn’t perfect, it’s ’noisy,’ meaning that
what we read from the disc isn’t always exactly what was
written. For example, if the data is in binary form, a 0 might
sometimes be read as a 1. That’s why we need error-correcting
codes to detect and fix these kinds of mistakes.

Hashem Bordbar University of Graz - Jun 2025



History
Preliminaries

Results

Coding Theory

Error-control codes are used to detect and correct errors that
may occur when data is transmitted over noisy channels or
stored on physical media. The study of these codes falls under
the field of coding theory.
It is important to note that error-control coding represents just
one component of the overall processing applied to messages
before they are transmitted or stored.
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Communication Channel
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Overview of the Coding Process
The process begins with an information source. A source
encoder transforms the source output into a sequence of
symbols, which we denote as the message x .

This message is then encoded into a string of discrete symbols,
usually binary, called the codeword c.

Due to noise in the channel or storage medium, an error
vector e may be introduced, resulting in the received vector:

y = c + e

After decoding, we obtain a vector x̃ , which is our estimate of
the original message. The goal is to achieve:

x̃ = x

ensuring the message is correctly recovered despite the
presence of errors.
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The ISBN Code

The International Standard Book Number (ISBN) is a coding
system used globally by publishers to identify key properties of
each book.

The first nine digits (from 0 to 9) encode information such as the
language, publisher, and title. To guard against errors, a tenth
digit is added as a check digit, forming a ten-digit codeword.

The ten-digit string x1x2 · · · x10 is chosen to satisfy the
condition:

10∑
i=1

i · xi ≡ 0 (mod 11)

If the computed check digit x10 = 10, it is represented by the
letter X.
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The ISBN Code

The ISBN code can:
Detect any single-digit error,
Detect any transposition of two digits.

The ISBN code’s error-detecting capabilities can be compared
with other check-digit systems used in practice, such as those
found on airline tickets, in bank numbers on checks, in credit
card numbers, in the Universal Product Code (UPC) found on
groceries, etc.
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Why Can the ISBN Code Detect Any Single-Digit
Error?

The ISBN-10 code is designed so that the following condition
must hold:

10∑
i=1

i · xi ≡ 0 (mod 11)

If a single-digit error occurs (e.g., one digit xk is changed to x ′
k ),

the weighted sum changes by:

k · (x ′
k − xk )

This value is usually not divisible by 11, so the checksum
condition fails.
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Why Can the ISBN Code Detect Transposition of Two
Digits?

Suppose two digits in the ISBN-10 code, at positions i and j ,
are accidentally swapped.
Originally, their contribution to the checksum is:

i · xi + j · xj

After swapping, the contribution becomes:

i · xj + j · xi

The difference in the checksum is:

(i · xj + j · xi)− (i · xi + j · xj) = (i − j)(xj − xi)

This value is generally nonzero and not divisible by 11.
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Repetition Code and Nearest Neighbor Decoding

Suppose we want to send a 1 to mean “yes” and a 0 to mean
“no.” If we transmit just a single bit, noise may corrupt it and the
receiver may interpret the wrong message.
To improve reliability, we can use a repetition code. For
example:

Transmit 11111 to represent “yes”
Transmit 00000 to represent “no”

If one or two bits are flipped during transmission, the receiver
can still correctly decode the message by choosing the
codeword that is closest (in Hamming distance) to the received
5-tuple.

This decoding strategy is known as nearest neighbor
decoding.

Hashem Bordbar University of Graz - Jun 2025



History
Preliminaries

Results

Alphabets in Coding Theory

In coding theory, the alphabets used are typically finite fields
with q elements, denoted by GF(q).

A code is called q-ary if its codewords are defined over the
q-ary alphabet GF(q).

The most commonly used alphabets are the binary extension
fields, GF(2m), due to their suitability for digital systems.
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Linear Error-Control Codes

We study linear error-control codes, which are special codes
with rich mathematical structure.

Linear codes are widely used in practice for several reasons:
They are easy to construct.
Encoding is quick and efficient.
Decoding is often simplified due to the linearity of the code.

Their algebraic properties make them especially suitable for
both theoretical study and real-world applications.
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Codes over Finite Fields

Let Fn
q denote the vector space of all n-tuples over the finite

field Fq. An (n,M) code C over Fq is a subset of Fn
q containing

M codewords.

We typically write vectors (a1,a2, . . . ,an) ∈ Fn
q as a1a2 · · · an,

and refer to them as codewords.

Codes are often named according to the field over which they
are defined:

Codes over F2 are called binary codes.
Codes over F3 are called ternary codes.
Codes over F4 are called quaternary codes.

Note: The term quaternary has also been used to describe
codes over the ring Z4, the integers modulo 4.
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Linear Codes, Generator and Parity-Check Matrices

If C is a k -dimensional subspace of Fn
q, then C is called an

[n, k ] linear code over Fq.

A generator matrix G for an [n, k ] code C is any k × n matrix
whose rows form a basis for C.

There also exists an (n − k)× n matrix H, called a
parity-check matrix for the code C, defined by:

C =
{

x ∈ Fn
q

∣∣∣HxT = 0
}
.

Note: The rows of H are also linearly independent.
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Example: A Hamming Code

The set

{0000000,0001111,0010110,0011001,0100101,0101010,0110011,

0111100,1000011,1001100,1010101,1011010,1100110,1101001,

1110000,1111111}

is a binary linear code known as a Hamming code.

This is a (7,16,3) code because:
Each codeword has length 7.
There are 16 codewords.
The dimension is 4.
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Generator and Parity-Check Matrices

Theorem:
If the generator matrix G of an [n, k ] linear code C is in
standard form:

G = [Ik | A],

where Ik is the k × k identity matrix and A is a k × (n − k)
matrix,
then a parity-check matrix H for C is given by:

H = [−AT | In−k ],

where AT is the transpose of A, and In−k is the identity matrix of
size n − k .
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Generator and Parity-Check Matrices

The generator matrix G of an [n, k ] linear code C is a
k × n matrix whose rows are linearly independent and
span the code.
The parity-check matrix H has linearly independent rows
and satisfies HxT = 0 for all x ∈ C.
The rows of H generate a new code called the dual code
(or orthogonal code) of C, denoted C⊥.
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Inner Product and Dual Code

Let u = (u0,u1, . . . ,un−1) and v = (v0, v1, . . . , vn−1) ∈ Fn
q.

The inner product u · v is defined as:

u · v =
n−1∑
i=0

uivi

If C is a linear code of length n over Fq, then the (Euclidean)
dual code C⊥ is defined by:

C⊥ =
{

v ∈ Fn
q : u · v = 0 for all u ∈ C

}
.
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Linear Complementary Pair (LCP) and LCD Codes

Definition
Let (C,D) be a pair of linear codes of length n over a field F.
The pair (C,D) is called a linear complementary pair (LCP) if:

C ⊕ D = Fn and C ∩ D = {0}.

If D = C⊥, then C is called a linear complementary dual
(LCD) code.
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Characterization of LCD Codes

If C is an LCD code over F with generator matrix G and
parity-check matrix H, then the following properties hold:

1 GHT = 0 and HGT = 0.
2 GGT is invertible.
3 The matrix (

G
H

)
is invertible.
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Hull and l-Intersection Codes

Definition
Let C be a linear code over F. The hull of C is the linear code

Hull(C) = C ∩ C⊥.

The definition of LCD codes was generalized to linear
l-intersection codes as follows:

Definition
Let (C,D) be a pair of linear codes of length n over F. Then
(C,D) is called a linear l-intersection pair of codes if

dim(C ∩ D) = l .

If D = C⊥, then
dim(Hull(C)) = l .
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Cyclic Codes

Definition

A linear code C of length n over a field F is called a cyclic
code if

σ(c) ∈ C for all c ∈ C,

where σ is the cyclic shift operator. In other words, for every
codeword

(c0, c1, . . . , cn−1) ∈ C,

the cyclic shift
(cn−1, c0, . . . , cn−2)

also belongs to C.
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Efficient Implementation of Cyclic Codes

Cyclic codes can be implemented efficiently using simple
hardware devices called shift registers.
This is of great interest in applications involving fiber optics,
where high-speed data rates are possible.
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Example of a Cyclic Code

Example

The binary code C = {000, 110, 011, 101} is a cyclic code.
It is linear and of length n = 3.
For each codeword, its cyclic shift is also in C. For
example:

Shift of 110 → 011,
Shift of 011 → 101,
Shift of 101 → 110.

Hence, C is closed under cyclic shifts.
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Codewords as Polynomials

When working with cyclic codes, it is convenient to
represent codewords as polynomials.
A codeword vector c = (c0, c1, . . . , cn−1) of length n is
associated with the code polynomial:

c(x) = c0 + c1x + c2x2 + · · ·+ cn−1xn−1
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Code Polynomials and Cyclic Codes (1)

Now consider the code polynomials {0, 1 + x , x + x2, 1 + x2}
corresponding to the code C = {000, 110, 011, 101}.
Notice that the highest power appearing among the code
polynomials is x2, since a higher power term would indicate a
codeword with length greater than 3.
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Code Polynomials and Cyclic Codes (2)

Similarly to working with integers modulo a specific prime
integer p, we can work with polynomials modulo a specific
polynomial, for example p(x) = x3 − 1.
In this situation, we think of x3 − 1 being equivalent to 0, or in
other words, x3 is equivalent to 1. Let’s see what this means
with an example.
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Example (1)

Example

Consider the code polynomial c(x) = 1 + x2 corresponding to
the codeword c = 101 from C = {000,110,011,101}.
Let’s multiply c(x) by x to obtain c(x) · x = c0(x) = x + x3.
However, if we are working modulo p(x) = x3 − 1, then x3 is
equivalent to 1.
So, c0(x) is equivalent to x + 1 modulo p(x).
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Example (2)

Example
Rearranging this new polynomial with terms from lowest to
highest powers gives 1 + x , which is the code polynomial for
the codeword 110 ∈ C.
Notice that 110 is the right cyclic shift of 101.
Let’s try this again. Start with the code polynomial
d(x) = x + x2 corresponding to the codeword 011 in C.
Multiplying d(x) by x gives d0(x) = x2 + x3. Taking this result
modulo x3 − 1 gives x2 + 1, which corresponds to the codeword
101 ∈ C and is the right cyclic shift of 011. Interesting!

Hashem Bordbar University of Graz - Jun 2025



History
Preliminaries

Results

Example - Cyclic Code Shift (1)

Previous example suggests a true fact about cyclic codes.
In a cyclic code C of length n, the product x · c(x) modulo
xn − 1 produces another code polynomial in C, namely the right
cyclic shift of c(x).
More precisely, when working with code polynomials of degree
less than n corresponding to codewords of length n, by working
modulo xn − 1, we can achieve a right cyclic shift of a codeword
by multiplying the associated code polynomial by x .
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Example - Cyclic Code Shift (2)

Consider the code polynomial c(x) = c0 + c1x + · · ·+ cn−1xn−1.
Multiplying c(x) by x modulo xn − 1 gives:

c0(x) = c0x+c1x2+· · ·+cn−1xn ≡ c0x+c1x2+· · ·+cn−1 mod xn−1.

The codeword associated with c0(x) is (cn−1, c0, . . . , cn−2),
which is clearly the right cyclic shift of the codeword associated
with c(x).
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Theorem - Characterization of Cyclic Codes

Theorem
A linear code of length n over GF(q) is cyclic if and only if C
satisfies the following two conditions:

1 If a(x) and b(x) are code polynomials in C, then
a(x)− b(x) ∈ C.

2 If a(x) is a code polynomial in C and r(x) is any polynomial
of degree less than n, then r(x)a(x) ∈ C.
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Thank you for your attention!

Hashem Bordbar University of Graz - Jun 2025


	History
	Preliminaries
	Results

