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Factorization theory

Factorization theory studies decompositions of elements into
irreducible elements, known as atoms, in rings and semigroups.

e.g.,
• 6 = 2 · 3 (in Z)
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Factorization theory

Factorization theory studies decompositions of elements into
irreducible elements, known as atoms, in rings and semigroups.

e.g.,
• 6 = 2 · 3 = (1 +

√
−5)(1 −

√
−5) (in Z[

√
−5])
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• Key focus areas:
• Multiplicative semigroups of regular elements of a ring.
• Semigroups of ideals (nonzero, invertible, divisorial).
• Semigroups of module isomorphism classes.

• Historical background:
• Origin in algebraic number theory.
• Carlitz’s result (1960): OK is half-factorial if and only if the

class group has at most two elements.

Philosophy: The class group G controls the arithmetic of OK .

• Narkiewicz (1970s) posed the inverse question of whether or
not the arithmetical behavior characterize the class group.
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Central strategy

given H auxiliary monoid B

transfer hom.
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Key application:

Given an integral domain R with class group G ,

R• = R \ {0} B(G )

transfer hom.

Significance:
• Allows the study of arithmetic properties in rings of integers

using methods from additive combinatorics.
• Translates algebraic problems into combinatorial ones.
• Results are pulled back to the original algebraic setting.
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Monoids

Monoid: H, multiplicatively written, commutative, semigroup with
identity element

H× group of units, A(H) set of atoms, H is reduced if H× = {1}.

• H is said to be cancellative if au = bu implies a = b for all
a, b, u ∈ H and in that case q(H) denotes the quotient group.
• If x = u1 . . . uk , where u1, . . . , uk ∈ A(H), then k is called the
length of the factorization.
• L(x) = {k ∈ N | k is a factorization length of x} is the length set.
• H is factorial if every nonunit has unique factorization.
• H is half-factorial if |L(x)| = 1 for every x ∈ H.

Examples: N, R• = (R \ {0}, ·) for an integral domain R ,
monoids of ideals I(R), I∗(R), ...
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Divisor theory

A monoid homomorphism φ : H → D is said to be a
• divisor homomorphism if, for all a, b ∈ H,

a | Hb if and only if φ(a) |Dφ(b) .

• (Skula, 1970) divisor theory if
• φ is a divisor homomorphism,
• D = F(P) is free abelian,
• For every p ∈ P, there are a1, . . . , am ∈ H such that

p = gcd
(
φ(a1), . . . , φ(am)

)
.

Then the quotient group C(H) = q(D)/φ(q(H)) is called the
divisor class group of H.
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Krull monoids

Theorem (Chouinard, Geroldinger+Halter-Koch, 1980s- 90s)

A monoid H is said to be Krull if it satisfies one of the following
equivalent conditions:

1. H has a divisor theory.
2. φ : H → I∗

v (H) is a divisor theory.
3. H is completely integrally closed and satisfies the ascending

chain condition on divisorial ideals.
4. H = H× ×T and T is a saturated submonoid of a free abelian

monoid.
5. H has a divisor homomorphism into a factorial monoid.
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Theorem (Krause, Wauters, 1990s)

An integral domain R is a Krull domain if and only if its
multiplicative monoid R• is a Krull monoid.

• (Classic) A monoid is factorial if and only if it is Krull with
trivial class group.

• (Carlitz 1960) Let H be a Krull monoid with class group G
such that every class contains a prime divisor. Then

H is half-factorial if and only if |G | ≤ 2 .
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Classical examples of Krull monoids

Examples

• Integrally closed Noetherian domains, in particular Dedekind
domains, e.g., O•

K .
• Let 0 ̸= f ∈ Int(Z), then

Jf K = {g ∈ Int(Z) : g | f n for some n ∈ N }

is a Krull monoid.
• (Chouinard 1981) Let H be a reduced monoid. Then R[H] is a
Krull domain if and only if both R and H are Krull.
▶ (Fadinger+Windisch, 2022) If R[H] is Krull then every class of

Cv (R[H]) contains infinitely many prime divisors.
• Monoid of zero-sum sequences.
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Monoid of zero-sum sequences I

Let (G ,+) be a finite abelian group, ∅ ≠ G0 ⊂ G and let F(G0) be
the free monoid with basis G0.

• A sequence S = g1 . . . gl is a finite, unordered sequence with
terms from G0, repetition allowed.

• S is called a zero-sum sequence if σ(S) = g1 + . . .+ gl = 0,
• a minimal zero-sum sequence if no proper subsequence has

sum zero.
• and a zero-sum free sequence if

∑
i∈I gi ̸= 0 for each

∅ ≠ I ⊆ [1, ℓ].
▶ B(G0) = {S ∈ F(G ) : σ(S) = 0} ⊂ F(G0) is the monoid of

zero-sum sequences.
• A(G0) := A(B(G0)) = {minimal zero-sum sequences}.
• A∗(G0) := A∗(B(G0)) = {zero-sum free sequences}.



Factorization theory Krull monoids Transfer homomorphisms Sets of lengths Sets of cross numbers

Example

Let G = {0, e, 2e} and G0 = {e, 2e}. Then
• B(G0) = {e3, e(2e), (2e)3, ...}.
• A(G0) = {e3, e(2e), (2e)3}.
• A∗(G0) = {∅, e, e2, 2e, (2e)2}.
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B(G0) is Krull

Theorem
The inclusion B(G0) ↪→ F(G0) is a divisor theory. In particular,
B(G0) is a Krull monoid.

Indeed,

T | S in B(G0) if and only if T | S in F(G0) .
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Transfer hom. I

Definition
A monoid homomorphism θ : H → B is called a transfer
homomorphism if it has the following properties:

(T 1) B = θ(H)B× and θ−1(B×) = H×.
(T 2) If a ∈ H, b1, b2 ∈ B and θ(a) = b1b2, then there exist

a1, a2 ∈ H such that a = a1a2, θ(a1) ≃ b1 and θ(a2) ≃ b2.

Lemma (Transfer lemma)

Let θ : H → B be a transfer homomorphism. Then we have :
• a is irreducible in H if and only if θ(a) is irreducible in B .
• LH(a) = LB

(
θ(a)

)
for all a ∈ H.

Thus transfer homomorphisms preserve sets of lengths.
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Transfer hom. II

Theorem (Narkiewicz, Geroldinger, Halter-Koch 1970s-90s)

Let H be a reduces Krull monoid with class group G . Let Gp ⊂ G
be the set of classes containing prime divisors. Then
β : H → B(Gp) is a transfer homomorphism.
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Transfer hom. from a general Krull monoid to B(GP)

Suppose the embedding H ↪→ F(P) is a divisor theory.

H −−−−→ F(P) ∼= I∗
v (H)

β

y yβ̃

B(GP) −−−−→ F(GP)

Then β̃ and its restriction β = β̃ | H are transfer homomorphisms
mapping

a = p1 . . . pl ∈ F(P) to S = β(a) = [p1] . . . [pl ] ∈ F(GP)

In particular,
• a is irreducible in H if and only if S is irreducible in B(GP).
• LH(a) = LB(GP)(S).
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Transfer Krull monoids

Definition
A monoid H is said to be a transfer Krull monoid if there is a
transfer homomorphism θ to a Krull monoid B .

Examples

• Every Krull monoid is transfer Krull.
• Every half-factorial monoid H is transfer Krull.
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Beyond Krull I: Classical maximal orders

Let
• K be a global field, A a

central simple K -algebra,
• O a holomorphy ring of K ,
• and R a classical maximal
O-order in A
(R subring of A, Z (R) = O,
f.g. as O-module, maximal).

• e.g., R = Mn(O)

A ∼= Mn(D)

. . .R,R ′ . . .

K

O
(Smertnig 2013) If every stably free left R-ideal is free, then there
exists a transfer homomorphism

θ : R• → B(CA(O)),

with CA(O) a ray class group of O.
Method: Theory of one-sided divisorial ideals.
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Beyond Krull II: Stable orders in Dedekind domains

A domain R is said to be stable if every nonzero ideal I of R is
projective over its ring of endomorphisms.

Theorem (B.+Geroldinger+Reinhart, 2021)

Let R be a stable order in a Dedekind domain. The following
statements are equivalent.
(a) I(R) is transfer Krull.
(b) I∗(R) is transfer Krull.
(c) I∗(R) is half-factorial.
(d) I(R) is half-factorial.
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Definition

Monoid: H, B(G )

• L(a) = {k | a has a factorization of length k} ⊂ N
is the set of lengths of a.

• ∆(L(a)) = {consecutive differences of L(a)} is the set of
distances of L(a).

• ∆(H) =
⋃

L∈L(H)∆(L) ⊂ N the set of distances of H.
• The system of all sets of lengths

L(H) = {L(a) | a ∈ H}

• The elasticity ρ(H) = sup{max L/min L | L ∈ L(H)}.
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Basic facts

FACT I. H is half-factorial ⇔ |L| = 1 for all L ∈ L(H), ∆(H) = ∅,
ρ(H) = 1.

FACT II. An atomic monoid H is
• EITHER half-factorial

OR
• For all m ∈ N there is an L ∈ L(H) with |L| > m .
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Zero-sum sequences II

Notation: A(G0) := A
(
B(G0)

)
, ∆(G0) := ∆

(
B(G0)

)
,

ρ(G0) := ρ
(
B(G0)

)
, and L(G0) := L

(
B(G0)

)
.

The Davenport constant

D(G0) := sup{|S | : S ∈ A(G0)}

is a well-studied invariant in Additive Combinatorics.

SIMPLE FACTS. Let G be finite abelian.
• max∆(G ) ≤ D(G )− 2.
• ρ(G ) = D(G )/2.
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Structure theorem for sets of lengths

Long sets of lengths have a well-defined structure: contributions by
Freiman, Geroldinger, Halter-Koch, Grynkiewicz, Kainrath

Theorem
There is a constant M = M(G ) ∈ N0 such that every set of lengths
L ∈ L(G ) is an AAMP with difference d ∈ ∆(G ) and bound M.

An AAMP is a union of arithmetical progressions
• having the same difference and
• some gaps at the beginning and at the end

Schmid (2009): This description is best possible.
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Structure of sets of lengths with max. elasticity

Theorem (B.+Geroldinger+Zhong, 2021)

Let H be a transfer Krull monoid over a finite abelian group G and
suppose that ∆ρ(H) = {1}. Then there exists a constant M ∈ N0
such that every L ∈ L(H) with ρ(L) = ρ(H) has the form

L = y + (L′ ∪ [0, ℓ] ∪ L′′) ,

where y ∈ Z, ℓ ∈ N0, L′ ⊂ [−M,−1], and L′′ ⊂ ℓ+ [1,M].
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Conjecture (A)

Let H be a transfer Krull monoid over a finite abelian group G with
|G | > 4. Then ∆ρ(H) = {1} if and only if G is neither cyclic nor
an elementary 2-group.
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∆ρ(H)

.......looks rather complicated

Definition
Let ∆ρ(H) denote the set of all d ∈ N with the following property:
for every k ∈ N, there is some Lk ∈ L(H) with ρ(Lk) = ρ(H) and
which has the form

Lk = y + (L′ ∪ {0, d , . . . , ℓd} ∪ L′′) ⊂ y + dZ

where y ∈ Z, ℓ ≥ k , max L′ < 0, and min L′′ > ℓD.

• Clearly ∆ρ(H) ⊂ ∆(H).
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Proof of Conjecture (A)

Theorem (B.+Geroldinger+Zhong 2021)

Let H be a transfer Krull monoid over a finite abelian non-cyclic
group G . Then ∆ρ(H) = {1} for the following groups.
(a) G is a rank-2 group.
(b) G is a p-group such that gcd(exp(G )− 2,D(G )− 2) = 1.
(c) G ∼= C r1

ps1 ⊕ C r2
ps2 , where p is a prime and r1, r2, s1, s2 ∈ N such

that s1 divides s2.
(d) G is a group with exponent exp(G ) = pq, where p, q are

distinct primes satisfying one of the four properties.
(i) gcd(pq − 2,D(G )− 2) = 1.
(ii) gcd(pq − 2, p + q − 3) = 1.
(iii) q = 2 and p − 1 is a power of 2.
(iv) q = 2 and rp(G ) = 1.

(e) G is a group with exponent exp(G ) ∈ [3, 11] \ {8}.
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Take away & ...

▶ For transfer Krull monoids with ∆ρ(H) = {1}, all sets of lengths
L with maximal elasticity are intervals, apart from their globally
bounded initial and end parts.

▶ The set ∆∗
ρ(G ) = {min∆(G0) | G0 = supp(A) for some A ∈

B(G ) with ρ(L(A)) = ρ(G )} is a crucial invariant to study ∆ρ(H)
and ∆∗

ρ(G ) is studied via cross numbers...
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Cross numbers

Let G be an additive finite abelian group and exp(G ) the exponent
of G . Let S = g1 . . . gℓ ∈ F(G ).

• k(S) =
∑ℓ

i=1
1

ord(gi )
∈ Q≥0 is the cross number of S .

• K(G ) = max{k(S) | S ∈ A(G )} is the (large) cross number
of G .

• k(G ) = max{k(S) | S ∈ A∗(G )} is the (small) cross number
of G .
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Significance of this invariant

Lemma (Skula+Zaks, 1976)

Let G0 ⊂ G be a non-empty subset. Then TFAE.
• G0 is half-factorial.
• k(S) = 1 for all S ∈ A(G0).
• L(S) = {k(S)} for all S ∈ A(G0).
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Let G = Cq1 ⊕ . . .⊕ Cqr be a direct sum decomposition of G into
cyclic groups of prime power order.
Set

k∗(G ) :=
r∑

i=1

qi − 1
qi

and K∗(G ) :=
1

exp(G )
+ k∗(G ) .

Then

K∗(G ) ≤ K(G ) and k∗(G ) ≤ k(G ) (A)

EASY!!

Question: When does the equality hold in (A)?
So far: Equality holds for p-groups
(not so easy! proof using group algebras).
Open: since decades and there is no group known for which
equality does NOT hold.
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Theorem (B.+Schmid, 2024)

• Let H be a finite abelian group of odd order. If K(H) = K∗(H)
and

∑
d |exp(H)

1
d < 2, then K(C2 ⊕ H) = K∗(C2 ⊕ H).

• Let G = C 2
2 ⊕ Gp where Gp is a p-group for some odd prime

p. Then K∗(G ) = K(G ).
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Sets of cross numbers

• W(G ) = {k(S) | S ∈ A(G )}.
• w(G ) = {k(S) | S ∈ A∗(G )}.

▶ Let g ∈ G with ord(g) = exp(G ), then S = g(−g) ∈ A(G ).
Therefore,

W(G ) ⊆ 1
exp(G )

[2, exp(G )K(G )]

and similarly

w(G ) ⊆ 1
exp(G )

[1, exp(G )k(G )] .

Question: Are W := exp(G )W(G ) and w := exp(G )w(G )
intervals? If not, is there a visible gap structure?
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Theorem (B.+Schmid, 2024)

Let G be a finite abelian group.

1. [1, exp(G )− 1] ⊆ w.

2. If the rank of G is large with respect to the exponent, w is an
interval, apart from a globally bounded upper part.
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Theorem (B.+Schmid, 2024)

• Let G = Cn1 ⊕ . . .⊕ Cnr be a finite abelian p-group with
1 = n0 < n1 | . . . | nr = exp(G ) = pk .

1. Suppose p = 2 and nr−1 < nr . Then

W = 2[1,
pk

2
K(G )] and w = [1, pkk(G )] .

2. Otherwise,

W = [2, pkK(G )] and w = [1, pkk(G )] .

• Let G = C2pk . Then

W = 2[1,
3pk − 1

2
] and w = [1, 3pk − 2] .
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Theorem (B.+Schmid, 2024)

Let G = C r
p ⊕ C s

q for p > q odd primes. Then

• w = [1, pqk∗(G )] \ {some gaps at the upper end}
and k(G ) = k∗(G ).

• W = [2, pqK∗(G )] \ {some gaps at the upper end}
and K(G ) = K∗(G ).
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On a zero-sum problem arising from factorization theory
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Thank you!
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