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A few invariants (such as the sum and inverse of element orders, the
number of Sylow subgroups, the sum and average of Sylow numbers,
etc) have been used to characterise various classes of finite groups.
In this talk, we shall discuss some of our results within this area.
(This is joint work with Alireza Asboei)
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Chgaractelrizing o Introduction
various classes . . v v .
of finite @ Disproving a 2014 theorem of Tarnauceanu on characterizing CJ
SECED UG @ Disproving a 1974 conjecture of Street & Whitehead on dihed.
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@ Property A on Thompson-like problem via order polynomials
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@ Other invariants defined for finite groups
@ Characterizing each finite simple group by its Sylow sum
@ Characterizing each finite simple group by its Sylow average



Disproving a 2014 theorem of Tarnauceanu

Gy Tarnduceanu [Archiv der Mathematik 102(1) (2014), 11-14] gave the
el following theorem: “a finite group G is an elementary abelian 2-group
groups using if and only if the set of maximal sum-free sets coincides with the set

some

invariants of complements of the maximal subgroups". The result is wrong.

Chimere

Anabanti @ If we take ‘maximal’ in the theorem to mean ‘maximal by
cardinality’, then a counterexample is the cyclic group C; of
order 4, given by Gy = (x | x* =1).
o Here, there is a unique maximal (by cardinality) sum-free
set namely {x, x3}, and it is the complement of the unique
maximal subgroup. But C, is not elementary abelian.

@ On the other hand, if we take ‘maximal’ to mean ‘maximal by

inclusion’, then the theorem will still be wrong since
S = {x1, X2, X3, Xa, X1X2X3X4 } IS @ maximal by inclusion sum-free
set in C3 = (x1,x2,x3,% | x2 = 1,x,x; = x;x; for 1 < i, j < 4),
but does not coincide with any complement of a maximal
subgroup of CJ.

o This theorem of T3r3uceanu was disproved by A’ in late 2016.

e In 2017, Tarn3duceanu's erratum was published.



We say a product-free subset S of a group G fills G if
G* C SUSS (where G* = G\ {1}), and G is called a filled
group if every locally maximal product-free set in G fills G.

In 1974, Street and Whitehead investigated filled groups and
gave a classification of finite abelian filled groups.

The finite abelian filled groups are (3, Cs and the elementary
abelian 2-groups of finite rank n for n > 1.

Street and Whitehead verified that all finite dihedral groups of
order up to 12 are filled. They asserted that the dihedral group
of order 2n is not a filled group for n =6k +1 (k > 1), and
went further to give the following set
S= xR xR xR

4k
y s yeeey X

v}

which they believe is a locally maximal product-free set that
does not fill D,,.
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Mo e Let G be a dihedral group of order 2n for n = 6k +1 and k > 1.
Then the set

Observatio

Chimere
Anabanti

._ 2k+1 4k 2k+1 4k
S:={x yee ey XTOXT Ty XMy}

) )
is product-free but not locally maximal in G. In particular,
[ 2k+1 4k 2k, 2k+1 4k
V'*{X yee ey X, XY, X Yy X y}7

which properly contains S, is product-free in G.

It turns out that Dy, is a filled group.

e Disproving this conjecture paved way for more classification of filled groups.
e For instance, filled groups of odd orders and filled nilpotent groups are known.
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of finite @ We say that G is supersolvable if it has a series
groups using
.sor.net {1}:H0<]H1<]"'<1Hk71QHk:G
such that H; < G and Hj;1/H; is cyclic for j =0,1,..., k — 1.

@ Thm (Huppert): A finite group is supersolvable IFF all of its maximal subgroups have prime index.

Theorem: Every finite nilpotent group is the direct product of its Sylow p-groups.

@ We say that G is solvable if it has a series
{1}: Ho<1H1<l~~-<lHk_1<1Hk: G

such that H; < G and Hji1/H; is abelian for j =0,1,...,k — 1.
@ Examples and Non-Examples

e Nilpotent groups: Abelian groups and p-groups.

e Non-nilpotent groups: Ds, Dio, D12, Dia, An, S, for n > 4.

e Supersolvable groups: nilpotent groups, D;, for n > 3.

e Non—supersolvable groups: A,, S, for n > 4.

e Solvable groups: supersolvable groups, A4, Ss, groups of odd order
(Feit-Thompson thm), groups of order 2"p™ (p prime and m, n € N).

e Non-solvable groups: An, S, for n > 5



On the sum of elements and inverse element orders

Characterizing (A) On the sum of element orders of G and average order of G, we have:
various classes n(G)

of finite G) = — .
groups using 77( ) g O(g) and /\(G) 7|G‘

. seme geG

mvaniants @ In 2021, Khukhro, Moret6 and Zarrin conjectured that if a finite

UG group G satisfies A(G) < 22 = A(As), then G is solvable.

EE ]

@ This conjecture was proved by Herzog, Longobardi and Maj in 2022.

@ Herzog, Longobardi and Maj also proved that if G is a finite
nonsolvable group, then A(G) = 2 if and only if G 2 As.

@ In 2022, T&rn3uceanu proved that for a finite group G, if A(G) < 3,

then G is supersolvable. Moreover, A(G) = 3L if and only if G = A,.
(B) On the sum of the inverses of the element orders, we have

B(G) := Z@

geG

groups.

Theorem (Azad et al. 2023)

Let G be a finite group. (a) If B(G) < 32 = B(As), then G is solvable.
(b) If B(G) < 3 = B(As), then G is supersolvable.
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Some invariants used
cterize finite
groups.

Some invariants used to characterize finite groups

The sum of element orders in a finite group
The sum of inverse of element orders in a finite group

The sum/average of Sylow numbers of a finite group

The number of Sylow subgroups of a finite group

We say a little about the last part here.

In 2020, Robati conjectured that “if G is a finite group and np(G) < p2 — p + 1 for each odd prime p, then
G is solvable".

Later that year, we proved a stronger version of Robati's conjecture.

Theorem (A, Moreté, Zarrin 2020)

Let G be a group. If n3(G) < 7 and ns(G) < 1456, then G is solvable.

Definition

For distinct primes p and g (with p < q), we say finite groups are ‘(p, g)-recognizable’ if there exist two
natural numbers a and b such that the following two conditions are satisfied:

(i) if G is a finite group such that ny(G) < a and ng(G) < b, then G is solvable;
(i) there are nonsolvable groups K and L such that np(K) = a and nq(L) = b.

Theorem (A, Asboei 2025)

If finite groups are (p, q)—recognizable, then (p, q) € {(3,5)} U {(2,q) : ¢ > 3}.




Order polynomials and some properties
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groups using Let G be a finite group. We denote the Order polynomial of G by P(G, x),
some and define it as

invariants '])(G7 X) = Zxo(g)_ (1)

Chimere

Anabanti gEG

Definition

e It is clear that P(G,1) = |G|.

e Differentiating (1) and substituting 1 for x, we get P/(G, 1) = > o(g).
geG

e Let Gi and G; be two finite groups. Suppose me(G1) = {ao, a1, .., ak }

and 7e(G2) = {bo, b1, ..., b1}, where ag = 1 = by. Then

K

a a a, aj

P(Gr, x) = Magx™® 4+ may x™ + ... + m,, x° = E max
i=0

where m,, is the number of elements of order a; in G;. Similarly,
I

b b, 2 : b;

P(GQ,X)ImbOXbO—f—mle 1+...+mb,x I = mbjxf,
=0

where m,. is the number of elements of order b; in G>.



Multiplication

Characterizin, . .
popstid Ve define P(G1, x) x P(Gg, x) as follows:
of finite
groups using
some k !

invariants P(G]_,X) X P(G27X) — Z Z ma,'mbjx[ahbj]Y

Chimere i=0 J:0

Anabanti

where [aj, bj] is the least common multiple of a; and b;.

We know that 7m(Cs) = {1,2, 3,6}, with

my =1,my =1, m3 =2 and meg = 2. One can easily use
GAP[35] to obtain that me(As) = {1,2,3,5}, with

my =1, my = 15, m3 = 20 and ms = 24. Therefore,

P(As, x)xP(C, x) = x+15x2+20x3+24x5+x2+15x2+20x+
24x10 4-2x3 4305 4 40x3 4 48x1° +2x°4-30x° 4-40x°® +-48x30 =
X 4 31x2 4+ 62x3 + 24x5 + 122x5 + 24x10 + 48x15 + 48x30.




An example explaining the order polynomials of the two groups of size 6

Characterizing

various classes 6 o > 3 4 5
of finite @ Go=(a|a*=1)={1,aa°, 32, a" 2}

groups using

some [ ] TFe(CG) = {17253’6}r with my = 17 my = 17 ms = 2 and me = 2.
invariants ° P(CG,X) = x4+ X2 + 2X3 —+ 2)(6.

@ Ds=(a,b|a®=1=b%ab=ba’) ={1,a,a*b,ab,ab’}.
o me(Ds) = {1,2,3}, with my =1, mp =3 and m3 = 2.
e P(Ds,x) = x + 3x2 + 2x°5.

@ Let us look at P((2, x) x P(GCs, x).
o 7.(C) = {1,2}, with mi = 1 and m2 = 1. So P(G, x) = x + x°.
o 7(G) = {1,3}, with m; = 1 and m3 = 2. So P(Gs,x) = x + 2x>.
o Now, P(G, x) X P(Cs,x) = x +2x° + x> + 2x°.

@ It is clear that P(GCs, x) = P(C2, x) X P(Cs, x) # P(De, x).



Thompson's problem as the motivation for

introducing order polynomials

Characterizing
various classes

e All groups here are finite. Let G be a finite group.
LMl o The set of prime divisors of |G| is denoted by 7(G).
 some e The set of all element orders of G is denoted by 7.(G).

o Given i € m(G), we write mi(G) :=|{g € G: o(g) =i}|.

e Two groups G; and Gy are said to be of the same order type
IFF me(G1) = me(G) and my(Gy) = me(Gp) for all t € me(Gy).

e G; and G; being of the same order type = |G1| = |Ga|.

e In 2009, Vasil'ev et al. proved that if G is any finite group
and S is a FSG such that |G| = |S] and 7(G) = 7e(S), then
G=S.

e The well-known 1987 Thompson's problem (given as
Problem 12.37 of the Kourovka Notebook) asks whether for
two finite groups G; and G; of the same order type, is Go
necessarily solvable if G; is solvable?
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What we did for the order polynomials

e Let Property X be a certain property of some finite groups; for
instance, nilpotent, supersolvable, solvable et cetera.

e The Thompson-like problem asks whether for two finite groups G;
and G, of the same order type, does G, always satisfy Property X if
G; satisfies Property X?

e We introduced a new kind of polynomials, which we called ‘the
order polynomials’ and used it to propose a way of solving the
Thompson-like problem when Property X is nilpotent.

e Furthermore, we showed that the answer to Thompson-like problem
is in the negative when Property X is supersolvable.

e Piwek (2024) answered the Thompson-like problem when Property
X is solvable. Also answered for simple groups (A’ 2019).

e P(G,1)= ZGO(g) is well-studied by Amiri et al. (from 2008).
g€

o We worked on the definite integral part.



Decomposable

Characterizing

various classes Definition

of finite
groups using

R For a finite group G, we say P(G, x) is decomposable if there
nvariants exist groups A and B such that P(G, x) = P(A, x) x P(B, x).
R If P(G, x) is not decomposable, then P(G, x) is
indecomposable.

There are subgroups H; and H of As x G such that H; = As and

H> = Cs. From the earlier example, we know that

P(As, x) = x + 15x% + 20x° + 24x° and P(Cs, x) = x + x* + 2x> + 2x°.
Using Magma[17] or GAP[35], we see that

Te(As x Go) = {1,2,3,5,6,10,15,30}, with my = 1, m, = 31, ms = 62,
ms — 24, me — 122, mio = 24, mis — 48 and msp — 48. SO,

P(As x Co, x) = x + 31x% + 62x° 4 24x° + 122x° + 24x™0 + 48x"> + 48x%.
Since P(As x Cs, x) gotten here is the same as P(As, x) x P(Cs, x) gotten
from the earlier example, we conclude that P(As x GCe, x) is decomposable.
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 some Let G be a finite group and G # 1. If G = A x B, then
invariants 73(6.7 X) _ P(ij) % P(B’X)

Chimere
Anabanti

A proposition

Let me(A) ={a0o =1,a1,...,an}, me(B) = {bo =1, b1,..., b-}. Then

Te(A X B) ={1,a1,...,an, b1, ..., br,[a1,b1], .., [a1, br)s - - -, [an, Ba], - - -, [an, br]}-
The rest of the proof follows from mc, x% = Z ma,xa"mbijf. O
[aisbj]=ck

Remark. The converse of the above proposition is not necessarily true.
@ et G:=(a,b|a* =b? =(aba)? = (ba=1)* = (baba~ 1) =1) = (C4 X G) x G =
SmallGroup(16, 3). Here, me(G) = {1,2,4}, with m; =1, my =7 and my = 8.
@ let H:=(a,b,c|a*=b%>=c?=1,ab=ba,ac = ca, bc = cb) = (C4 X C3) X Cp =
SmallGroup(16, 10). Here, me(H) = {1,2,4}, with m; =1, my =7 and my = 8.

By the proposition, we conclude that P(H, x) = P(CG X G, x) X P(Co, x) = P(G, x).
But G % (G4 x G) x Go.



Connection with earlier work
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1 1
/o P(G, x) dx :gzezc;o(g)+ ]

and 1 .
/0 ;P(G,X) dx = g;c @)

The latter * @" has been studied by some authors; for
geG

instance, see the 2023 paper of Azad, Khosravi and Rashidi entitled
“On the sum of the inverses of the element orders in finite
groups'': Communications in Algebra 51(2)(2023), 694-698.



Nilpotency on Thompson-like problem via Order
polynomials
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invariants _

Chimere Let G be a nilpotent group of order n = p{“ - pft, where each
frsans pi is a prime number for i € {1,... t}. Then
P(G,x) = P(Syl,,(G),x) x - - - x P(Syl,,(G), x).

If G is a nilpotent group which is not a p—group, then P(G, x)
is decomposable.

Let G and H be two groups having the same order type.
If G is a nilpotent group, then H is nilpotent too.




Supersolvability counterexamples on Thompson-like problem

Characterizing
various classes
of finite

e T e One cannot answer Thompson's question affirmatively if asked
some specifically for just two supersolvable groups.

invariants
o Let

GL = (a,b,c,d| a®>=b%=c=d®=1,(ab)* = (bc)? = (bd)?> =1, ac = ca, ad = da, dc = cd)
and

2 2 3 4 2 2,4 2,2 2
G =(xy,z| x*=y" =2 =1,(x) = (@) = (yz")" =L yxyzyxy = 2, (yz")"(y2)" = 1).

e Note that G; = SmallGroup(72,35) and G, = SmallGroup(72,40).

e One can use GAP[35] to see that G; and G; have the same order
type; in particular, each has twenty-one involutions, eight elements of
order 3, eighteen elements of order 4 and twenty-four elements of
order 6. But G; is supersolvable while G, is not supersolvable.



Some results on an associated invariant via order

polynomials

1

1
Characterizing 1
various classes ﬁ(G) = / *P(G,X) dx = Z —.
of finite 0 X A o(g)
groups using g
some
invariants

Theorem (Azad et al. 2023)

Ansbanti Let G be a finite group. If B(G) < 52, then G is solvable.

Theorem (A’, Asboei 2025)

Let G be a finite nonabelian simple group. Then 3(G) = 22 if and

30
only if G 2 As.

Theorem (A’, Asboei 2025)

Let G be a finite nonsolvable group. Then 3(G) = 59 IFF G = As.

Theorem (A’, Asboei 2025)

If G is a finite solvable group, then B(G) # 3.



Definitions

Characterizing X ) ) .
various classes We write SP(G, x) for the Sylow polynomial of G, and define it as follows:
of finite
groups using

some SP(G,X) = Z X‘P‘.

invariants
PeSylow(G)

Let 7(G) = {p1, p2, ..., pn} such that py < p» < ... < pp. Then
SP(G.x) = 1 (O™ (@ ey (G It (). (2)
Note the following:

* SP(G,1) = npy (G) + np,(G) + - -+ 1p, (G) = 3. np(G) =6(G);

pE™(G)
. [dixsp(c,x)] _ — SP(G,1) = X%G) np(G)|S¥1,(G)];
o [25P'(60)]| =sP(6 0= = m(6)Isv,(0)(18v1,(6)-1).

x=1 pen(G)
The first two invariants here are SP'(G,1) and SP’ (G, 1), which we
denote by v(G) and u(G) respectively.



Recall: Some preliminary results

Chfxracterizing
Vars:?i,f:::ses Theorem (A, Moreto, Zarrin 2020)
g'_°“si}“§'"g Let G be a finite group.
nvariants If n3(G) <7 and ns(G) < 1456, then G is solvable.

Chimere

Anabanti

Let G be a group and N be a normal subgroup of G. Then ny(N)n,(G/N)
divides n,(G) for every prime p.

A non—cyclic finite simple group is called a K,—group if its order is divisible
by exactly n different prime numbers. There is no K,—group for n < 2.
Result for n = 3 and n = 4 are given in the next two Lemmas.

Lemma (Herzog 1968)

If G is a Ks—group, then G is isomorphic to one of the following eight
groups: As, As, PSL(2,7), PSL(2,8), PSL(3,3), PSU(3,3), PSU(4, 2)
and PSL(2,17).



A classification of Kj—groups

Characterizing
various classes

of finite .. . )
TS U Let G be a Ky—group. Then G is isomorphic to one of the following

Lemma (Shi 1991)

oome groups: (1) Az, Ag, Ao, Ao, PSL(2,11), Mi1, Mo, Jo, PSL(2,16),
. PSL(2,25), PSL(2,49), PSL(2,81), PSL(3,4), PSL(3,5), PSL(3,7),
Anabant PSL(3,8), PSL(3, 17), PSL(4,3), Sa(4), S4(5), Sa(7), S4(9), Se(2).

0f (2), Ga(3), PSU(3,4), PSU(3,5), PSU(3,7), PSU(3,8), PSU(3,9),
PSU(4,3), PSU(5,2), S.(8), 5.(32), 3Da(2), 2Fa(2) ;

(2) PSL(2,1), where r is an odd prime, 17 # r > 11, r> — 1 = 223bv¢,
a,b,c>1, and a prime v > 3;

(3) PSL(2,2™), where m > 5 satisfies

u=2"—1and t* = (2" +1)/3, with u and t primes, t >3 and b > 1;
(4) PSL(2,3"), where n > 3 satisfies

t* = (3"+1)/4 and u = (3" —1)/2, with u and t odd primes and b > 1
or

t=(3"+1)/4 and u° = (3" — 1)/2, with u and t odd primes and ¢ > 1.




A characterization of As using the first invariant

Characterizing Recall: S’P,(G7 ]_) = Z np(G)|Sylp(G)‘ = U(G)

various classes
of finite pen(G)
groups using @ It is an easy exercise to show that if G is a finite group such that
invariants ’U(G) < 80, then G is solvable.

Chimere

Y — @ The converse of this result is not necessarily true. The dihedral group
of size 54 is an example of a solvable group which does not satisfy
v(G) < 80, since n2(Dss) = 27, |Syl,(Dsa)| =2, n3(Dss) = 1 and
|Sy13(D54)‘ = 27, SO
’U(D54) = Z np(D54)|Sylp(D54)| = (27 X 2) + (1 X 27) = 81.

pe{2,3}

@ It is pertinent to note that 7(As) = {2,3,5}, m2(As) =5,
|Sy12(A5)| = 4, n3(A5) = 10, |Sy13(A5)| = 3, n5(A5) =6 and
|Syls(As)| = 5. Therefore v(As) = (5 x 4) + (10 x 3) 4 (6 x 5) = 80.

Theorem (A, Asboei 2024)

Let G be a non—solvable finite group. Then v(G) = 80 if and only if
G = As.
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e We know that v(As) = 80. On the other hand, as G is non—solvable, it
has at least three prime divisors. Also, 3 prime p with n,(G) # 1.

o We shall show that the maximum such prime p for which n,(G) > 1 is at
most 7. Suppose p > 7. Then p > 11 and np(G) > 12; so

v(G) > 12 x 11 = 132, a contradiction.

e Now, we shall show that the maximum such prime p for which n,(G) > 1
is at most 5. We first prove that if n7(G) > 1, then the only possibility is
that n7(G) = 8. Assume n7(G) > 8. Then n7(G) > 15. So

v(G) > 15 x 7 = 105; a contradiction. Suppose n7(G) = 8. We need to
look for m(G) € {1,3,5,7}, n3(G) € {0,1,4}, ns(G) € {0,1},

mi1(G) € {0,1}, m3(G) € {0,1}, a € {1,2,3,4}, b € {1,2} such that

56 + (2° x m) + (3° x m3) + (5 x ns) 4 (11 x m1) + (13 x mi3) = 80.

In any such possibility, we have that n3(G) < 4 and ns(G) < 1. Hence G is
solvable; a contradiction. Therefore the maximum such prime p for which
np(G) > 1 is at most 5.

e Since G is a non—solvable group, it has a non—abelian composition factor
S. On the other hand, ny(S) | np(G) for every prime divisor p of |G|.

e From v(G) = 80, we deduce that S = As. Therefore G & As.



A characterization of As using the second invariant

Characterizing

BRI Recall: SP(G,1) = Y n,(G)[SyL,(G)|(ISy1,(G)| — 1) = u(G).

of finite

groups using pETF(G)
Mo @ If G is a p-group of size p” for some natural number n, then
Chimere u(G) = p"(p" —1). From this, we see immediately that if G is
Anabanti a group of size 16, then u(G) = 16 x 15 = 240.

@ There are also solvable groups G whose ((G) is less than 240
(for instance, 1(Ce) = 8, u(S3) = 12, p(As) = 36, p(Cr2) = 18,
1(D12) = 42 and 11(S4) = 192) or greater than 240 (for
instance, pu(Cy7) = 272 and p(Dss) = 756).

We give a characterization of As using this invariant as follows:

Theorem (A, Asboei 2024)

Let G be a non—solvable finite group. Then p(G) = 240 if and only if
G A

The proof of this result is similar to the first one, but shorter.



Conjecture

Characterizing
various classes
of finite

roups usin 1 G
Sl (C)= /s SP(Gx) dx= ¥ g
invariants pEﬂ'(G)
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Conjecture (A, Asboei 2024)

Let G be a nonsolvable finite group. Then v(G) = 3 if and only if G = As.

Gammas of some solvable groups:
7(De) = 5 < 3:7(As) = § < 3; 7(Dsa) = 955 > 3.

Gammas of some non—solvable groups:

~(As) = g (GL(2,4)) =3 < % 7(As) = 12 > 2.




A third characterization of As
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psn Let G be a noncyclic simple group. Then v(G) = 5 if and only if G = As.

invariants
A sketch of the proof.

@ It is known that v(As) = 2. For the reverse case, let G be a finite
noncyclic simple group such that v(G) = 2.

Chimere

Anabanti

@ Lemma: If G is a noncyclic simple group and p € 7(G), then
np(G) > [Syl,(G)| + 1.

@ Since v(G) = 2, we have |7(G)| =3 or 4.
@ Use results on the classification of K3 and Kj groups to finish up!
O

Note that n2(As) =5 = |Syl,(As)| + 1. The converse of the mentioned
Lemma is not necessarily true. For instance, take G = Ss. It is easy to see
that 7(G) = {2,3,5}, m(G) =15 > 9 = |SyL(G)| + 1,

n3(G) =10 > 4 = |Syl;(G)| + 1 and ns(G) = 6 = |Syls(G)| + 1.



Characterizing each finite simple group by its Sylow

sum and average

Characterizing The set of all prime divisors of |G| and the number of Sylow
various classes

of finite p-subgroups of G are denoted by 7(G) and n,(G) respectively.

groups using

some [~ ] Let

invariants 0(G) := Z p(G),

pe™(G)

5(G) == {p e m(G)[ np(G) > 1},

and

50(G) = Y m(G).

peS(G)

@ Note that 7(G) = S(G) if and only if G is a nonabelian simple group;
in this case, §(G) = do(G).

@ For a finite nonabelian simple group G, the sum and average of the
Sylow numbers of G are what we denote by d(G) and a(G)
respectively, where

% (G)
a(G) = .
(9= Is(e)

@ These invariants are well studied; for instance, see [14], [15] and [24].
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Theorem (Asboei, Darafsheh 2018)

Let G be a nonabelian simple group. Then there exists p € m(G) such that np(G)2 > |G|.

Chimere

i Theorem (A, Moreto, Zarrin 2020)
Anabanti

Let G be a finite group. If n3(G) < 7 and ns(G) < 1455, then G is solvable.

Lemma (A, Asboei 2024)

If G is a non—cyclic simple group and p € 7(G), then ny(G) > |Syl,(G)| + 1, where Syl,(G) is a Sylow
p-subgroup of G.

Theorem (A 2025)

Let G be a finite group. If ny(G) < 5, then G is solvable.

Proposition (A 2025)

Let G be a finite nonsolvable group. If §o(G) < 1464, then n3(G) > 10.

The bound “n3(G) > 10" is tight since n3(As) = 10.



A characterization of PSL(2,7) by its Sylow sum

Characterizing

and average
various classes

of finite

gm“szf“f‘"g Let G be a finite nonabelian simple group. Then G = PSL(2,7) if and only

invariants if 60(G) = 57. On the other hand, G = PSL(2,7) if and only if «(G) = 19.

Chimere

@ Let G = PSL(2,7). We know that |G| = 168 = 2° x 3 x 7. A simple
calculation gives n2(G) = 21, n3(G) = 28 and n7(G) = 8. Therefore
do(PSL(2,7)) = 57.

@ Suppose G is a nonabelian simple group such that do(G) = 57. Let
p € S(G) such that ny(G)? > |G|. Then ny(G) < 57 —5— 10 = 42.
Hence, |G| < 422 = 1764.

@ Using GAP [35], we observe that all nonabelian simple groups of
order less than 1764 are As, PSL(2,7), As, PSL(2,8), PSL(2,11) and
PSL(2,13).

@ On the other hand, (50(A5) =21, 50(P5L(2,7)) =57, (So(Ae) =01,
do(PSL(2,8)) = 73, do(PSL(2,11)) = 188 and do(PSL(2,13)) = 274.
So G = PSL(2,7).

Anabanti
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The proof continues

For the converse, let G be a nonabelian simple group such that «(G) = 19.

@ We prove that |S(G)| < 12. Suppose for contradiction that |S(G)| > 13. Using the preliminary
results, we have that

) 80(G) >5+10+6+8+12+14+18+20+24+30+32+38+42 259>19_
Tse) T 13 13 '

a contradiction to the hypothesis that «(G) = 19. So |S(G)| < 12.
@ As(G) = %(6)
1S(6)]
@ Using |S(G)| < 12, we deduce that §p(G) < 19 x 12 = 228.
@ Let p € S(G) such that np(G)? > |G|. Then ny(G) < 228 — 5 — 10 = 213.
So |G| < 213% = 45369.
@ Using GAP [35], we observe that there are 26 nonabelian simple groups of order less than 45369.

= 19, we have that 6o(G) = 19|5(G)|.

)
a(PSL(3,4)) = B8, o(PSL(2,37)) = 879, a(PSp(4,3)) = 15 14, (Sz( )) = 461,
1)

a(PSL(2,32)) = 15453, o(PSL(2,41)) = %85 and a(PSL(2,43)) =
@ Therefore G = PSL(2,7). O

91
@ For these 26 simple groups, we have that a(As) =7, «a(PSL(2,7)) =19, «a(Ag) = 3
73 307
a(PSL(2,8)) = = a(PSL(2,11)) = 47, «(PSL(2,13)) = a(PSL(2,17)) =
631 33 409 547
a(A7) = - a(PSL(z, 19)) - a(PSL(2,16)) = —, «(PSL(3,3)) = Y
813 545
«a(PSU(3,3)) = < o(PSL(2,23)) = 328, «(PSL(2,25)) = - a(Mq1) = -
a(PSL(2,27)) = 394, a(PSL(2,29)) = 22, o(PSL(2,31)) = 148, a(Ag) = 182
(



Concluding remarks and Conjecture

Characterizing The invariants &y and « can be used to characterize many finite
various classes

of finite nonabelian simple groups; an example was just given with PSL(2,7).
groups using

| some @ If S; and S are finite nonabelian simple groups such that |S:1| < |Sz],

- then it is not always true that one of do(S1) < do(S2) and

hmere a(S1) < a(S,) must be true. For instance, |As| < |PSL(2,8)|, but
S0(As) = 91 > 73 = 8o(PSL(2,8)) and a(Ag) = & > B = a(PSL(2, 8)).

@ On another point, |S1| = |S2| for two finite nonabelian simple groups
51 and S, does not guarantee that do(S1) = do(S2) or a(S1) = a(S2).
For instance, |Ag| = 20160 = |PSL(3,4)|, but
S0(Ag) = 1891 < 3361 = §o(PSL(3,4)) and or(Ag) = 18 < 3361 — (PsL(3, 4)).

@ We conclude this discussion with the conjecture below. Through GAP
[35], we proved its validity for any simple group G s.t. |G| < 10'.

A finite nonabelian simple group can be distinguished from another
nonabelian simple group using the sum of its Sylow numbers. A similar
result holds for the average of its Sylow numbers.
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