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Notations

Let D be an integral domain with quotient field K and I a
fractional ideal of D. We note :

? I−1 = D : I = {x ∈ K , xI ⊆ D}.

? Iυ = D : (D : I ) = (I−1)−1.

? It =
⋃
{Jυ; J ⊆ I finitely generated}.

? I is called divisorial or υ-ideal (respectively, t-ideal) if Iυ = I
(respectively, It = I .)

? I is called υ-invertible (respectively, t-invertible) if (II−1)υ = D
(respectively, (II−1)t = D).

On the class group of formal power series rings



Introduction
On the class group of formal power series rings

The S-class group of an integral domain

? F(D) : The set of nonzero fractional ideals of D.

? Prin(D) : The set of all principal ideals of D.

? T (D) : The set of all t-invertible t-ideals of D. (T (D) is a
group under the multiplication I ∗ J = (IJ)t).

? Div(D) : The set of all fractional divisorial ideals of D.
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? [1961, P. Samuel]

D(D) : The divisor class group of D

D(D) = Div(D)/Prin(D).

? [1982, A. Bouvier]

Cl(D) : The (t)- class group of D.

Clt(D) = T (D)/ Prin(D).
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? Theorem : [1982, A. Bouvier]
If D is a Krull domain, then

Clt(D) = D(D).

? Theorem : [1988, A. Bouvier and M. Zafrullah]
If D is a Krull domain, then

Clt(D) = 0 if and only if D is factorial.
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? Theorem : [1961, P. Samuel]
Let D be a Krull domain. Then :

ϕ : Clt(D) → Clt(D[[X ]])
[I ] 7→ [I .D[[X ]]]

is an injective homomorphism.

? Theorem : [1965, L. Claborn]
Let D be a Noetherian regular ring. Then :

ϕ : Clt(D) → Clt(D[[X ]])
[I ] 7→ [I .D[[X ]]]

is an isomorphism. In particular,

Clt(D) ' Clt(D[[X ]]).
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J. Pure and Applied Algebra, 2017

Proposition: [A. Hamed and S. Hizem]

Let D be an integral domain. Then

ϕ : Clt(D) → Clt(D[[X ]])
[I ] 7→ [(I .D[[X ]])t ]

is an injective homomorphism.
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Notation

Let D be an integral domain and let I be an integral ideal of
D[[X ]]. We define I0 = {f (0), f ∈ I}. Then I0 is an ideal of D.

The property (∗) :

Let D be an integral domain with quotient field K , and (∗) the
following property : For all integral υ-invertible υ-ideals I and J of
D[[X ]] such that (IJ)0 6= (0), we have

((IJ)0)υ = ((IJ)υ)0.

Example

If D is a principal domain, then D[[X ]] satisfies the property (∗).
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The S-class group of an integral domain

J. Pure and Applied Algebra, 2017

Theorem: [A. Hamed and S. Hizem]

Let D be an integral domain with quotient field K , such that
D[[X ]] satisfies (∗).

For each integral υ-invertible υ-ideal I of D[[X ]], there exist a
υ-invertible υ-ideal L of D and h ∈ qf (D[[X ]]) such that

I = hL[[X ]].
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Idea of the demonstration.

Case : I0 6= (0).

? We put J = aI (I0)
−1[[X ]], where 0 6= a ∈ I0.

Then (J0)υ = a(I0(I0)
−1)υ = aD. Thus by the property (∗),

Jυ = fD[[X ]] + XJυ for some f ∈ Jυ such that f (0) = a.

? We show that Jυ = fD[[X ]].
Let h ∈ Jυ, by induction on n, we prove that, for each n ∈ N,
h = fsn + X n+1Ln for some sn ∈ D[X ] and Ln ∈ D[[X ]]. So the
sequence (fsn)n∈N converges to h in D[[X ]] for the XD[[X ]]-adic
topology.
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The S-class group of an integral domain

Idea of the demonstration.

? We note s = lim
n→+∞

sn =
+∞∑
i=0

aiX
i .

Thus h = fs ∈ fD[[X ]] and Jυ = fD[[X ]].

? I = hI0[[X ]] where h = 1
a f .

Case : I0 = (0).

? Let n ∈ N such that I ⊆ (X n) and I * (X n+1). We put
I ′ = X−nI . Then I ′ is an integral υ-invertible υ-ideal of D[[X ]] and
(I ′)0 6= (0). So by the first case I ′ = h(I ′)0[[X ]]. Then
I = hX n(I ′)0[[X ]] with h = 1

a f .
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J. Pure and Applied Algebra, 2017

Theorem: [A. Hamed and S. Hizem]

Let D be an integral domain. Assume that :

1 D[[X ]] satisfies (∗).
2 Each υ-invertible υ-ideal of D is υ-finite type.

Then :

Clt(D) ' Clt(D[[X ]]).
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Recall that D is a TV -domain, if the υ- and the t-operation on D
are the same.

Corollary

Let D be a TV -domain such that D[[X ]] satisfies the property (∗),
then :

Clt(D) ' Clt(D[[X ]]).
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J. Pure and Applied Algebra, 2017

Theorem: [A. Hamed and S. Hizem]

Let D be an integral domain with quotient field K such that D[[X ]]
is a TV -domain. Then D[[X ]] satisfies the property (∗) if and only
if the homomorphism

ϕ : Clt(D) −→ Clt(D[[X ]])

is an isomorphism.
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Proposition

Let D be an integral domain. If D is a regular ring, then D[[X ]]
satisfies the property (∗).

Example

Let D = Z[i
√

5], then D is a regular integral domain. Thus
Z[i
√

5][[X ]] satisfies (∗).
Note that Z[i

√
5] is not a UFD. Hence

(0) 6= Clt(Z[i
√

5]) ' Clt(Z[i
√

5][[X ]]).
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The S-class group of an integral domain

Definition

The mapping on F(D) defined by I 7→ Iw = {x ∈ K , xJ ⊆ I for
some finitely generated ideal J of D such that Jυ = D} is a star
operation on D.

Definition: [2014, H. Kim, O. Kim, J. Lim ]

Let D be an integral domain and S a multiplicative subset of D.
We say that a nonzero ideal I of D is S-w-principal if there exist
an s ∈ S and a ∈ A such that sI ⊆ aD ⊆ Iw .
We also define D to be an S-factorial domain if each nonzero ideal
of D is S-w-principal.
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? Theorem : [1988, A. Bouvier and M. Zafrullah ]
If D is a Krull domain, then

Clt(D) = 0 if and only if D is factorial.

Definition

Let D be an integral domain, S be a multiplicative subset of D
and I a nonzero fractional ideal of D. We say that I is S-principal
if there exist an s ∈ S and a ∈ I such that sI ⊆ aD ⊆ I .

Examples :

1 Every principal ideal is S-principal.

2 An S-principal ideal is not necessarily a principal ideal. Indeed,
let A = Z + XZ[i ][X ] and consider the ideal
I = 2Z + (1 + i)XZ[i ][X ]. We put S = {2n, n ∈ N}. then I is
an S-principal ideal but is not a principal ideal of D.
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Notation

Let D be an integral domain with quotient field K . We note,

S-P(D) the set of fractional S-principal t-invertible t-ideals of D.

Proposition

Let D be an integral domain with quotient field K and S a
multiplicative subset of D. Then S-P(D) is a subgroup of T (D)
under the t-multiplication : I ? J = (IJ)t .
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Definition

Let D be an integral domain and S a multiplicative subset of D.
The quotient group S-Clt(D) = T (D)/S-P(D) is called the
S-class group of D.

Remark

If S consists of units of D, then S-Clt(D) = Clt(D).
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J. Pure and Applied Algebra, 2017

Theorem: [A. Hamed and S. Hizem]

Let D be a Krull domain. Then :

S-Clt(D) = 0 if and only if D is an S-factorial domain.

Corollary

If D is a Krull domain, then

Clt(D) = 0 if and only if D is factorial.
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The S-class group of an integral domain

Definition

et D be an integral domain and S a multiplicative subset of D. We
say that a nonzero ideal I of D is S-υ-principal if there exist an
s ∈ S and a ∈ D such that sI ⊆ aD ⊆ Iυ.
We also define D to be an S-GCD-domain if each finitely
generated nonzero ideal of D is S-υ-principal.

Remark

If S = {1}, then D is an S-GCD-domain if and only if D is a
GCD-domain.
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The S-class group of an integral domain

J. Pure and Applied Algebra, 2017

Theorem: [A. Hamed and S. Hizem]

Let D be a PυMD. Then

S-Clt(D) = 0 if and only if D is an S-GCD-domain.

Corollary

If D is a PυMD, then

Clt(D) = 0 if and only if D is a GCD-domain.
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J. Pure and Applied Algebra, 2017

Theorem: [A. Hamed and S. Hizem]

Let A ⊆ B be an extension of integral domains such that B is a
flat A-module and S a multiplicative subset of A. Then the
canonical mapping
ϕ : S-Clt(A) → S-Clt(B), [I ] 7→ [IB] is well-defined and it is a
homomorphism.
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J. Pure and Applied Algebra, 2017

Proposition: [A. Hamed and S. Hizem]

Let A ⊆ B be an extension of integral domains such that B is a flat
A-module and S be a multiplicative subset of A. If B is integrally
closed and B ⊆ frac(A), then S-Clt(A) ' S-Clt(A + XB[X ]).

Corollary: [D. F. Anderson, S. E. Baghdadi and S. E. Kabbaj]

Let A ⊆ B be an extension of integral domains such that B is a
flat A-module. If B is integrally closed and B ⊆ frac(A), then
Clt(A) ' Clt(A + XB[X ]).
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J. Pure and Applied Algebra, 2017

Theorem: [A. Hamed and S. Hizem]

Let D be a TV -domain such that D[[X ]] satisfies the property (∗)
and S be a multiplicative subset of D. Then

S-Clt(D) ' S-Clt(D[[X ]]).

Corollary

Let D be a Krull domain, such that D[[X ]] satisfies (∗) and S a
multiplicative subset of D. Then

D is an S-factorial domain if and only if D[[X ]] is an S-factorial
domain.
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Thank you for your attention

On the class group of formal power series rings


	Introduction
	On the class group of formal power series rings
	The S-class group of an integral domain

