MULTIPLICATIVE LATTICES WITH ABSORBING FACTORIZATION

ANDREAS REINHART AND GULSEN ULUCAK

ABSTRACT. In [22], Yassine et al. introduced the notion of 1-absorbing prime ideals in commutative
rings with nonzero identity. In this article, we examine the concept of 1-absorbing prime elements in
C-lattices. We investigate the C-lattices in which every element is a finite product of 1-absorbing prime
elements (we denote them as OAFLs for short). Moreover, we study C-lattices having 2-absorbing
factorization (we denote them as TAFLs for short).

1. INTRODUCTION

Let L be a set together with an inner binary operation - on L and a partial order < on L such that (L, )
is a monoid (i.e., (L, -) a commutative semigroup with identity) and (L, <) is a complete lattice (i.e., each
subset of L has both a supremum and an infimum with respect to <). For each subset £ C L, we let
\/ E denote the supremum of E, called the join of E' and we let A E denote the infimum of E, called the
meet of E. For elements a,b € L, let aVb = \/{a,b} and a Ab= A{a,b}. Moreover, set 1 =\/ L and set
0= A L. We say that (L, -, <) is a multiplicative lattice if for all x € L and E C L, it follows that 1z =
and 2\ E = \/{ze | e € E}.

We recall a few important situations in which multiplicative lattices occur. In what follows, we use the
definitions of star operations, ideal systems and the specific star operations/ideal systems v, ¢t and w
without further mention. For more information on star operations see [12] and for more information on
ideal systems see [14]. A profound introduction and study of the w-operation can be found in [21].

e It is well-known that if R is a commutative ring with identity, L is the set of ideals of R and
-: L x L — L is the ideal multiplication on L, then (L, -, C) is a multiplicative lattice.

e Let D be an integral domain and let * be a star operation on D. Let L be the set of -ideals of
D together with the x-multiplication -, : L x L — L. Then (L, -, C) is a multiplicative lattice.

e Let H be a commutative cancellative monoid and let r be an ideal system on H. Let L be the set
of r-ideals of H and let -, : L X L. — L be the r-multiplication. Then (L, -, C) is a multiplicative
lattice.

Let L be a multiplicative lattice and let e € L. For a,b € L, we set (a :b) = \/{z € L | b < a}. Then
e is called weak meet principal if a A e = (a : e)e for each a € L and e is called weak join principal if
(be:e) = (0:e) Vb for each b € L. Furthermore, e is said to be meet principal if a Abe = ((a : €) Ab)e for
all a,b € L and e is said to be join principal if ((aV be) : €) = (a:e) Vb for all a,b € L. We say that e is
weak principal if e is both weak meet principal and weak join principal. Finally, e is said to be principal
([9)) if e is both meet principal and join principal. An element a € L is said to be compact if for each
subset F' C L with a < \/ F, it follows that a < \/ E for some finite subset F of F. A subset C C L is
called multiplicatively closed if 1 € C and xy € C for each x,y € C. A multiplicative lattice L is called
a C-lattice if L is generated under joins by a multiplicatively closed subset C' of compact elements. Note
that a finite product of compact elements in a C-lattice is again compact. By L, we denote the set of
all compact elements of L. We say that L is principally generated if every element of L is the join of a
set of principal elements of L. It is well-known (see [3, Theorem 1.3]) that each principal element of a
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C-lattice is compact. Moreover, L is said to be join-principally generated if each element of L is the join
of a set of join principal elements of L. Additionally, a lattice L is called a principal element lattice if
every element in L is principal [4].

Let R be a commutative ring with identity, let D be an integral domain, let H be a commutative
cancellative monoid, let * be a star operation on D and let r be an ideal system on H. Note that the
lattice of ideals of R is a principally generated C-lattice. The lattice of x-ideals of D is a C-lattice if
and only if % is a star operation of finite type. In analogy, it follows that the lattice of r-ideals of H is
a C-lattice if and only if 7 is a finitary ideal system. Observe that the lattice of v-ideals of D (or of H)
can fail to be a C-lattice. Also note that even if * is of finite type (resp. r is finitary), then the lattice of
x-ideals of D (resp. the lattice of r-ideals of H) need not be (join-)principally generated. For instance,
the t-operation is of finite type (resp. the ¢-system is finitary), but the lattice of ¢t-ideals is (in general)
not (join-)principally generated. We also want to emphasize that the lattice of w-ideals of D (resp. of
H) is a principally generated C-lattice.

An element a € L is said to be proper if a < 1, it is called nilpotent if a™ = 0 for some n € N and it
is called comparable if a < b or b < a for each b € L. For each a € L, L/a ={b€ L | a < b}isa
multiplicative lattice with the multiplication c o d = (cd) V a for elements ¢,d € L/a. A proper element
p € L is called prime if ab < p implies a < p or b < p for all a,b € L. A proper element m € L is said to
be mazimal in L if for each x € L, m < z < 1 implies z = 1. One can easily see that maximal elements
are prime. For each a € L, let min(a) be the set of prime elements of L that are minimal above a. The
lattice L is called a lattice domain if 0 is a prime element. J(L) is defined as the meet of all maximal
elements of L. For a € L, we define /Ja = A{p € L | p is prime and a < p}. Note that in a C-lattice L,
va= N{p € L| a < pisa minimal prime over a} = \/{z € L. | 2™ < a for some n € N}. A proper
element g € L is called primary if ab < q implies a < g or b <, /q for every a,b € L. It is well-known that
C-lattices can be localized at arbitrary multiplicatively closed subsets S of compact elements as follows.
The localization of a € L at S is defined as as = \/{z € L | xs < a for some s € S}. The multiplication
on Lg = {as | a € L} is defined by a og b = (ab)g for all a,b € Lg. Let p € L be a prime element
and S = {z € L, | x £ p}. Then the set S is a multiplicatively closed subset of L. In this case, the
localization Lg is denoted by L,. It is well-known that (L,). = {a, € L, | a € L, }. Using this, it can be
shown that if L is a (principally generated) C-lattice, then L, is also a (principally generated) C-lattice
for any prime element p € L (see [2, Theorem 2.9]). It can also be proved that in a C-lattice L, for all
a,b € L, (ab)m = (ambm)m for each maximal element m € L and also, a = b if and only if a,, = b,, for all
maximal elements n € L. For more information on localization, see [2, 3, 9, 17].

In [22], the authors introduced the concept of 1-absorbing prime ideals in commutative rings with identity.
These ideals are generalizations of prime ideals and many authors studied them from different points of
view (see [8]). The first aim of this paper is to study 1-absorbing prime elements in C-lattices. Another
(well-known) generalization of 1-absorbing prime ideals are 2-absorbing ideals. They have first been
mentioned in [7] and in [18], the authors introduced 2-absorbing elements in multiplicative lattices.

The aforementioned concepts are part of the more general definition, namely that of n-absorbing ideals.
These types of ideals were introduced and studied by Anderson and Badawi (see [6]). It turns out that
n-absorbing ideals are not just interesting objects in multiplicative ideal theory, but also in factorization
theory. For instance, there is an important connection between n-absorbing ideals and the w-invariant in
factorization theory (see [6]). For a profound discussion of the w-invariant, we refer to [13].

We want to emphasize that the commutative rings in which each ideal is a finite product of 1-absorbing
prime ideals (resp. 2-absorbing ideals, resp. n-absorbing ideals) have already been studied (see [1, 11, 18]).
The main goal of this paper is to consider principally generated C-lattices in which various types of
elements can be written as finite products of 1-absorbing prime elements or 2-absorbing elements.

We continue with a few more basic definitions that will be needed in the sequel. L is said to be a field
if L ={0,1} and L is called a quasi-local lattice if 1 is compact and L has a unique maximal element.
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The dimension of L, denoted by dim(L), is defined to be sup{n € N | there exists a strict chain of
prime elements of L of length n}. If dim(L) = 0, then L is said to be a zero-dimensional lattice. Note
that L is a zero-dimensional lattice if and only if every prime element of L is maximal. We say that a
multiplicative lattice is Noetherian if every element of L is compact (see [16, page 352]). A multiplicative
lattice is said to be Priifer lattice if every compact element of L is principal. (For more information about
Priifer lattices, see [3, Theorem 3.4].) A ZPI-lattice is a multiplicative lattice in which every element is a
finite product of prime elements [15]. A multiplicative lattice L is said to be a Q-lattice if every element
is a finite product of primary elements [20]. A principally generated lattice domain L is called unique
factorization lattice domain if every principal element of L is a finite product of principal prime elements.

Our paper is organized as follows. In Section 2, we study the concept of 1-absorbing prime elements (OA-
elements). The relationships among prime elements, primary elements, and TA-elements are studied in
Examples 2.2 and 2.3. Propositions 2.7 and 2.8, along with Corollary 2.9, demonstrate that the concepts
of prime elements and OA-elements coincide in C-lattices that are not quasi-local. In Section 3, we
study C-lattices whose elements have a TA-factorization. We call a C-lattices a TA-factorization lattice
(abbreviated as TAFL) if every element possesses a TA-factorization. In Proposition 3.4, we get that
dim(L) < 1if L is a principally generated TAFL. In Theorem 3.5, we obtain that a TAFL is ZPI-lattice
domain if it is a Priifer lattice domain. Then, we study the factorization of C-lattices by assuming that
all compact elements of L have a factorization into TA-elements, denoted by CTAFL. Finally, we explore
the factorization of C-lattices by assuming that all principal elements of L have a factorization into
TA-elements, denoted by PTAFL. In Theorem 3.11, we have that if (L, m) is a quasi-local principally
generated C-lattice domain, then L is a TAFL if and only if L is a PTAFL and dim(L) < 1. In Section 4,
we study the factorization of L with respect to the OA-element concept, similar to Section 3. We
study C-lattices as a OA-factorization lattice (abbreviated as OAFL) if every element possesses an OA-
factorization. Then, we examine the factorization of C-lattices by assuming that all compact elements
of L have a factorization into OA-elements, denoted by COAFL. Finally, we explore the factorization of
C-lattices by assuming that all principal elements of L have a factorization into OA-elements, denoted by
POAFL. Among the many results, in Theorem 4.13, we characterize OAFL, COAFL and lattices which
of the join of any two principal elements has an OA-factorization. In Theorem 4.13, we also see that if L
is an OAFL, then it satisfies one of the following conditions.

i. L is a ZPI-lattice.
ii. L is a quasi-local lattice, m
iii. L is a quasi-local lattice domain, m

2 is comparable and m is a nilpotent element.

2 is comparable and Npenym™ = 0.

In Theorem 4.14, we conclude that the following statements are equivalent: L is a ZPI-lattice if and only
if L is a Priifer OAFL if and only if L is a Priifer POAFL. Theorem 4.15 establishes relationships among
the concepts of OAFL, COAFL, TAFL and CTAFL.

2. ON 1-ABSORBING PRIME ELEMENTS OF C-LATTICES

Definition 2.1. Let L be a C-lattice. A proper element x € L is called a 1-absorbing prime element or
an OA-element if for all a,b,c € L\ {1}, abe < z implies that ab < z or ¢ < z.

It follows immediately from the definition that every OA-element is both a TA-element and a primary
element. Moreover, every prime element is an OA-element. We infer that the class of OA-elements of L
lies between the classes of prime elements and TA-elements and also between the classes of prime elements
and primary elements.

Let L be a C-lattice and let a € L. We obtain the following irreversible right arrows:

(1) a is a prime element = a is an OA-element = a is a primary element.
a is a prime element = ¢ is an OA-element = a is a TA-element.
2) ai i 1 t i OA-el t is a TA-el t

We give some examples to show that these arrows are not reversible.



4 ANDREAS REINHART AND GULSEN ULUCAK

Example 2.2. {This example is inspired by [10, Example 7]}. Let L be a C-lattice, which having
underlying set {0,1,a,b,c,d} ordered by a < b < d and a < ¢ < d, with multiplication zy = a for all
z,y € {a,b,c,d}. The prime elements of L are 0 and d. Moreover, L is a quasi-local lattice. Note that b
is an OA-element of L that is not a prime element. In particular, b is a primary TA-element of L.

Example 2.3. We demonstrate that, in general, neither TA-elements nor primary elements are OA-
elements. Let I(Z) be the lattice of ideals of Z. Note that (15) is a TA-element of I(Z) that is not an
OA-clement of I(Z). Furthermore, (8) is a primary element of I(Z) that fails to be an OA-element of
I(Z).

Lemma 2.4. Let L be a C-lattice. An element x € L is an OA-element if and only if for all a,b,c €
L.\ {1}, abe < x implies that ab < x or ¢ < x.

Proof. (=) This is clear.

(<) Let abe < z and ab £ x for some a,b,c € L\ {1}. We show that ¢ < z to complete the proof. Since
abe < x, then a’b'¢’ < x for all compact elements a/, V', ¢’ € L with @’ < a, b’ < band ¢ < ¢. Since ab £ «,
then there are some compact elements aq,b; € L such that a; < a, by < b and a1b; f z. Let ag =a’' Vay
and by = b’ V by. It is clear that as and by are compact. Obviously, there is a compact element c* € L
with ¢* < ¢. Note that (¢’ V a1)(b) V bi)c* < 2 and (o’ V a1)(b' V by) £ . We obtain that ¢* < z, and
thus ¢ < z. Therefore, x is an OA-element. ]

Proposition 2.5. Let L be a C-lattice and let x € L.
(1) If = is an OA-element of L, then \/z is a prime element of L with (y/z)? < x.
(2) If z is an OA-element of L, then (z : a) is a prime element of L for each a € L with a % x.
(3) If (p* : a) < x for every compact element a < p, a £ x and x is a p-primary element of L, then
x is an OA-element of L.

Proof. (1) Let x be an OA-element of L and let a,b € L be such that ab < y/z. There is a positive
integer n such that a™b" < x. We can write a™a”~™b" < x for a positive integer m with m < n. By
the assumption, " < z or b™ < x. Then a < /x or b < /z, and thus /z is prime. Now we will show
that (v/z)? < z. Let a,b € L be such that a,b < \/z. Then there is an n € N with a" < z. If n = 1,
then we are done. Let n > 2. Then a" 2aa < z, and so a? < z. Similarly, we have that b2 < x. Note
that a(a VvV b)b < . Then ab < a(aVb) <z or ab < b < x. In any case, we have that ab < x. Therefore,

(Vz)? < .
(2) Let & be an OA-element of L and let b,¢ € L be such that bc < (z : a). Then abc < z. By the
assumption, ab < x or ¢ < x. Therefore, b < (z : a) or ¢ < (z : a).

(3) Let a,b,c € L, be such that abc < z and a £ z. By assumption, bec < /z = p. Therefore, we obtain
that abc < p?, and thus be < (p? : a) < p. We infer that be < x, and hence x is an OA-element. O

Lemma 2.6. Let L be a C-lattice. If wV u # 1 for some distinct proper elements u,w € L, then L is
quasi-local.

Proof. Let wV u # 1 be distinct proper elements u,w € L. Assume that L is not a quasi-local lattice.
There are at least two distinct maximal elements mi, my € L such that mq V mo = 1, a contradiction.
Therefore, L is quasi-local. O

Proposition 2.7. Let L be a C-lattice and let x € L. If x is an OA-element of L that is not prime, then
L is quasi-local.

Proof. Let x be an OA-element of L that is not a prime. By the assumption, ¢d < x for some ¢,d € L
implies neither ¢ < z nor d < z. If wVu # 1 for each distinct proper elements w, u € L, then we are done
by Lemma 2.6. Assume that w V u = 1 for two distinct proper elements w,u € L. Since wed < x and
d j<_ z, then we < x and similarly, ucd < x and d f x, then ue < 2. We obtain that weVue = (wVu)e < x,
and hence ¢ = 1l¢ = (w V u)c < z, a contradiction. Therefore, L is quasi-local. O
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Proposition 2.8. Let (L,m) be a quasi-local C-lattice and let x € L be proper. Then x is an OA-element
if and only if x is a prime element or m? < x < m.

Proof. (=) Without restriction, we can assume that z is not a prime element of L. Clearly, there are two
proper elements a,b € L such that ab < z, a £ z and b £ x. Set y = m?. Note that yab < ab < z. Since
a, b and y are proper elements of L and b £ z, we have that ya < z, and hence mma < z. Moreover,
since a and m are proper elements of L and a £ z, this implies that m? = mm < z. Since z is not a
prime element of L, it is obvious that = < m.

(<) If x is a prime element of L, then clearly z is an OA-element of L. Now let m? < z < m. Let
a,b,c € L be proper such that abc < z and ¢ £ z. Note that a < m and b < m. We obtain that
ab < m? < z. Therefore, x is an OA-element. O

As another consequence of Propositions 2.7 and 2.8, we give the following corollary without proof.

Corollary 2.9. Let L be a C-lattice. Then there is an OA-element of L that is not prime if and only if
L is quasi-local with mazimal element m such that m? # m.

Proposition 2.10. Let L be a principally generated C-lattice and set m = J(L). The following statements
are equivalent.

(1) Ewvery proper element of L is an OA-element.
(2) FEvery proper principal element of L is an OA-element.
(3) L is quasi-local and m* = 0.

Proof. (1) = (2) This is obvious.

(2) = (3) Assume that L is not a quasi-local lattice. Then each proper principal element is a prime
element. Note that L is a lattice domain. Let € L be a principal element. It follows that z2 is a
principal prime element. We conclude that x = 22, and thus 1 = 2 Vv (0 : z). Since x is proper, then
we have that z = 0. Consequently, L is field. But this contradicts the fact that L is not a quasi-local
lattice. This implies that L is quasi-local with maximal element m. We infer that 0 is prime or m? = 0
by Proposition 2.8. Suppose that m? # 0. Then there is a nonzero principal element ¢ € L with ¢ < m?2.
By Proposition 2.8, we get that ¢? is prime element or m? < 2. If ¢? is prime, then we have that ¢ = c.
Let m? < c2. We have that m? < ¢ < ¢ < m?, and hence ¢ = c. In any cases, we obtain that ¢ = c,
and hence 1 = ¢V (0 : ¢), since ¢ is principal. Since L is quasi-local, it follows that ¢ = 1, a contradiction.
Therefore, m? = 0.

(3) = (1) This follows from Proposition 2.8. O

Lemma 2.11. Let L be a join-principally generated C-lattice. If every monzero element of L is an
OA-element, then dim(L) = 0.

Proof. Let p € L be a prime element and let m € L a maximal element with p < m. Then there is a
join principal element a € L with a < m and a £ p. Observe that a is a nonzero element that is not

nilpotent. By assumption, a is an OA-element of L. We have that a® = a or a® = a?, since 0 # a® is an
OA-clement of L. If a® = a, then it follows that 1 = (0: a) V a®.

Since (0 : a) # 1, we have that a® = 1, which implies that m = 1, a contradiction. We get a similar result
when assuming that a3 = a?. We conclude that dim(L) = 0. O

Proposition 2.12. Let L be a principally generated C-lattice. If L is quasi-local with mazimal element
m such that m? is comparable, then the following statements are equivalent.

ac WO Principa eemensx,ye w1 m~ ST ana m- sy mmply arr syorysuwz,
1) Fach t incipal el t L with m? < d m? <y imply that x < <

(2) If a is an OA-element of L, then a is prime or a = m?.
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2 2

Proof. (1) = (2) Let each two principal elements z,y € L with m* < z and m? < y satisfy ¢ < y
or y < z. Let a be an OA-element of L. Suppose that a is not a prime. By Proposition 2.8, we get
m? <a < m. Let m* < a. Clearly, there are two principal elements ¢, d € L such that ¢ < z, ¢ £ m? and
d<m,d ﬁ a. Note that ¢, d j§ m?. By the assumption, we have that m? < ¢,d. Consequently, ¢ and d
are OA-elements. Since d £ ¢, then ¢ < d. Therefore, there is an element v € L with ¢ = vd and hence,

we deduce ¢ < m?, a contradiction. It must be the case that a = m?2.

(2) = (1) This is clear. O

Although we do not derive the result that the meet of two prime elements or two OA-elements yields an
OA-element, we deduce the following result.

Lemma 2.13. Let L be a C-lattice and let x,y € L be OA-elements that are not prime. Then x Ay and
x Vy are OA-elements.

Proof. Let z,y € L be OA-elements that are not prime. Then L is quasi-local. By the assumption, we
have that m2 < x,y, and hence m2 < z Ay and m2 < xVy # 1. Since m2 < zAy<zxVy<mandL is
quasi-local, then z A y and x V y are OA-elements. |

Now, we give a relation between OA-elements and lattice domains.

Proposition 2.14. Let L be a C-lattice. Then 0 is an OA-element of L if and only if L is a lattice
domain or L is quasi-local with mazimal element m such that m? = 0.

Proof. (=) Let 0 be an OA-element of L. Let L be not a lattice domain. Then 0 is not prime, and thus
L is quasi-local with maximal element m. We infer that m? = 0.

(«=) This is obvious. O

Proposition 2.15. Let L be a C-lattice. Every TA-element of L is an OA-element of L if and only if
the following conditions hold.

(a) For each two prime elements p,q € L, we have that p < q or ¢ < p. In particular, L is quasi-local.
(b) If x is a TA-element of L and p € min(zx), then x = p or p = m.

Proof. (=) Let p and ¢ be prime elements of L. Then p A ¢q is a TA-element of L. By assumption, p A ¢
is an OA-element. Then by Proposition 2.5(1), we have that /p A ¢ = pAq is prime, and hence pAg = p
or pAgq=q by [18, Lemma 7]. We obtain that p < q or ¢ < p. Therefore, L is quasi-local. Now, assume
that p is minimal prime over x. If x is prime, then it is clear that x = p. Let x be not a prime element.
Then L is quasi-local with maximal element m. Then m? < 2 < p < m, and thus p = m.

(<) Suppose that L satisfies (a) and (b). Let x be a TA-element of L and let p be a minimal prime
element over z. By [18, Theorem 3(1)], p?> < x < p. If z = p, then x is prime, and thus it is clearly an
OA-element. Now let p = m. Then m? < x < m, and hence z is an OA-element. |

Remark 2.16. Let L be a C-lattice, let x € L be an OA-element and let p € L be a prime element of L
such that p < z. Then z is an OA-element of L/p.

Proof. Let aoboc <z for some a,b,c € L/p. Then abc < z. By assumption, ab < z or ¢ < z, and hence
aob <z orc<uz. Consequently, z is an OA-element of L/p. ]

Remark 2.17. Let L be a C-lattice and let p € L be a prime element. If z € L is an OA-element such
that < p, then x, is an OA-element of L,,.

Proof. Let x € L be an OA-element such that z < p. Clearly, x,, is a proper element of L,,. Let a,b,c € L,
be such that apbpc, < 2. Then abe < xp, and hence dabe < x for some d £ p. We have that dab < x or
¢ < z. Note that d, =1 by [17]. Then a,b, < x, or ¢, < x,. Therefore, z, is an OA-clement of L,. O
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Theorem 2.18. Let L be a principally generated C-lattice. FEvery nonzero proper element of L is an
OA-element if and only if L = Ly X Lo where Ly, Lo are fields or L is quasi-local with maximal element
m such that m = /0 and m? < x for every nonzero proper principal element x € L.

Proof. (=) Let every nonzero proper element of L be an OA-element. First let L be quasi-local with
maximal element m. By assumption, every nonzero proper element of L is a TA-element. Now [18,
Theorem 8] completes the proof. Now let L be not quasi-local. Then the concepts of prime elements and
OA-elements coincide. Let m; and mso be two distinct maximal elements of L. Assume that m; Amso # 0.
By the assumption, mj; A mg is prime. It can be shown that m; = ms, a contradiction. It follows that
my Amg =0, and thus L = L/my x L/ms. Note that L/mq, L/mq are fields.

(<) If L 2 Ly X Ly, where Ly and Lo are fields, then each nonzero proper element of L is prime, and
hence it is an OA-element. Now let L be quasi-local with maximal element m such that m = /0 and
m? < z for every nonzero proper principal element € L. Let y be a nonzero proper element of L.
There is some nonzero principal element ¢ € L with ¢ < 3. We have that m? < ¢ < y, and thus y is an
OA-element of L. O

Proposition 2.19. Let L be a principally generated quasi-local Noetherian lattice with mazimal element
m. Then every OA-element is prime if and only if L is field.

Proof. (=) Since every OA-element is prime, then we obtain that m? = m. Therefore, m = 0 by [3,
Theorem 1.4], and thus L is field.

(<) This is clear. O

3. TAFLS AND THEIR GENERALIZATIONS

In this section, we study C-lattices whose elements have a TA-factorization. A TA-factorization of an
element « € L means that « is written as a finite product of TA-elements (z1)7_,. (Note that the element
1 is the empty product.) We say that a C-lattice L is a TA-factorization lattice (abbreviated as TAFL)
if every element of L has a TA-factorization.

In this section, we investigate the factorization of elements into TA-elements. Firstly, we study C-lattices
whose elements possess a TA-factorization, called TAFLs. Next, we study C-lattices whose compact
elements have a factorization into TA-elements. We call them CTAFLs. We also explore the C-lattices
whose principal elements have a factorization into TA-elements, called PTAFLs. Clearly, every TAFL is
both a CTAFL and a PTAFL.

Example 3.1. As a simple example, it is clear that each prime element is a TA-element, then every
ZPI-lattice is a TAFL. By [19, Example 2.1], we have that the lattice of ideals of Z[v/—7] is not a TAFL.

First, we will present some basic results related to TAFL in the following proposition.

Remark 3.2. Let L be a TAFL, let L and Ly be C-lattices and let p € L be a prime element.

(1) min(z) is finite for each z € L.

(2) Ly x Ly is a TAFL if and only if L; and Ly are both TAFLs.

(3) L/pis a TAFL.

(4) L, is a TAFL.

Proof. (1) Let x = [[,_, @ be a TA-factorization of z. By [18, Theorem 3], we have that min(z;) is
finite. Then min(x) is finite, since min(x) C |J;_, min(z;).

(2) Tt is well-known by [18] that py = 11, and ps is a TA-element of Ly or po = 11, and p; is a TA-element
of Ly or p; and po are prime elements of Ly and Lo, respectively if and only if (p1,p2) is a TA-element
of L. The rest now follows easily.
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(3) Let y € L/p. By the assumption, y = [[}_, x5 where z; is a TA-element of L for each i € [1,k]. Note
that z; is a TA-element of L/p and y = ([T;_; zx) Vp = Of_,xx. Consequently, L/p is a TAFL.

(4) Recall that if x is a TA-element of L, then x, is a TA-element of L,. Let a € L,. Then we have that
a =y, for some y € L. By assumption, y has a TA-factorization in L, meaning y is the finite product
of some TA-elements (yj)}'_;. We have that a = y, = ([Tj_; yx)p = OF_1(yx)p. This completes the
proof. |

Lemma 3.3. Let L be a C-lattice, let x € L be proper with «/x € max(L) and let one of the following
conditions be satisfied:

(a) L is a TAFL.
(b) L is a CTAFL and x is compact.
(¢) L is a PTAFL and x is principal.

Then x < (yx)? or (VT)? < .

Proof. Let L be a TAFL, let (v/z)? £ = and /z = m. By [18, Theorem 3], x is not a TA-element. By
assumption, = [[;_; x; where x; is TA-element of L and n > 2. Since z < z; for each i € [1,n] and
vV =m € max(L), we have that \/z; = m for each i € [1,n]. Consequently, z < m?,

If L is a CTAFL (resp. a PTAFL) and z is a compact (resp. principal), then this can be shown along
the same lines as before. O

Proposition 3.4. Let L be a principally generated TAFL. Then dim(L) < 1.

Proof. Observe that since dim(L) = sup{dim(L,) | ¢ € L is a prime element}, we can assume without
restriction that L is quasi-local with maximal element m # 0. It remains to show that each nonmaximal
prime element of L is a minimal prime element. Let p € L be a nonmaximal prime element. Since L is
principally generated, there is some principal element y € L such that y <m and y £ p.

Moreover, p, is a prime element of L,, y, is a principal element of L, and ¢, € min((p V y),). If py is a
minimal prime element of L, then p is a minimal prime element of L. For these reasons, we can assume
without restriction that m € min(p V y). Since L is quasi-local, this implies that \/pVy = m. Next we
verify the following claims.

Claim 1: m # m?2.
Claim 2: ¢ < m? for every prime element g < m.

Assume the contrary of claim 1 that m = m?2. Then m is the only TA-element whose radical is m. There
is a (join) principal element y with y < m and y £ p. Clearly, pVy = Hle x; where k is a positive integer
and x; is a TA-element of L for each i € [1,k]. Note that m is minimal over pVy. Then m? < x; for each
i € [1,k] by [18, Lemma 5]. Therefore, we get that m?* =m < pVy < m* = m by [18, Theorem 3] and
Lemma 3.3. Similarly, we have that m?* = m < pV y? < mF = m. This implies that pVy =m = pV y°.
Note that ((pVy?):y)=@:y)Vy=pVy. Then 1= ((pVy):y)=((pVy?) :y) =pVy, and hence
1 =pVy=m, a contradiction.

To show that the second claim is true, assume that there is a prime element ¢ < m with ¢ £ m?. Also,
there is a principal element b € L with b < m and b £ ¢g. Note that b £ ¢ for a positive integer n. We
have that b € L is a nonzero element that is not nilpotent. Since L is a TAFL and ¢ £ m?, we have that
qV b% is a TA-element by Lemma 3.3 and [18, Theorem 3]. It follows that b> < q Vv b3, since b < q Vv b3.
Note that 1 = ((q V b%) : b?) = (¢ : b*) V b. We conclude that (g : b*) = 1 or b = 1. Therefore, b* < q or
b =1, a contradiction. We infer that every prime element ¢ € L with ¢ < m satisfies ¢ < m?.

We will return to the proof of the main part. Since m # m?2, there is a nonzero principal element ¢ € L
with ¢ £ m?. By claim 2, it follows that /¢ = m. By Lemma 3.3, we get m? < c. Let 0 # s < p. We
have that s = [[/_, y; where y; is a TA-element of L. Since p is prime, then y; < p for some j € [1,n].
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Since y; <p < m? < ¢, then y; = cl; for some ¢; € L because c is weak meet principal. Note that £; < p
because ¢ £ p. Consequently, £; < p < m? < ¢, and thus ¢; = ct; for some t; € L. Therefore, y; = c*t;,
and hence ¢; = ct; < y;, since y; is a TA-element. We obtain that y; = ¢;, and so y; = cy;. Therefore,
s = sc. Note that sm < s. Since s = sc, we have that s = s¢c < sm, and hence s = sm. We conclude
that s = 0 by [3, Theorem 1.4], a contradiction. This implies that p = 0. O

Theorem 3.5. If L is a TAFL and a Priifer lattice domain, then L is a ZPI-lattice domain.

Proof. Let L be a Priifer lattice domain such that L is also a TAFL. First we have that L,, is a TAFL
for each maximal element m € L. Let m € L be maximal. Since L is a Priifer lattice domain, then L,
is a linearly ordered TAFL. From [18, Theorem 10] recall that if L is a Priifer lattice domain, then the
following statements are equivalent: (1) p is a TA-element, (2) p is a prime element of L or p = p? is a p;-
primary element of L or p = p; Apy where p; and p, are some nonzero prime elements of L. By using this
characterization, we conclude that every TA-element of L,, is a finite product of some prime elements.
Therefore, L,, is a ZPI-lattice (since it is a TAFL), and hence every element of L., is principal and
compact. Moreover, dim(L,,) < 1. Therefore, dim(L) < 1. Since L is a TAFL domain and dim(L) < 1,
every nonzero element of L is contained in only finitely many maximal elements. Now one can show
that every element of L is compact (since every nonzero element is locally compact and contained in only
finitely many maximal elements). Therefore, every element of L is compact. In particular, L is a principal
element lattice domain (since L is a Priifer lattice domain), and hence it is a ZPI-lattice domain. ]

Next we study CTAFLs.

Remark 3.6. Let L be a CTAFL, let L; and Lo be C-lattices and let p € L be a prime element.
(1) min(z) is finite for each = € L.
(2) L1 x Lo is a CTAFL if and only if L; and Ly are both CTAFLs.
(3) If p is compact, then L/p is a CTAFL.
(4) L, is a CTAFL.

Proof. (1) This can be proved along the same lines as in the proof of Remark 3.2.

(2) It follows from [18] that p; = 11, and py is a TA-element of Ly or py = 11, and p; is a TA-element
of Ly or p; and py are prime elements of Ly and Lo, respectively if and only if (p1,p2) is a TA-element
of L. The rest is straightforward.

(3) Let p be compact. Observe that every element a € L with a > p is compact in L if and only if a is
compact in L/p. Now, let y € L/p be compact. Then y > p. By the assumption, y = [[,_, x where z; is
a TA-element of L. Note that z; is a TA-element of L/p. Then we get that y = ([T;_, zx) Vp = OF_ 2.
Therefore, L/p is a CTAFL.

(4) This can be shown along similar lines as in Remark 3.2(4). O

Proposition 3.7. Let L be a principally generated CTAFL that satisfies the ascending chain condition
on prime elements. Then dim(L) < 1.

Proof. Observe that for each prime element ¢ € L, we have that L, is a principally generated CTAFL
that satisfies the ascending chain condition on prime elements. Since dim(L) = sup{dim(L,) |¢ € Lis a
prime element}, we can assume without restriction that L is quasi-local with maximal element m # 0. It
remains to show that each nonmaximal prime element of L is a minimal prime element. Let p € L be a
nonmaximal prime element. Since L is principally generated, there is some principal element y € L such
that y <m and y £ p.

Since L is a C-lattice, there exists some ¢ € min(p V y) such that ¢ < m. Clearly, L, is a principally
generated CTAFL with maximal element g, that satisfies the ascending chain condition on prime elements.
Moreover, p, is a prime element of L,, y, is a principal element of L, and ¢, € min((p V y),). If p, is a
minimal prime element of L, then p is a minimal prime element of L. For these reasons, we can assume
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without restriction that m € min(p V y). Since L is quasi-local, this implies that /p Vy = m. Next we
verify the following claims.

Claim 1: m # m?.
Claim 2: ¢ < m? for every prime element ¢ € L with ¢ < m.

First we prove claim 1. It follows from Remark 3.6(1) that min(z) is finite for each compact element = € L.
Since L satisfies the ascending chain condition on prime elements, it follows from [16, Theorem 2] that
p = V/d for some compact element d € L. Observe that m = \/dV y and d V y is compact. Consequently,
dVvy = H’;:l x; for some positive integer ¢ and some TA-elements z; € L. Clearly, \/z; = m for each
i € [1,t], and thus m? < z; < m by [18, Theorem 3] for each i € [1,t]. Assume to the contrary that
m =m?2. Then dV y = m, and hence pVy = m. We infer that m = m? < pVvy? <pVy <m, and thus
pVy=pVy? Since y is (join) principal, we obtain that 1 = ((pVy):y) = ((pVy?) :y) =pVy=m, a
contradiction. This implies that m # m?. O(Claim 1)

Now we prove claim 2. Assume that there is a prime element ¢ € L such that ¢ < m and ¢ £ m?2. Since
L is principally generated, there is a principal element b € L such that b < m and b £ ¢. Note that
b? £ ¢. Since ¢ £ m? and L is a C-lattice, there is a compact element a € L such that a < g and a £ m?.
Since a and b are compact, we have that a V b® is compact. Note that a V b? is a TA-element, since L
is a CTAFL and a f m?2. Since b> < a VvV b? and a V b? is a TA-element, we get that b? < a Vv b>. Note
that 1 = ((aVb®) : b?) = (a : b?) Vb, Since b < m and L is quasi-local, we have that (a : b?) = 1.
Consequently, b?> < a < g, a contradiction. O(Claim 2)

It is sufficient to show that p = 0. (Then p is a minimal prime element of L and we are done.) Since
m # m? by claim 1 and L is principally generated, there is a principal element ¢ € L such that ¢ < m
and ¢ £ m?2. By claim 2, we have that \/c = m. Furthermore, Lemma 3.3 implies that m? < c. Let
s € L be compact such that s < p. It follows that s = Hle y; for some positive integer k£ and some
TA-elements y; € L. Obviously, there is some j € [1, k] such that y; < p. Since y; <p < m? < cand cis
(weak meet) principal, we infer that y; = ¢ for some £ € L. Note that ¢ < p, since ¢ £ p. Consequently,
¢ <p<m?<c and thus £ = ct for some t € L. This implies that y; = ¢, and hence £ = ct < y;
(since y; is a TA-element of L). Therefore, y; = ¢, and thus y; = cy;. We infer that s = sc, and hence
s = sc < sm < s. We conclude that s = sm. It is an immediate consequence of [3, Theorem 1.4] that
s = 0. Finally, we have that p = 0 (since L is a C-lattice). |

Next we study PTAFLs. We start with a simple observation.

Remark 3.8. Let L be a Priifer lattice. Then L is a CTAFL if and only if L is a PTAFL.

Proof. This is obvious, since every compact element in a Priifer lattice is principal. O
Note that Proposition 3.7 does not hold for PTAFLs. To show that, we consider the following example.

Example 3.9. Note that if L is the lattice of ideals of a local two-dimensional unique factorization
domain D (e.g. take D = K[X,Y]x y) where K is a field and X and Y are indeterminates over K),
then L is a quasi-local principally generated PTAFL that satisfies the ascending chain condition on prime
elements and dim(L) = 2.

Theorem 3.10. Let (L,m) be a quasi-local principally generated C-lattice domain such that dim(L) < 1,
m? is comparable and Npenm™ =0. Then L is a TAFL.

Proof. Assume that m = m?. Since L is a lattice domain and A, ym™ = 0, we infer that m = 0.

Therefore, L is a field and hence we get the desired properties. Now, suppose that m # m?2. Then there
is a principal element x € L with z £ m?2. By the assumption, we get that m? < x. Since dim(L) < 1,
then we conclude that = is a TA-element by [18, Theorem 3]. Since x is meet principal, then we conclude
that m? = xm. Let z € L be proper. If z = 0, then it is clear that it has a TA-factorization under the
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assumption that L is a lattice domain. Now let z # 0. If m? < z, then the proof is complete by [18,
Theorem 3]. Now let z < m?2. Let n be the largest positive integer satisfying z < m™. We conclude
that z < m™ = 2" !'m. Consequently, z < z"~!. Note that z = 2" 'a for some a € L since 2"~ ! is
principal. Suppose that a < m?. We conclude that a < z. Moreover, we can write a = xb for some b € L.
Consequently, we obtain z = 2"b < z™m = m"*!, leading to a contradiction. This implies that m? < a,

and thus a is a TA-element. Therefore, z has a TA-factorization. O

Theorem 3.11. Let (L,m) be a quasi-local principally generated C-lattice domain. Then L is a TAFL if
and only if dim(L) < 1 and L is a PTAFL. If these equivalent conditions are satisfied, then J\, cym™ =0
and m? is comparable.

Proof. (=): This is follows from Proposition 3.4.

(<): Let L be a PTAFL such that dim(L) < 1. First, assume that m = m?. Since dim(L) < 1, then m
is the only TA-element whose radical is m. We infer that each proper nonzero element of L is equal to
m and we are done.

Now let m # m?2. Then there is a principal element = € L such that £ < m and z £ m?. Since z % m?2,
we infer that x is a TA-element (since x cannot be the product of more than one TA-element). From [18,
Theorem 3], we get that m? < x since /z = m. Since z is a (weak meet) principal element, we conclude
that m? = xm. Let z € L be proper. We have to show that z has a TA-factorization. If z = 0, then we
are done, since L is lattice domain. Therefore, we can assume without restriction that z # 0.

Next we show that A, _ym” = 0. Assume the contrary that A, _ym" # 0. Note that each nonzero
TA-element v € L satisfies m? < v by [18, Lemma 2]. Clearly, there is some nonzero principal element
x € L such that 2 < A _m". We have that z = Hle a; where a; is a TA-element for each i € [1,k].
We obtain that (m?)* < 2 < (m*)¥ < (m?)*, and hence x = 2. Since z is principal, we infer that
1 =2V (0:z). Therefore, we obtain that x = 1, a contradiction.

First let z < m2. Let n be the largest positive integer satisfying z < m™. We conclude that z < m" =
2" Im, and thus z < 2”~1. Note that z = 2™ 'a for some a € L since ™! is principal. Suppose that
a < m?. It follows that a < z. Moreover, we can write a = xb for some b € L. Consequently, we obtain
z = 2™ < 2"m = m"™T!, a contradiction. Let a % m?2. There is a principal element a’ € L such that
a’ < abut a’ £ m?. Since a’ £ m?, we know that a’ is a TA-element of L. Therefore, m? < a’ < a. We
conclude that @ is a TA-element. This implies that z = 2™ 'a has a TA-factorization.

Finally, let z £ m?2. Then there is a principal element y € L such that y < z and y £ m?. We have that
y is a TA-element, and hence m? < y < z. This implies that z is a TA-element. Consequently, L is a
TAFL.

It remains to show that m? is comparable. Let = € L be proper such that £ m?2. Since L is a TAFL,
we conclude that z is a TA-element. From [18, Lemma 2], we get that m? < x since dim(L) < 1. O

Proposition 3.12. Let (L, m) be a quasi-local principally generated C-lattice such that L is not a lattice
domain. Then L is a TAFL if and only if dim(L) =0 and L is a PTAFL.

Proof. (=): Let L be a TAFL. By proof of Proposition 3.4, we know that if p € L is a nonmaximal
prime element of L, then p = 0. Therefore, dim(L) < 1. Since L is not a lattice domain, we infer that
dim(L) = 0.

(<): Let dim(L) = 0 and let L be a PTAFL. Note that m is nilpotent element of L since 0 = Hle x;
where z; is a TA-element with \/z; = m for each i € [1,k], and hence (m?)¥ < 0. This implies that
0 = m?*, and thus 0 has a TA-factorization. If m = m?, we get that m = 0. Now let m # m?. Then
there is a principal element z € L such that z < m and z ¢ m?2. Since z £ m?, we infer that z is a
TA-element (since z cannot be the product of more than one TA-element). From [18, Lemma 2], we get
that m? < z since \/z = m. Since z is a (weak meet) principal element, we conclude that m? = zm. Let
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x € L be nonzero. If m? < z, then z is a TA-element because it is a primary element as shown by [18,
Lemma 5].

Next let < m2. Let n be the largest positive integer for which z < m™. We conclude that z < m" =
2"~ Im, which implies < z"~!. Note that x = 2" 'a for some a € L, given that 2"~ ! is a principal
element. Assume that a < m2. This implies that a < z, and hence a = zb for some b € L. We conclude
xr =2"b < z"m = m""!, a contradiction. Therefore, a £ m?. There is a principal element a’ € L such
that o/ < a and o’ £ m?. Since a’ £ m?, we have that a’ is a TA-element. Therefore, m? < o’ < a.
Consequently, a is a TA-element. It follows that 2 = 2" 'a has a TA-factorization.

Finally, let © £ m?. Then there is a principal element y € L such that y £ m? and y < z. We have that
y is a TA-element, and hence m? < y < 2. We infer that x is a TA-element. Therefore, L is a TAFL. O

Remark 3.13. Let (L, m) be a quasi-local principal element TAFL domain. Then every proper element
of L is a power of m.

Proof. We know that a TA-element of L equals m or m? by [18, Theorem 9]. This completes the proof. [J

4. OAFLS AND THEIR GENERALIZATIONS

In this section, we study the factorization of elements of L with respect to the OA-elements, similar
to the previous section. It consists of three parts. The first part involves C-lattices, whose elements
possess an OA-factorization, called a OAFLs. Next, we examine C-lattices whose compact elements have
a factorization into OA-elements, called a COAFLs. Finally, we explore the C-lattices whose principal
elements have a factorization into OA-elements, called POAFLs. It can easily be shown that every OAFL
is both a COAFL and a POAFL. We continue by presenting some results related to OAFL.

Example 4.1. Let L be the lattice of ideals of Z[2i]. Note that (2 + 2i) has no OA-factorization.
Therefore, L is not an OAFL.

Remark 4.2. Let L be an OAFL and let p € L be a prime element.

(1) min(z) is finite for each x € L.

(2) L is both a Q-lattice and a TAFL.
(3) L, is an OAFL.

(4) L/p is an OAFL.

Proof. (1) Let z € L and let = []}_, zx be an OA-factorization of = for some OA-elements z; € L.
Recall that each OA-element is a TA-element and min(a) is finite for a TA-element a € L by [18, Theorem
3]. Hence min(z) is finite since min(z) C |J;_, min(x;).

(2) Since every OA-element of L is a TA-element and a primary element, we have that L is both a
Q-lattice and a TAFL.

(3) Let y € L, be proper. Then there is a proper element z € L such that y = z,. By the assumption,
we get such a factorization = = [[,_; ) for some OA-elements z; € L. By Remark 2.17, we know that
(z;)p is an OA-element of L,, and thus y = , = ([[,_; 2x)p = OF_; (zx)p. This completes the proof.

(4) Let y € L/p. By the assumption, y = [[;_, 25 where z; is an OA-element of L for each i € [1,k].
Note that z; is an OA-element of L/p. Then we get that y = ([T;_, zx) Vo = O}_,z%. Observe that
L/p is an OAFL. O

Corollary 4.3. Let L be a principally generated OAFL. Then dim(L) < 1.
Proof. This is an immediate consequence of Remark 4.2(2) and Proposition 3.4. |

Lemma 4.4. Let (L,m) be a quasi-local principally generated C-lattice such that m? is comparable and m
1s nilpotent or L is a lattice domain with /\n€N m™ =0. Then L is an OAFL and every proper principal
element of L is a finite product of principal OA-elements.
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Proof. First let m = m?. Since m is nilpotent or L is lattice domain with Anenm™ = 0, we have that
m = 0. Therefore, L is a field and hence it satisfies the desired conditions.

Now let that m # m?2. There is a proper principal element z € L with x £ m?2. By the assumption,

we get that m? < . We conclude that z is an OA-element. Since x is meet principal, then we get that
m? = x(m? : r). We have that m? = xm. Let z € L be proper. First let z = 0. If L is lattice domain,
then it is clear that z is a principal OA-element. Let m is nilpotent. Then there is a positive integer n
with m™ = 0. Note that z = 2" is a finite product of principal OA-elements.

Next let z # 0. If m? < z, then z is an OA-element and we are done. Now let z < m?. Let n be the
largest positive integer satisfying z < m™. Therefore, z < m™ = " 'm, and thus z < 2"~ !. Note that
z = 2" 1a for some a € L since 2"~ ! is principal. If z is principal, then we can by [5, Theorem 9] assume
that a is principal. Suppose that ¢ < m?. We have that ¢ < x. Moreover, a = zb for some b € L.
Consequently, we obtain z = 2"b < 2"m = m"*t!, a contradiction. Therefore, m? < a and so a is an
OA-element by Proposition 2.8. We infer that z has an OA-factorization and if z is principal, then z is
a finite product of principal OA-elements. ]

Next we study COAFLs.

Remark 4.5. Let L be a COAFL and let p € L be a prime element.

(1) min(x) is finite for each x € L.

(2) Lis a CTAFL.

(3) If p is compact, then L/p is a COAFL.
(4) Then L, is a COAFL.

Proof. (1) This can be shown along the lines of the proof of Remark 4.2.
(2) This is clear, since every OA-element of L is a TA-element.

(3) Let p be compact. Note that every element a € L with a > p is compact in L if and only if a is compact
in L/p. Now, let y € L/p be compact. Then y > p. By the assumption, y = []}_, x where z; is an
OA-element of L. Note that x; is an OA-element of L/p. Then we get that y = ([[;_; zx) Vo = Op_, zk.
Consequently, L/p is a COAFL.

(4) This can proved along similar lines as in Remark 2.17. O

Proposition 4.6. Let L be a quasi-local COAFL. Then each minimal nonmazximal prime element of L
18 a weak meet principal element.

Proof. Let p € L be a minimal nonmaximal prime element of L. First we show that = p(z : p) for each
compact element x € L with x < p. Let x € L be a compact element of L with z < p. By the assumption,
we can write z = [[!, z; where n is a positive integer and x; is an OA-element of L for each i € [1,n].
Since z < p, we have that x; < p for some i € [1,n]. If x; is not a prime element, then m? < x; < p by
Proposition 2.8. We infer that m = p, a contradiction. Consequently, z; is a prime element, and hence
x; = p. We have that © = pz, where z = szl,k# x. Observe that x = p(z : p).

Let y € L be such that y < p. Since L is a C-lattice, we have that
y=\V{vel vy =\/{pw:p)|veL,v<y}=p\/[{(v:p)|veL,v<y}
Set w=\V{(v:p)|v € Ly,v <y}. Then w € L and y = pw, and thus p is weak meet principal. O
Next we study POAFLs. We start with a simple observation.
Remark 4.7. Let L be a Priifer lattice. Then L is a COAFL if and only if L is a POAFL.

Proof. This is obvious, since every compact element in a Priifer lattice is principal. O
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Lemma 4.8. Let L be a quasi-local principally generated POAFL. Then every minimal nonmazimal
prime element of L is a principal element.

Proof. Let p € L be a minimal nonmaximal prime element of L. Let a € L be a principal element of L
with a < p. By the assumption, we can write a = [[;_, ¢» where ¢; is an OA-element of L for i € [1,n].
Since a < p, then g; < p for some j € [1,n]. If g; is an OA-element that is not prime, then m? < ¢; < p.
Therefore, m = p, a contradiction. Assume that ¢; is prime. Then we get that ¢; = p. We infer that
a= pHZ:Lk;ei g, and thus a = pb where b = szl,k# g Obviously, a = p(a : p). Now, take an element
¢ € L with ¢ < p. By assumption, ¢ = \/ A for some set A of principal elements of L. We conclude that
c=VA=V{pla:p)|aec A} =p(\/{(a:p)|aec A}). Therefore, p is a weak meet principal element,
and hence p is a principal element by [3, Theorem 1.2]. O

Lemma 4.9. Let (L,m) be a quasi-local principally generated C-lattice. If the join of any two principal
elements of L has an OA-factorization, then every nonmaximal prime element of L is a principal element
and dim(L) < 2.

Proof. Let the join of any two principal elements of L have an OA-factorization. First, we show that
dim(L) < 2. Let p € L be a nonmaximal prime element of L. Consider that L, is quasi-local and
L, is generated by the set of elements {a, | a € L is principal}. We can see that the join of any two
principal element of L, has a prime factorization. Because a,, Vp b, = (aVb), = (ITi; zi)p = Oy (i)
where (z;), is a prime element of L,. Consequently, L, is a ZPI-lattice by [15, Theorem 8], and thus
dim(L,) < 1. Therefore, dim(L) < 2.

Let ¢ be a nonmaximal prime element of L. Assume that gm = ¢. If ¢ € min(0), then it is clear that
g = 0 by Nakayama’s Lemma since ¢ is principal. Now let ¢ be not minimal. There is a p € min(0)
such that p < ¢, and thus there is a principal element ¢ € L such that c ﬁ p and ¢ < q. By assumption,
¢V p has an OA-factorization since p is principal by Lemma 4.8. Since dim(L) < 2, we have that ¢ is
minimal over ¢V p. Let ¢Vp =[]\, z; where z; is an OA-element for each i € [1,n]. We get that z; < ¢
for some j € [1,n]. Note that m? £ z;, and hence z; = q. We infer that ¢V p = ¢/ for some ¢ € L.
We conclude that (¢ V p)m = ¢V p by the assumption, and thus ¢V p = 0. Consequently, ¢ = p = 0,
which contradicts the fact that ¢ < p. Now assume that ¢ # ¢gm. Assume that ¢ is a nonminimal and
nonmaximal prime element of L. Since L is principally generated, there is a principal element a € L
such that a < ¢ and a £ gm. Since ¢ is nonmaximal and L is principally generated, there is a principal
element b € L such that b < m and b £ ¢. It remains to show that 2 < a of each principal element z € L
such that © < ¢. (Then ¢ = a is principal, since L is principally generated and a < q.) Let z € L be
principal such that < q. Note that b? is principal, and thus aV zb? is the join of two principal elements
of L. Consequently, a V xb? has an OA-factorization. Since a V xzb? < p, there are v,w € L such that v
is an OA-element of L, v < g and a V 2b®> = vw. If w # 1, then w < m, and hence a < a V x2b? < gm, a
contradiction. Therefore, a V xb?> = v is an OA-element. Assume that b < a V 2b?. Since b? is principal,
we have that 1 = (a V 2b? : b%) = (a : b*) V @, and thus (a : b?) = 1, since L is quasi-local. Consequently,
b?* < a < g, and hence b < ¢, a contradiction. This implies that b> £ a V zb*. Since zb* < a V zb* and
aV xb? is an OA-element, we conclude that = < a VV xb®. By [3, Theorem 1.4], it follows that < a. O

Proposition 4.10. Let L be a principally generated C-lattice. If the join of any two principal elements
has an OA-factorization, then dim(L) < 1.

Proof. First let every OA-element of L be a prime element. We infer that L is a ZPI-lattice by [15,
Theorem 8]. Therefore, dim(L) < 1 by [4, Theorem 2.6]. Now let there be an OA-element that is not
a prime element. Then L is quasi-local by Proposition 2.7. Let m be the maximal element of L. We
conclude by Proposition 2.8 that m # m?. There exists some principal element ¢ € L such that ¢ £ m?
and ¢ < m.

Claim: p < m? for each nonmaximal prime element p € L.
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Let p € L be a nonmaximal prime element. By Lemma 4.9, we have that dim(L) < 2. Therefore, we
can assume without restriction that there are no prime elements of L that are properly between p and m
(i-e., for each prime element r € L with p < r < m, it follows that r € {p,m}).

Next we show that p = A{pVa | a € L is principal and a £ p}. Assume to the contrary that
p# N{pVal|aéc Lis principal and a £ p}. Then there is a principal element y € L such that y £ p
and y < A{pVa|a € L is principal and a £ p}. Since p < m, there is a principal element b € L such
that b £ p and b < m. Since by € L is principal and by £ p, we have that y < A{pVa|a € Lis
principal and a £ p} < p V by. It follows from [3, Theorem 1.4] that y < p, a contradiction. Therefore,
p=/N{pVa|acLisprincipal and a £ p}.

Assume that p £ m?. It is sufficient to show that m? < pV a for each proper principal a € L with a £ p.
(Then m? < A{pVd | d € L is principal and d £ p} = p, and hence p = m, a contradiction.) Let
a € L be a proper principal element such that a £ p. Since p is principal by Lemma 4.9, it follows that
p V a has an OA-factorization in L. Since pV a £ m? and p V a is proper, we obtain that p V a is an
OA-element. Clearly, pV a is not a nonmaximal prime element, and hence m? < pV a by Proposition 2.8.
Consequently, ¢ < m?2. O(Claim)

It is sufficient to show that » = 0 for each nonmaximal prime element r € L. Let r € L be a nonmaximal
prime element. Since ¢ has an OA-factorization and ¢ £ m?, we infer that ¢ is an OA-element of L. By
the claim, it follows that ¢ is not a nonmaximal prime element of L. Observe that » < m? < ¢ by the
claim and by Proposition 2.8. Since ¢ is a (weak meet) principal element of L, r is a prime element of L
and ¢ £ r, we conclude that r = cr. Therefore, » = 0 by [3, Theorem 1.4]. |

Proposition 4.11. Let (L,m) be a quasi-local principally generated C-lattice. If the join of any two
principal elements of L has an OA-factorization and dim(L) = 1, then L is a domain.

Proof. Let p € L be a minimal nonmaximal prime element with p < m. If m? = 0, then p = m, a
contradiction. Therefore, m? # 0. Since (L,m) is a quasi-local, then m? # m. There is a principal
element x € L such that z £ m? by the assumption, we infer that m? < x and x is not prime. We
show that p < m2. Assume the contrary that p % m?2. There is a principal element a € L with a £p
and a < m?. Note that a™ ﬁ p for a positive integer n. Note that p Vv a® j{ m? because p ﬁ m2. By the
assumption p V a® is an OA-element. Since a® < pV a?, then we infer that o> < pV a® or a < p V a®.
Note that we have that ((pV a®):a?) = (p:a?)Vaand ((pVa®):a)=(p:a)Va® If a®> <pVa3, then
we obtain that 1 = (p : a®) V a. This implies that 1 = (p : a?) or @ = 1, and hence a> < pora =1, a
contradiction. Assume that a < pV a®. We obtain that 1 = (p : a) V a®. This implies that 1 = (p : a)
or a2 =1 < a, and thus @ < p or a = 1, a contradiction. Therefore, p < m?2. Since p < x, we get that
pr = p. By Nakayama’s Lemma and Lemma 4.8, we have that p = 0. ]

Proposition 4.12. Let L be a principally generated C-lattice and set m = J(L). If the join of any two
principal elements of L has an OA-factorization, then L satisfies one of the following conditions.

(a) L is a ZPI-lattice.
(b) L is a quasi-local lattice, m
(¢) L is a quasi-local lattice domain, m

2 is comparable and m is a nilpotent element.

% is comparable and |\, cym™ = 0.

Proof. Let the join of any two principal elements of L has an OA-factorization. Assume that every OA-
element of L is prime. By [15, Theorem 8], it follows that L is a ZPI-lattice. Now, assume that there is
an OA-element which is not a prime. We conclude that (L,m) is a quasi-local C-lattice with m? # m
by Propositions 2.7 and 2.8. Then there is a nonzero principal element z ¢ m?2. Clearly, x is not the
product of more than one OA-element, and thus z is an OA-element.

First let dim(L) = 0. We show that m? is comparable. Let z € L be proper such that z £ m?. There is
a principal element a € L with a < z and a £ m?2. Note that a is an OA-element which is not a prime
element. We have that m? < a by Proposition 2.8, and thus m? < z. Consequently, m? is comparable.
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Clearly, 0 has an OA-factorization. This implies that m”* < 0 for some positive integer k, and hence
k=0.

Now let dim(L) = 1. We obtain that (L, m) is a quasi-local lattice domain by Proposition 4.11. To verify
that A\, ym" = 0, assume the contrary that A _ym" # 0. There is a nonzero principal element = € L
with z < /\neN m™. Since z is a product of k¥ OA-elements of L, we conclude that m?* < z < m* < m?*.
In particular, we get that x = x2. Since z is principal, we have that 1 = 2V (0 : #). We infer that z = 1,
a contradiction. Therefore, A\, m™ = 0. Finally, we show that m? is comparable. Let z € L be proper
such that z £ m?. There is a principal element a € L with ¢ < z and a % m?. We get that a is a nonzero
OA-element. Therefore, m? < a (since dim(L) = 1), and thus m? < 2. O

Theorem 4.13. Let L be a principally generated C-lattice and set m = J(L). The following statements
are equivalent.

(1) L is an OAFL.
(2) L is a COAFL.
(3) The join of any two principal elements of L has an OA-factorization.
(4) L satisfies one of the following conditions.
(a) L is a ZPI-lattice.
(b) L is a quasi-local lattice, m>
(

¢) L is a quasi-local lattice domain, m

18 comparable and m s a nilpotent element.
% is comparable and N\, oy m™ = 0.

Proof. (1) = (2) This is obvious.

(2) = (3) Note that every principal element is compact, and hence the join of each two principal elements
is compact. The statement is now immediately clear.

(3) = (4) This follows from Proposition 4.12.

(4) = (1) If L is a ZPI-lattice, then clearly L is an OAFL. Now let L be not a ZPI-lattice. It is an
immediate consequence of Lemma 4.4 that L is an OAFL. |

Theorem 4.14. Let L be a principally generated C-lattice. The following statements are equivalent.

(1) L is a ZPI-lattice.
(2) L is a Prifer OAFL.
(3) L is a Prifer POAFL.

Proof. (1)= (2) = (3) This follows from [15, Theorem 8§|.

(3) = (1) Let L be a Priifer POAFL. If L is not quasi-local, then the prime elements coincide with the OA-
elements. By Theorem 4.13, we infer that L is a ZPI-lattice. Assume that (L, m) is a quasi-local lattice
with maximal element m. Then m? is comparable by Theorem 4.13. We know from Proposition 2.12(2)
that each OA-element is either prime or equal to m2. Therefore, L is a ZPI-lattice. O

Finally, we provide a theorem that connects the various types of factorization lattices for a quasi-local
principally generated C-lattice domain.

Theorem 4.15. Let (L, m) be a quasi-local principally generated C-lattice domain. The following state-
ments are equivalent.

(1) L is an OAFL.

) Lis a TAFL.

) L is a COAFL.

) L is a CTAFL that satisfies the ascending chain condition on prime elements.
) dim(L) <1 and L is a POAFL.

) dim(L) <1 and L is a PTAFL.

) d

(2
(3
(4
(5
(6
(7) dim(L) < 1, m? is comparable and A\, oy m" = 0.
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Proof. (1) < (3) < (7) This follows from Theorem 4.13.
(1) = (5) = (6) This follows from Corollary 4.3.
(2) & (6) < (7) This is an immediate consequence of Theorem 3.11 and Proposition 3.12.

(2) = (4) Clearly, L is a CTAFL. Moreover, dim(L) < 1 by Proposition 3.4. It is clear now that L
satisfies the ascending chain condition on prime elements.

(4) = (6) Obviously, L is a PTAFL. We infer by Proposition 3.7 that dim(L) < 1. O
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