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Abstract. In [22], Yassine et al. introduced the notion of 1-absorbing prime ideals in commutative

rings with nonzero identity. In this article, we examine the concept of 1-absorbing prime elements in
C-lattices. We investigate the C-lattices in which every element is a finite product of 1-absorbing prime

elements (we denote them as OAFLs for short). Moreover, we study C-lattices having 2-absorbing

factorization (we denote them as TAFLs for short).

1. Introduction

Let L be a set together with an inner binary operation · on L and a partial order ≤ on L such that (L, ·)
is a monoid (i.e., (L, ·) a commutative semigroup with identity) and (L,≤) is a complete lattice (i.e., each
subset of L has both a supremum and an infimum with respect to ≤). For each subset E ⊆ L, we let∨
E denote the supremum of E, called the join of E and we let

∧
E denote the infimum of E, called the

meet of E. For elements a, b ∈ L, let a∨ b =
∨
{a, b} and a∧ b =

∧
{a, b}. Moreover, set 1 =

∨
L and set

0 =
∧
L. We say that (L, ·,≤) is a multiplicative lattice if for all x ∈ L and E ⊆ L, it follows that 1x = x

and x
∨
E =

∨
{xe | e ∈ E}.

We recall a few important situations in which multiplicative lattices occur. In what follows, we use the
definitions of star operations, ideal systems and the specific star operations/ideal systems v, t and w
without further mention. For more information on star operations see [12] and for more information on
ideal systems see [14]. A profound introduction and study of the w-operation can be found in [21].

• It is well-known that if R is a commutative ring with identity, L is the set of ideals of R and
· : L× L→ L is the ideal multiplication on L, then (L, ·,⊆) is a multiplicative lattice.
• Let D be an integral domain and let ∗ be a star operation on D. Let L be the set of ∗-ideals of
D together with the ∗-multiplication ·∗ : L× L→ L. Then (L, ·∗,⊆) is a multiplicative lattice.
• Let H be a commutative cancellative monoid and let r be an ideal system on H. Let L be the set

of r-ideals of H and let ·r : L×L→ L be the r-multiplication. Then (L, ·r,⊆) is a multiplicative
lattice.

Let L be a multiplicative lattice and let e ∈ L. For a, b ∈ L, we set (a : b) =
∨
{x ∈ L | xb ≤ a}. Then

e is called weak meet principal if a ∧ e = (a : e)e for each a ∈ L and e is called weak join principal if
(be : e) = (0 : e)∨ b for each b ∈ L. Furthermore, e is said to be meet principal if a∧ be = ((a : e)∧ b)e for
all a, b ∈ L and e is said to be join principal if ((a ∨ be) : e) = (a : e) ∨ b for all a, b ∈ L. We say that e is
weak principal if e is both weak meet principal and weak join principal. Finally, e is said to be principal
([9]) if e is both meet principal and join principal. An element a ∈ L is said to be compact if for each
subset F ⊆ L with a ≤

∨
F , it follows that a ≤

∨
E for some finite subset E of F . A subset C ⊆ L is

called multiplicatively closed if 1 ∈ C and xy ∈ C for each x, y ∈ C. A multiplicative lattice L is called
a C-lattice if L is generated under joins by a multiplicatively closed subset C of compact elements. Note
that a finite product of compact elements in a C-lattice is again compact. By L∗ we denote the set of
all compact elements of L. We say that L is principally generated if every element of L is the join of a
set of principal elements of L. It is well-known (see [3, Theorem 1.3]) that each principal element of a
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C-lattice is compact. Moreover, L is said to be join-principally generated if each element of L is the join
of a set of join principal elements of L. Additionally, a lattice L is called a principal element lattice if
every element in L is principal [4].

Let R be a commutative ring with identity, let D be an integral domain, let H be a commutative
cancellative monoid, let ∗ be a star operation on D and let r be an ideal system on H. Note that the
lattice of ideals of R is a principally generated C-lattice. The lattice of ∗-ideals of D is a C-lattice if
and only if ∗ is a star operation of finite type. In analogy, it follows that the lattice of r-ideals of H is
a C-lattice if and only if r is a finitary ideal system. Observe that the lattice of v-ideals of D (or of H)
can fail to be a C-lattice. Also note that even if ∗ is of finite type (resp. r is finitary), then the lattice of
∗-ideals of D (resp. the lattice of r-ideals of H) need not be (join-)principally generated. For instance,
the t-operation is of finite type (resp. the t-system is finitary), but the lattice of t-ideals is (in general)
not (join-)principally generated. We also want to emphasize that the lattice of w-ideals of D (resp. of
H) is a principally generated C-lattice.

An element a ∈ L is said to be proper if a < 1, it is called nilpotent if an = 0 for some n ∈ N and it
is called comparable if a ≤ b or b ≤ a for each b ∈ L. For each a ∈ L, L/a = {b ∈ L | a ≤ b} is a
multiplicative lattice with the multiplication c ◦ d = (cd) ∨ a for elements c, d ∈ L/a. A proper element
p ∈ L is called prime if ab ≤ p implies a ≤ p or b ≤ p for all a, b ∈ L. A proper element m ∈ L is said to
be maximal in L if for each x ∈ L, m < x ≤ 1 implies x = 1. One can easily see that maximal elements
are prime. For each a ∈ L, let min(a) be the set of prime elements of L that are minimal above a. The
lattice L is called a lattice domain if 0 is a prime element. J(L) is defined as the meet of all maximal
elements of L. For a ∈ L, we define

√
a =

∧
{p ∈ L | p is prime and a ≤ p}. Note that in a C-lattice L,√

a =
∧
{p ∈ L | a ≤ p is a minimal prime over a} =

∨
{x ∈ L∗ | xn ≤ a for some n ∈ N}. A proper

element q ∈ L is called primary if ab ≤ q implies a ≤ q or b ≤ √q for every a, b ∈ L. It is well-known that
C-lattices can be localized at arbitrary multiplicatively closed subsets S of compact elements as follows.
The localization of a ∈ L at S is defined as aS =

∨
{x ∈ L | xs ≤ a for some s ∈ S}. The multiplication

on LS = {aS | a ∈ L} is defined by a ◦S b = (ab)S for all a, b ∈ LS . Let p ∈ L be a prime element
and S = {x ∈ L∗ | x � p}. Then the set S is a multiplicatively closed subset of L. In this case, the
localization LS is denoted by Lp. It is well-known that (Lp)∗ = {ap ∈ Lp | a ∈ L∗}. Using this, it can be
shown that if L is a (principally generated) C-lattice, then Lp is also a (principally generated) C-lattice
for any prime element p ∈ L (see [2, Theorem 2.9]). It can also be proved that in a C-lattice L, for all
a, b ∈ L, (ab)m = (ambm)m for each maximal element m ∈ L and also, a = b if and only if an = bn for all
maximal elements n ∈ L. For more information on localization, see [2, 3, 9, 17].

In [22], the authors introduced the concept of 1-absorbing prime ideals in commutative rings with identity.
These ideals are generalizations of prime ideals and many authors studied them from different points of
view (see [8]). The first aim of this paper is to study 1-absorbing prime elements in C-lattices. Another
(well-known) generalization of 1-absorbing prime ideals are 2-absorbing ideals. They have first been
mentioned in [7] and in [18], the authors introduced 2-absorbing elements in multiplicative lattices.
The aforementioned concepts are part of the more general definition, namely that of n-absorbing ideals.
These types of ideals were introduced and studied by Anderson and Badawi (see [6]). It turns out that
n-absorbing ideals are not just interesting objects in multiplicative ideal theory, but also in factorization
theory. For instance, there is an important connection between n-absorbing ideals and the ω-invariant in
factorization theory (see [6]). For a profound discussion of the ω-invariant, we refer to [13].
We want to emphasize that the commutative rings in which each ideal is a finite product of 1-absorbing
prime ideals (resp. 2-absorbing ideals, resp. n-absorbing ideals) have already been studied (see [1, 11, 18]).
The main goal of this paper is to consider principally generated C-lattices in which various types of
elements can be written as finite products of 1-absorbing prime elements or 2-absorbing elements.

We continue with a few more basic definitions that will be needed in the sequel. L is said to be a field
if L = {0, 1} and L is called a quasi-local lattice if 1 is compact and L has a unique maximal element.
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The dimension of L, denoted by dim(L), is defined to be sup{n ∈ N | there exists a strict chain of
prime elements of L of length n}. If dim(L) = 0, then L is said to be a zero-dimensional lattice. Note
that L is a zero-dimensional lattice if and only if every prime element of L is maximal. We say that a
multiplicative lattice is Noetherian if every element of L is compact (see [16, page 352]). A multiplicative
lattice is said to be Prüfer lattice if every compact element of L is principal. (For more information about
Prüfer lattices, see [3, Theorem 3.4].) A ZPI-lattice is a multiplicative lattice in which every element is a
finite product of prime elements [15]. A multiplicative lattice L is said to be a Q-lattice if every element
is a finite product of primary elements [20]. A principally generated lattice domain L is called unique
factorization lattice domain if every principal element of L is a finite product of principal prime elements.

Our paper is organized as follows. In Section 2, we study the concept of 1-absorbing prime elements (OA-
elements). The relationships among prime elements, primary elements, and TA-elements are studied in
Examples 2.2 and 2.3. Propositions 2.7 and 2.8, along with Corollary 2.9, demonstrate that the concepts
of prime elements and OA-elements coincide in C-lattices that are not quasi-local. In Section 3, we
study C-lattices whose elements have a TA-factorization. We call a C-lattices a TA-factorization lattice
(abbreviated as TAFL) if every element possesses a TA-factorization. In Proposition 3.4, we get that
dim(L) ≤ 1 if L is a principally generated TAFL. In Theorem 3.5, we obtain that a TAFL is ZPI-lattice
domain if it is a Prüfer lattice domain. Then, we study the factorization of C-lattices by assuming that
all compact elements of L have a factorization into TA-elements, denoted by CTAFL. Finally, we explore
the factorization of C-lattices by assuming that all principal elements of L have a factorization into
TA-elements, denoted by PTAFL. In Theorem 3.11, we have that if (L,m) is a quasi-local principally
generated C-lattice domain, then L is a TAFL if and only if L is a PTAFL and dim(L) ≤ 1. In Section 4,
we study the factorization of L with respect to the OA-element concept, similar to Section 3. We
study C-lattices as a OA-factorization lattice (abbreviated as OAFL) if every element possesses an OA-
factorization. Then, we examine the factorization of C-lattices by assuming that all compact elements
of L have a factorization into OA-elements, denoted by COAFL. Finally, we explore the factorization of
C-lattices by assuming that all principal elements of L have a factorization into OA-elements, denoted by
POAFL. Among the many results, in Theorem 4.13, we characterize OAFL, COAFL and lattices which
of the join of any two principal elements has an OA-factorization. In Theorem 4.13, we also see that if L
is an OAFL, then it satisfies one of the following conditions.

i. L is a ZPI-lattice.
ii. L is a quasi-local lattice, m2 is comparable and m is a nilpotent element.
iii. L is a quasi-local lattice domain, m2 is comparable and

∧
n∈N mn = 0.

In Theorem 4.14, we conclude that the following statements are equivalent: L is a ZPI-lattice if and only
if L is a Prüfer OAFL if and only if L is a Prüfer POAFL. Theorem 4.15 establishes relationships among
the concepts of OAFL, COAFL, TAFL and CTAFL.

2. On 1-absorbing prime elements of C-lattices

Definition 2.1. Let L be a C-lattice. A proper element x ∈ L is called a 1-absorbing prime element or
an OA-element if for all a, b, c ∈ L \ {1}, abc ≤ x implies that ab ≤ x or c ≤ x.

It follows immediately from the definition that every OA-element is both a TA-element and a primary
element. Moreover, every prime element is an OA-element. We infer that the class of OA-elements of L
lies between the classes of prime elements and TA-elements and also between the classes of prime elements
and primary elements.
Let L be a C-lattice and let a ∈ L. We obtain the following irreversible right arrows:

(1) a is a prime element ⇒ a is an OA-element ⇒ a is a primary element.
(2) a is a prime element ⇒ a is an OA-element ⇒ a is a TA-element.

We give some examples to show that these arrows are not reversible.
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Example 2.2. {This example is inspired by [10, Example 7]}. Let L be a C-lattice, which having
underlying set {0, 1, a, b, c, d} ordered by a ≤ b ≤ d and a ≤ c ≤ d, with multiplication xy = a for all
x, y ∈ {a, b, c, d}. The prime elements of L are 0 and d. Moreover, L is a quasi-local lattice. Note that b
is an OA-element of L that is not a prime element. In particular, b is a primary TA-element of L.

Example 2.3. We demonstrate that, in general, neither TA-elements nor primary elements are OA-
elements. Let I(Z) be the lattice of ideals of Z. Note that (15) is a TA-element of I(Z) that is not an
OA-element of I(Z). Furthermore, (8) is a primary element of I(Z) that fails to be an OA-element of
I(Z).

Lemma 2.4. Let L be a C-lattice. An element x ∈ L is an OA-element if and only if for all a, b, c ∈
L∗ \ {1}, abc ≤ x implies that ab ≤ x or c ≤ x.

Proof. (⇒) This is clear.

(⇐) Let abc ≤ x and ab � x for some a, b, c ∈ L \ {1}. We show that c ≤ x to complete the proof. Since
abc ≤ x, then a′b′c′ ≤ x for all compact elements a′, b′, c′ ∈ L with a′ ≤ a, b′ ≤ b and c′ ≤ c. Since ab � x,
then there are some compact elements a1, b1 ∈ L such that a1 ≤ a, b1 ≤ b and a1b1 � x. Let a2 = a′ ∨ a1

and b2 = b′ ∨ b1. It is clear that a2 and b2 are compact. Obviously, there is a compact element c∗ ∈ L
with c∗ ≤ c. Note that (a′ ∨ a1)(b′ ∨ b1)c∗ ≤ x and (a′ ∨ a1)(b′ ∨ b1) � x. We obtain that c∗ ≤ x, and
thus c ≤ x. Therefore, x is an OA-element. �

Proposition 2.5. Let L be a C-lattice and let x ∈ L.

(1) If x is an OA-element of L, then
√
x is a prime element of L with (

√
x)2 ≤ x.

(2) If x is an OA-element of L, then (x : a) is a prime element of L for each a ∈ L with a � x.
(3) If (p2 : a) ≤ x for every compact element a ≤ p, a � x and x is a p-primary element of L, then

x is an OA-element of L.

Proof. (1) Let x be an OA-element of L and let a, b ∈ L be such that ab ≤
√
x. There is a positive

integer n such that anbn ≤ x. We can write aman−mbn ≤ x for a positive integer m with m < n. By
the assumption, an ≤ x or bn ≤ x. Then a ≤

√
x or b ≤

√
x, and thus

√
x is prime. Now we will show

that (
√
x)2 ≤ x. Let a, b ∈ L be such that a, b ≤

√
x. Then there is an n ∈ N with an ≤ x. If n = 1,

then we are done. Let n > 2. Then an−2aa ≤ x, and so a2 ≤ x. Similarly, we have that b2 ≤ x. Note
that a(a ∨ b)b ≤ x. Then ab ≤ a(a ∨ b) ≤ x or ab ≤ b ≤ x. In any case, we have that ab ≤ x. Therefore,
(
√
x)2 ≤ x.

(2) Let x be an OA-element of L and let b, c ∈ L be such that bc ≤ (x : a). Then abc ≤ x. By the
assumption, ab ≤ x or c ≤ x. Therefore, b ≤ (x : a) or c ≤ (x : a).

(3) Let a, b, c ∈ L∗ be such that abc ≤ x and a � x. By assumption, bc ≤
√
x = p. Therefore, we obtain

that abc ≤ p2, and thus bc ≤ (p2 : a) ≤ p. We infer that bc ≤ x, and hence x is an OA-element. �

Lemma 2.6. Let L be a C-lattice. If w ∨ u 6= 1 for some distinct proper elements u,w ∈ L, then L is
quasi-local.

Proof. Let w ∨ u 6= 1 be distinct proper elements u,w ∈ L. Assume that L is not a quasi-local lattice.
There are at least two distinct maximal elements m1,m2 ∈ L such that m1 ∨m2 = 1, a contradiction.
Therefore, L is quasi-local. �

Proposition 2.7. Let L be a C-lattice and let x ∈ L. If x is an OA-element of L that is not prime, then
L is quasi-local.

Proof. Let x be an OA-element of L that is not a prime. By the assumption, cd ≤ x for some c, d ∈ L
implies neither c ≤ x nor d ≤ x. If w∨u 6= 1 for each distinct proper elements w, u ∈ L, then we are done
by Lemma 2.6. Assume that w ∨ u = 1 for two distinct proper elements w, u ∈ L. Since wcd ≤ x and
d � x, then wc ≤ x and similarly, ucd ≤ x and d � x, then uc ≤ x. We obtain that wc∨uc = (w∨u)c ≤ x,
and hence c = 1c = (w ∨ u)c ≤ x, a contradiction. Therefore, L is quasi-local. �
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Proposition 2.8. Let (L,m) be a quasi-local C-lattice and let x ∈ L be proper. Then x is an OA-element
if and only if x is a prime element or m2 ≤ x < m.

Proof. (⇒) Without restriction, we can assume that x is not a prime element of L. Clearly, there are two
proper elements a, b ∈ L such that ab ≤ x, a � x and b � x. Set y = m2. Note that yab ≤ ab ≤ x. Since
a, b and y are proper elements of L and b � x, we have that ya ≤ x, and hence mma ≤ x. Moreover,
since a and m are proper elements of L and a � x, this implies that m2 = mm ≤ x. Since x is not a
prime element of L, it is obvious that x < m.
(⇐) If x is a prime element of L, then clearly x is an OA-element of L. Now let m2 ≤ x < m. Let
a, b, c ∈ L be proper such that abc ≤ x and c � x. Note that a ≤ m and b ≤ m. We obtain that
ab ≤ m2 ≤ x. Therefore, x is an OA-element. �

As another consequence of Propositions 2.7 and 2.8, we give the following corollary without proof.

Corollary 2.9. Let L be a C-lattice. Then there is an OA-element of L that is not prime if and only if
L is quasi-local with maximal element m such that m2 6= m.

Proposition 2.10. Let L be a principally generated C-lattice and set m = J(L). The following statements
are equivalent.

(1) Every proper element of L is an OA-element.
(2) Every proper principal element of L is an OA-element.
(3) L is quasi-local and m2 = 0.

Proof. (1) ⇒ (2) This is obvious.

(2) ⇒ (3) Assume that L is not a quasi-local lattice. Then each proper principal element is a prime
element. Note that L is a lattice domain. Let x ∈ L be a principal element. It follows that x2 is a
principal prime element. We conclude that x = x2, and thus 1 = x ∨ (0 : x). Since x is proper, then
we have that x = 0. Consequently, L is field. But this contradicts the fact that L is not a quasi-local
lattice. This implies that L is quasi-local with maximal element m. We infer that 0 is prime or m2 = 0
by Proposition 2.8. Suppose that m2 6= 0. Then there is a nonzero principal element c ∈ L with c ≤ m2.
By Proposition 2.8, we get that c2 is prime element or m2 ≤ c2. If c2 is prime, then we have that c2 = c.
Let m2 ≤ c2. We have that m2 ≤ c2 ≤ c ≤ m2, and hence c2 = c. In any cases, we obtain that c2 = c,
and hence 1 = c∨ (0 : c), since c is principal. Since L is quasi-local, it follows that c = 1, a contradiction.
Therefore, m2 = 0.

(3) ⇒ (1) This follows from Proposition 2.8. �

Lemma 2.11. Let L be a join-principally generated C-lattice. If every nonzero element of L is an
OA-element, then dim(L) = 0.

Proof. Let p ∈ L be a prime element and let m ∈ L a maximal element with p < m. Then there is a
join principal element a ∈ L with a < m and a � p. Observe that a is a nonzero element that is not
nilpotent. By assumption, a is an OA-element of L. We have that a3 = a or a3 = a2, since 0 6= a3 is an
OA-element of L. If a3 = a, then it follows that 1 = (0 : a) ∨ a2.

Since (0 : a) 6= 1, we have that a2 = 1, which implies that m = 1, a contradiction. We get a similar result
when assuming that a3 = a2. We conclude that dim(L) = 0. �

Proposition 2.12. Let L be a principally generated C-lattice. If L is quasi-local with maximal element
m such that m2 is comparable, then the following statements are equivalent.

(1) Each two principal elements x, y ∈ L with m2 ≤ x and m2 ≤ y imply that x ≤ y or y ≤ x,
(2) If a is an OA-element of L, then a is prime or a = m2.
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Proof. (1) ⇒ (2) Let each two principal elements x, y ∈ L with m2 ≤ x and m2 ≤ y satisfy x ≤ y
or y ≤ x. Let a be an OA-element of L. Suppose that a is not a prime. By Proposition 2.8, we get
m2 ≤ a < m. Let m2 < a. Clearly, there are two principal elements c, d ∈ L such that c ≤ x, c � m2 and
d < m, d � a. Note that c, d � m2. By the assumption, we have that m2 ≤ c, d. Consequently, c and d
are OA-elements. Since d � c, then c ≤ d. Therefore, there is an element v ∈ L with c = vd and hence,
we deduce c ≤ m2, a contradiction. It must be the case that a = m2.

(2) ⇒ (1) This is clear. �

Although we do not derive the result that the meet of two prime elements or two OA-elements yields an
OA-element, we deduce the following result.

Lemma 2.13. Let L be a C-lattice and let x, y ∈ L be OA-elements that are not prime. Then x ∧ y and
x ∨ y are OA-elements.

Proof. Let x, y ∈ L be OA-elements that are not prime. Then L is quasi-local. By the assumption, we
have that m2 ≤ x, y, and hence m2 ≤ x ∧ y and m2 ≤ x ∨ y 6= 1. Since m2 ≤ x ∧ y ≤ x ∨ y ≤ m and L is
quasi-local, then x ∧ y and x ∨ y are OA-elements. �

Now, we give a relation between OA-elements and lattice domains.

Proposition 2.14. Let L be a C-lattice. Then 0 is an OA-element of L if and only if L is a lattice
domain or L is quasi-local with maximal element m such that m2 = 0.

Proof. (⇒) Let 0 be an OA-element of L. Let L be not a lattice domain. Then 0 is not prime, and thus
L is quasi-local with maximal element m. We infer that m2 = 0.

(⇐) This is obvious. �

Proposition 2.15. Let L be a C-lattice. Every TA-element of L is an OA-element of L if and only if
the following conditions hold.

(a) For each two prime elements p, q ∈ L, we have that p ≤ q or q ≤ p. In particular, L is quasi-local.
(b) If x is a TA-element of L and p ∈ min(x), then x = p or p = m.

Proof. (⇒) Let p and q be prime elements of L. Then p ∧ q is a TA-element of L. By assumption, p ∧ q
is an OA-element. Then by Proposition 2.5(1), we have that

√
p ∧ q = p∧ q is prime, and hence p∧ q = p

or p ∧ q = q by [18, Lemma 7]. We obtain that p ≤ q or q ≤ p. Therefore, L is quasi-local. Now, assume
that p is minimal prime over x. If x is prime, then it is clear that x = p. Let x be not a prime element.
Then L is quasi-local with maximal element m. Then m2 ≤ x < p < m, and thus p = m.

(⇐) Suppose that L satisfies (a) and (b). Let x be a TA-element of L and let p be a minimal prime
element over x. By [18, Theorem 3(1)], p2 ≤ x ≤ p. If x = p, then x is prime, and thus it is clearly an
OA-element. Now let p = m. Then m2 ≤ x ≤ m, and hence x is an OA-element. �

Remark 2.16. Let L be a C-lattice, let x ∈ L be an OA-element and let p ∈ L be a prime element of L
such that p ≤ x. Then x is an OA-element of L/p.

Proof. Let a ◦ b ◦ c ≤ x for some a, b, c ∈ L/p. Then abc ≤ x. By assumption, ab ≤ x or c ≤ x, and hence
a ◦ b ≤ x or c ≤ x. Consequently, x is an OA-element of L/p. �

Remark 2.17. Let L be a C-lattice and let p ∈ L be a prime element. If x ∈ L is an OA-element such
that x ≤ p, then xp is an OA-element of Lp.

Proof. Let x ∈ L be an OA-element such that x ≤ p. Clearly, xp is a proper element of Lp. Let a, b, c ∈ L∗
be such that apbpcp ≤ xp. Then abc ≤ xp, and hence dabc ≤ x for some d � p. We have that dab ≤ x or
c ≤ x. Note that dp = 1 by [17]. Then apbp ≤ xp or cp ≤ xp. Therefore, xp is an OA-element of Lp. �
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Theorem 2.18. Let L be a principally generated C-lattice. Every nonzero proper element of L is an
OA-element if and only if L ∼= L1 × L2 where L1, L2 are fields or L is quasi-local with maximal element
m such that m =

√
0 and m2 ≤ x for every nonzero proper principal element x ∈ L.

Proof. (⇒) Let every nonzero proper element of L be an OA-element. First let L be quasi-local with
maximal element m. By assumption, every nonzero proper element of L is a TA-element. Now [18,
Theorem 8] completes the proof. Now let L be not quasi-local. Then the concepts of prime elements and
OA-elements coincide. Let m1 and m2 be two distinct maximal elements of L. Assume that m1∧m2 6= 0.
By the assumption, m1 ∧m2 is prime. It can be shown that m1 = m2, a contradiction. It follows that
m1 ∧m2 = 0, and thus L ∼= L/m1 × L/m2. Note that L/m1, L/m2 are fields.

(⇐) If L ∼= L1 × L2, where L1 and L2 are fields, then each nonzero proper element of L is prime, and

hence it is an OA-element. Now let L be quasi-local with maximal element m such that m =
√

0 and
m2 ≤ x for every nonzero proper principal element x ∈ L. Let y be a nonzero proper element of L.
There is some nonzero principal element c ∈ L with c ≤ y. We have that m2 ≤ c ≤ y, and thus y is an
OA-element of L. �

Proposition 2.19. Let L be a principally generated quasi-local Noetherian lattice with maximal element
m. Then every OA-element is prime if and only if L is field.

Proof. (⇒) Since every OA-element is prime, then we obtain that m2 = m. Therefore, m = 0 by [3,
Theorem 1.4], and thus L is field.

(⇐) This is clear. �

3. TAFLs and their generalizations

In this section, we study C-lattices whose elements have a TA-factorization. A TA-factorization of an
element x ∈ L means that x is written as a finite product of TA-elements (xk)nk=1. (Note that the element
1 is the empty product.) We say that a C-lattice L is a TA-factorization lattice (abbreviated as TAFL)
if every element of L has a TA-factorization.

In this section, we investigate the factorization of elements into TA-elements. Firstly, we study C-lattices
whose elements possess a TA-factorization, called TAFLs. Next, we study C-lattices whose compact
elements have a factorization into TA-elements. We call them CTAFLs. We also explore the C-lattices
whose principal elements have a factorization into TA-elements, called PTAFLs. Clearly, every TAFL is
both a CTAFL and a PTAFL.

Example 3.1. As a simple example, it is clear that each prime element is a TA-element, then every
ZPI-lattice is a TAFL. By [19, Example 2.1], we have that the lattice of ideals of Z[

√
−7] is not a TAFL.

First, we will present some basic results related to TAFL in the following proposition.

Remark 3.2. Let L be a TAFL, let L1 and L2 be C-lattices and let p ∈ L be a prime element.

(1) min(x) is finite for each x ∈ L.
(2) L1 × L2 is a TAFL if and only if L1 and L2 are both TAFLs.
(3) L/p is a TAFL.
(4) Lp is a TAFL.

Proof. (1) Let x =
∏n

k=1 xk be a TA-factorization of x. By [18, Theorem 3], we have that min(xi) is
finite. Then min(x) is finite, since min(x) ⊆

⋃n
i=1 min(xi).

(2) It is well-known by [18] that p1 = 1L1
and p2 is a TA-element of L2 or p2 = 1L2

and p1 is a TA-element
of L1 or p1 and p2 are prime elements of L1 and L2, respectively if and only if (p1, p2) is a TA-element
of L. The rest now follows easily.
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(3) Let y ∈ L/p. By the assumption, y =
∏n

k=1 xk where xi is a TA-element of L for each i ∈ [1, k]. Note
that xi is a TA-element of L/p and y = (

∏n
k=1 xk) ∨ p =©n

k=1xk. Consequently, L/p is a TAFL.

(4) Recall that if x is a TA-element of L, then xp is a TA-element of Lp. Let a ∈ Lp. Then we have that
a = yp for some y ∈ L. By assumption, y has a TA-factorization in L, meaning y is the finite product
of some TA-elements (yk)nk=1. We have that a = yp = (

∏n
k=1 yk)p = ©n

k=1(yk)p. This completes the
proof. �

Lemma 3.3. Let L be a C-lattice, let x ∈ L be proper with
√
x ∈ max(L) and let one of the following

conditions be satisfied:

(a) L is a TAFL.
(b) L is a CTAFL and x is compact.
(c) L is a PTAFL and x is principal.

Then x ≤ (
√
x)2 or (

√
x)2 ≤ x.

Proof. Let L be a TAFL, let (
√
x)2 � x and

√
x = m. By [18, Theorem 3], x is not a TA-element. By

assumption, x =
∏n

i=1 xi where xi is TA-element of L and n ≥ 2. Since x ≤ xi for each i ∈ [1, n] and√
x = m ∈ max(L), we have that

√
xi = m for each i ∈ [1, n]. Consequently, x ≤ m2.

If L is a CTAFL (resp. a PTAFL) and x is a compact (resp. principal), then this can be shown along
the same lines as before. �

Proposition 3.4. Let L be a principally generated TAFL. Then dim(L) ≤ 1.

Proof. Observe that since dim(L) = sup{dim(Lq) | q ∈ L is a prime element}, we can assume without
restriction that L is quasi-local with maximal element m 6= 0. It remains to show that each nonmaximal
prime element of L is a minimal prime element. Let p ∈ L be a nonmaximal prime element. Since L is
principally generated, there is some principal element y ∈ L such that y ≤ m and y � p.

Moreover, pq is a prime element of Lq, yq is a principal element of Lq and qq ∈ min((p ∨ y)q). If pq is a
minimal prime element of Lq, then p is a minimal prime element of L. For these reasons, we can assume
without restriction that m ∈ min(p ∨ y). Since L is quasi-local, this implies that

√
p ∨ y = m. Next we

verify the following claims.

Claim 1: m 6= m2.

Claim 2: q ≤ m2 for every prime element q < m.

Assume the contrary of claim 1 that m = m2. Then m is the only TA-element whose radical is m. There

is a (join) principal element y with y < m and y � p. Clearly, p∨y =
∏k

i=1 xi where k is a positive integer
and xi is a TA-element of L for each i ∈ [1, k]. Note that m is minimal over p∨ y. Then m2 ≤ xi for each
i ∈ [1, k] by [18, Lemma 5]. Therefore, we get that m2k = m ≤ p ∨ y ≤ mk = m by [18, Theorem 3] and
Lemma 3.3. Similarly, we have that m2k = m ≤ p∨ y2 ≤ mk = m. This implies that p∨ y = m = p∨ y2.
Note that ((p ∨ y2) : y) = (p : y) ∨ y = p ∨ y. Then 1 = ((p ∨ y) : y) = ((p ∨ y2) : y) = p ∨ y, and hence
1 = p ∨ y = m, a contradiction.

To show that the second claim is true, assume that there is a prime element q < m with q � m2. Also,
there is a principal element b ∈ L with b ≤ m and b � q. Note that bn � q for a positive integer n. We
have that b ∈ L is a nonzero element that is not nilpotent. Since L is a TAFL and q � m2, we have that
q ∨ b3 is a TA-element by Lemma 3.3 and [18, Theorem 3]. It follows that b2 ≤ q ∨ b3, since b3 ≤ q ∨ b3.
Note that 1 = ((q ∨ b3) : b2) = (q : b2) ∨ b. We conclude that (q : b2) = 1 or b = 1. Therefore, b2 ≤ q or
b = 1, a contradiction. We infer that every prime element q ∈ L with q < m satisfies q ≤ m2.

We will return to the proof of the main part. Since m 6= m2, there is a nonzero principal element c ∈ L
with c � m2. By claim 2, it follows that

√
c = m. By Lemma 3.3, we get m2 ≤ c. Let 0 6= s ≤ p. We

have that s =
∏n

i=1 yi where yi is a TA-element of L. Since p is prime, then yj ≤ p for some j ∈ [1, n].
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Since yj ≤ p < m2 ≤ c, then yj = c`j for some `j ∈ L because c is weak meet principal. Note that `j ≤ p
because c � p. Consequently, `j ≤ p ≤ m2 ≤ c, and thus `j = ctj for some tj ∈ L. Therefore, yj = c2tj ,
and hence `j = ctj ≤ yj , since yj is a TA-element. We obtain that yj = `j , and so yj = cyj . Therefore,
s = sc. Note that sm ≤ s. Since s = sc, we have that s = sc ≤ sm, and hence s = sm. We conclude
that s = 0 by [3, Theorem 1.4], a contradiction. This implies that p = 0. �

Theorem 3.5. If L is a TAFL and a Prüfer lattice domain, then L is a ZPI-lattice domain.

Proof. Let L be a Prüfer lattice domain such that L is also a TAFL. First we have that Lm is a TAFL
for each maximal element m ∈ L. Let m ∈ L be maximal. Since L is a Prüfer lattice domain, then Lm

is a linearly ordered TAFL. From [18, Theorem 10] recall that if L is a Prüfer lattice domain, then the
following statements are equivalent: (1) p is a TA-element, (2) p is a prime element of L or p = p2

1 is a p1-
primary element of L or p = p1∧p2 where p1 and p2 are some nonzero prime elements of L. By using this
characterization, we conclude that every TA-element of Lm is a finite product of some prime elements.
Therefore, Lm is a ZPI-lattice (since it is a TAFL), and hence every element of Lm is principal and
compact. Moreover, dim(Lm) ≤ 1. Therefore, dim(L) ≤ 1. Since L is a TAFL domain and dim(L) ≤ 1,
every nonzero element of L is contained in only finitely many maximal elements. Now one can show
that every element of L is compact (since every nonzero element is locally compact and contained in only
finitely many maximal elements). Therefore, every element of L is compact. In particular, L is a principal
element lattice domain (since L is a Prüfer lattice domain), and hence it is a ZPI-lattice domain. �

Next we study CTAFLs.

Remark 3.6. Let L be a CTAFL, let L1 and L2 be C-lattices and let p ∈ L be a prime element.

(1) min(x) is finite for each x ∈ L∗.
(2) L1 × L2 is a CTAFL if and only if L1 and L2 are both CTAFLs.
(3) If p is compact, then L/p is a CTAFL.
(4) Lp is a CTAFL.

Proof. (1) This can be proved along the same lines as in the proof of Remark 3.2.

(2) It follows from [18] that p1 = 1L1
and p2 is a TA-element of L2 or p2 = 1L2

and p1 is a TA-element
of L1 or p1 and p2 are prime elements of L1 and L2, respectively if and only if (p1, p2) is a TA-element
of L. The rest is straightforward.

(3) Let p be compact. Observe that every element a ∈ L with a ≥ p is compact in L if and only if a is
compact in L/p. Now, let y ∈ L/p be compact. Then y ≥ p. By the assumption, y =

∏n
k=1 xk where xi is

a TA-element of L. Note that xi is a TA-element of L/p. Then we get that y = (
∏n

k=1 xk)∨p =©n
k=1xk.

Therefore, L/p is a CTAFL.

(4) This can be shown along similar lines as in Remark 3.2(4). �

Proposition 3.7. Let L be a principally generated CTAFL that satisfies the ascending chain condition
on prime elements. Then dim(L) ≤ 1.

Proof. Observe that for each prime element q ∈ L, we have that Lq is a principally generated CTAFL
that satisfies the ascending chain condition on prime elements. Since dim(L) = sup{dim(Lq) | q ∈ L is a
prime element}, we can assume without restriction that L is quasi-local with maximal element m 6= 0. It
remains to show that each nonmaximal prime element of L is a minimal prime element. Let p ∈ L be a
nonmaximal prime element. Since L is principally generated, there is some principal element y ∈ L such
that y ≤ m and y � p.

Since L is a C-lattice, there exists some q ∈ min(p ∨ y) such that q ≤ m. Clearly, Lq is a principally
generated CTAFL with maximal element qq that satisfies the ascending chain condition on prime elements.
Moreover, pq is a prime element of Lq, yq is a principal element of Lq and qq ∈ min((p ∨ y)q). If pq is a
minimal prime element of Lq, then p is a minimal prime element of L. For these reasons, we can assume
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without restriction that m ∈ min(p ∨ y). Since L is quasi-local, this implies that
√
p ∨ y = m. Next we

verify the following claims.

Claim 1: m 6= m2.

Claim 2: q ≤ m2 for every prime element q ∈ L with q < m.

First we prove claim 1. It follows from Remark 3.6(1) that min(x) is finite for each compact element x ∈ L.
Since L satisfies the ascending chain condition on prime elements, it follows from [16, Theorem 2] that

p =
√
d for some compact element d ∈ L. Observe that m =

√
d ∨ y and d∨ y is compact. Consequently,

d ∨ y =
∏t

i=1 xi for some positive integer t and some TA-elements xi ∈ L. Clearly,
√
xi = m for each

i ∈ [1, t], and thus m2 ≤ xi ≤ m by [18, Theorem 3] for each i ∈ [1, t]. Assume to the contrary that
m = m2. Then d ∨ y = m, and hence p ∨ y = m. We infer that m = m2 ≤ p ∨ y2 ≤ p ∨ y ≤ m, and thus
p ∨ y = p ∨ y2. Since y is (join) principal, we obtain that 1 = ((p ∨ y) : y) = ((p ∨ y2) : y) = p ∨ y = m, a
contradiction. This implies that m 6= m2. �(Claim 1)

Now we prove claim 2. Assume that there is a prime element q ∈ L such that q < m and q � m2. Since
L is principally generated, there is a principal element b ∈ L such that b ≤ m and b � q. Note that
b2 � q. Since q � m2 and L is a C-lattice, there is a compact element a ∈ L such that a ≤ q and a � m2.
Since a and b are compact, we have that a ∨ b3 is compact. Note that a ∨ b3 is a TA-element, since L
is a CTAFL and a � m2. Since b3 ≤ a ∨ b2 and a ∨ b2 is a TA-element, we get that b2 ≤ a ∨ b3. Note
that 1 = ((a ∨ b3) : b2) = (a : b2) ∨ b. Since b ≤ m and L is quasi-local, we have that (a : b2) = 1.
Consequently, b2 ≤ a ≤ q, a contradiction. �(Claim 2)

It is sufficient to show that p = 0. (Then p is a minimal prime element of L and we are done.) Since
m 6= m2 by claim 1 and L is principally generated, there is a principal element c ∈ L such that c ≤ m
and c � m2. By claim 2, we have that

√
c = m. Furthermore, Lemma 3.3 implies that m2 ≤ c. Let

s ∈ L be compact such that s ≤ p. It follows that s =
∏k

i=1 yi for some positive integer k and some
TA-elements yi ∈ L. Obviously, there is some j ∈ [1, k] such that yj ≤ p. Since yj ≤ p ≤ m2 ≤ c and c is
(weak meet) principal, we infer that yj = c` for some ` ∈ L. Note that ` ≤ p, since c � p. Consequently,
` ≤ p ≤ m2 ≤ c, and thus ` = ct for some t ∈ L. This implies that yj = c2t, and hence ` = ct ≤ yj
(since yj is a TA-element of L). Therefore, yj = `, and thus yj = cyj . We infer that s = sc, and hence
s = sc ≤ sm ≤ s. We conclude that s = sm. It is an immediate consequence of [3, Theorem 1.4] that
s = 0. Finally, we have that p = 0 (since L is a C-lattice). �

Next we study PTAFLs. We start with a simple observation.

Remark 3.8. Let L be a Prüfer lattice. Then L is a CTAFL if and only if L is a PTAFL.

Proof. This is obvious, since every compact element in a Prüfer lattice is principal. �

Note that Proposition 3.7 does not hold for PTAFLs. To show that, we consider the following example.

Example 3.9. Note that if L is the lattice of ideals of a local two-dimensional unique factorization
domain D (e.g. take D = K[X,Y ](X,Y ) where K is a field and X and Y are indeterminates over K),
then L is a quasi-local principally generated PTAFL that satisfies the ascending chain condition on prime
elements and dim(L) = 2.

Theorem 3.10. Let (L,m) be a quasi-local principally generated C-lattice domain such that dim(L) ≤ 1,
m2 is comparable and

∧
n∈N mn = 0. Then L is a TAFL.

Proof. Assume that m = m2. Since L is a lattice domain and
∧

n∈N mn = 0, we infer that m = 0.

Therefore, L is a field and hence we get the desired properties. Now, suppose that m 6= m2. Then there
is a principal element x ∈ L with x � m2. By the assumption, we get that m2 < x. Since dim(L) ≤ 1,
then we conclude that x is a TA-element by [18, Theorem 3]. Since x is meet principal, then we conclude
that m2 = xm. Let z ∈ L be proper. If z = 0, then it is clear that it has a TA-factorization under the
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assumption that L is a lattice domain. Now let z 6= 0. If m2 ≤ z, then the proof is complete by [18,
Theorem 3]. Now let z ≤ m2. Let n be the largest positive integer satisfying z ≤ mn. We conclude
that z ≤ mn = xn−1m. Consequently, z ≤ xn−1. Note that z = xn−1a for some a ∈ L since xn−1 is
principal. Suppose that a ≤ m2. We conclude that a ≤ x. Moreover, we can write a = xb for some b ∈ L.
Consequently, we obtain z = xnb ≤ xnm = mn+1, leading to a contradiction. This implies that m2 ≤ a,
and thus a is a TA-element. Therefore, z has a TA-factorization. �

Theorem 3.11. Let (L,m) be a quasi-local principally generated C-lattice domain. Then L is a TAFL if
and only if dim(L) ≤ 1 and L is a PTAFL. If these equivalent conditions are satisfied, then

∧
n∈N mn = 0

and m2 is comparable.

Proof. (⇒): This is follows from Proposition 3.4.

(⇐): Let L be a PTAFL such that dim(L) ≤ 1. First, assume that m = m2. Since dim(L) ≤ 1, then m
is the only TA-element whose radical is m. We infer that each proper nonzero element of L is equal to
m and we are done.

Now let m 6= m2. Then there is a principal element x ∈ L such that x ≤ m and x � m2. Since x � m2,
we infer that x is a TA-element (since x cannot be the product of more than one TA-element). From [18,
Theorem 3], we get that m2 ≤ x since

√
x = m. Since x is a (weak meet) principal element, we conclude

that m2 = xm. Let z ∈ L be proper. We have to show that z has a TA-factorization. If z = 0, then we
are done, since L is lattice domain. Therefore, we can assume without restriction that z 6= 0.
Next we show that

∧
n∈N mn = 0. Assume the contrary that

∧
n∈N mn 6= 0. Note that each nonzero

TA-element v ∈ L satisfies m2 ≤ v by [18, Lemma 2]. Clearly, there is some nonzero principal element

x ∈ L such that x ≤
∧

n∈N mn. We have that x =
∏k

i=1 ai where ai is a TA-element for each i ∈ [1, k].

We obtain that (m2)k ≤ x ≤ (m4)k ≤ (m2)k, and hence x = x2. Since x is principal, we infer that
1 = x ∨ (0 : x). Therefore, we obtain that x = 1, a contradiction.
First let z ≤ m2. Let n be the largest positive integer satisfying z ≤ mn. We conclude that z ≤ mn =
xn−1m, and thus z ≤ xn−1. Note that z = xn−1a for some a ∈ L since xn−1 is principal. Suppose that
a ≤ m2. It follows that a ≤ x. Moreover, we can write a = xb for some b ∈ L. Consequently, we obtain
z = xnb ≤ xnm = mn+1, a contradiction. Let a � m2. There is a principal element a′ ∈ L such that
a′ ≤ a but a′ � m2. Since a′ � m2, we know that a′ is a TA-element of L. Therefore, m2 ≤ a′ ≤ a. We
conclude that a is a TA-element. This implies that z = xn−1a has a TA-factorization.
Finally, let z � m2. Then there is a principal element y ∈ L such that y ≤ z and y � m2. We have that
y is a TA-element, and hence m2 ≤ y ≤ z. This implies that z is a TA-element. Consequently, L is a
TAFL.
It remains to show that m2 is comparable. Let x ∈ L be proper such that x � m2. Since L is a TAFL,
we conclude that x is a TA-element. From [18, Lemma 2], we get that m2 ≤ x since dim(L) ≤ 1. �

Proposition 3.12. Let (L,m) be a quasi-local principally generated C-lattice such that L is not a lattice
domain. Then L is a TAFL if and only if dim(L) = 0 and L is a PTAFL.

Proof. (⇒): Let L be a TAFL. By proof of Proposition 3.4, we know that if p ∈ L is a nonmaximal
prime element of L, then p = 0. Therefore, dim(L) ≤ 1. Since L is not a lattice domain, we infer that
dim(L) = 0.

(⇐): Let dim(L) = 0 and let L be a PTAFL. Note that m is nilpotent element of L since 0 =
∏k

i=1 xi

where xi is a TA-element with
√
xi = m for each i ∈ [1, k], and hence (m2)k ≤ 0. This implies that

0 = m2k, and thus 0 has a TA-factorization. If m = m2, we get that m = 0. Now let m 6= m2. Then
there is a principal element z ∈ L such that z ≤ m and z � m2. Since z � m2, we infer that z is a
TA-element (since z cannot be the product of more than one TA-element). From [18, Lemma 2], we get
that m2 ≤ z since

√
z = m. Since z is a (weak meet) principal element, we conclude that m2 = zm. Let
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x ∈ L be nonzero. If m2 ≤ x, then x is a TA-element because it is a primary element as shown by [18,
Lemma 5].
Next let x ≤ m2. Let n be the largest positive integer for which x ≤ mn. We conclude that x ≤ mn =
zn−1m, which implies x ≤ zn−1. Note that x = zn−1a for some a ∈ L, given that zn−1 is a principal
element. Assume that a ≤ m2. This implies that a ≤ z, and hence a = zb for some b ∈ L. We conclude
x = znb ≤ znm = mn+1, a contradiction. Therefore, a � m2. There is a principal element a′ ∈ L such
that a′ ≤ a and a′ � m2. Since a′ � m2, we have that a′ is a TA-element. Therefore, m2 ≤ a′ ≤ a.
Consequently, a is a TA-element. It follows that x = zn−1a has a TA-factorization.
Finally, let x � m2. Then there is a principal element y ∈ L such that y � m2 and y ≤ x. We have that
y is a TA-element, and hence m2 ≤ y ≤ x. We infer that x is a TA-element. Therefore, L is a TAFL. �

Remark 3.13. Let (L,m) be a quasi-local principal element TAFL domain. Then every proper element
of L is a power of m.

Proof. We know that a TA-element of L equals m or m2 by [18, Theorem 9]. This completes the proof. �

4. OAFLs and their generalizations

In this section, we study the factorization of elements of L with respect to the OA-elements, similar
to the previous section. It consists of three parts. The first part involves C-lattices, whose elements
possess an OA-factorization, called a OAFLs. Next, we examine C-lattices whose compact elements have
a factorization into OA-elements, called a COAFLs. Finally, we explore the C-lattices whose principal
elements have a factorization into OA-elements, called POAFLs. It can easily be shown that every OAFL
is both a COAFL and a POAFL. We continue by presenting some results related to OAFL.

Example 4.1. Let L be the lattice of ideals of Z[2i]. Note that (2 + 2i) has no OA-factorization.
Therefore, L is not an OAFL.

Remark 4.2. Let L be an OAFL and let p ∈ L be a prime element.

(1) min(x) is finite for each x ∈ L.
(2) L is both a Q-lattice and a TAFL.
(3) Lp is an OAFL.
(4) L/p is an OAFL.

Proof. (1) Let x ∈ L and let x =
∏n

k=1 xk be an OA-factorization of x for some OA-elements xi ∈ L.
Recall that each OA-element is a TA-element and min(a) is finite for a TA-element a ∈ L by [18, Theorem
3]. Hence min(x) is finite since min(x) ⊆

⋃n
i=1 min(xi).

(2) Since every OA-element of L is a TA-element and a primary element, we have that L is both a
Q-lattice and a TAFL.

(3) Let y ∈ Lp be proper. Then there is a proper element x ∈ L such that y = xp. By the assumption,
we get such a factorization x =

∏n
k=1 xk for some OA-elements xi ∈ L. By Remark 2.17, we know that

(xi)p is an OA-element of Lp, and thus y = xp = (
∏n

k=1 xk)p =©n
k=1(xk)p. This completes the proof.

(4) Let y ∈ L/p. By the assumption, y =
∏n

k=1 xk where xi is an OA-element of L for each i ∈ [1, k].
Note that xi is an OA-element of L/p. Then we get that y = (

∏n
k=1 xk) ∨ x = ©n

k=1xk. Observe that
L/p is an OAFL. �

Corollary 4.3. Let L be a principally generated OAFL. Then dim(L) ≤ 1.

Proof. This is an immediate consequence of Remark 4.2(2) and Proposition 3.4. �

Lemma 4.4. Let (L,m) be a quasi-local principally generated C-lattice such that m2 is comparable and m
is nilpotent or L is a lattice domain with

∧
n∈N mn = 0. Then L is an OAFL and every proper principal

element of L is a finite product of principal OA-elements.
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Proof. First let m = m2. Since m is nilpotent or L is lattice domain with
∧

n∈N mn = 0, we have that
m = 0. Therefore, L is a field and hence it satisfies the desired conditions.

Now let that m 6= m2. There is a proper principal element x ∈ L with x � m2. By the assumption,
we get that m2 < x. We conclude that x is an OA-element. Since x is meet principal, then we get that
m2 = x(m2 : x). We have that m2 = xm. Let z ∈ L be proper. First let z = 0. If L is lattice domain,
then it is clear that z is a principal OA-element. Let m is nilpotent. Then there is a positive integer n
with mn = 0. Note that z = xn is a finite product of principal OA-elements.

Next let z 6= 0. If m2 < z, then z is an OA-element and we are done. Now let z ≤ m2. Let n be the
largest positive integer satisfying z ≤ mn. Therefore, z ≤ mn = xn−1m, and thus z ≤ xn−1. Note that
z = xn−1a for some a ∈ L since xn−1 is principal. If z is principal, then we can by [5, Theorem 9] assume
that a is principal. Suppose that a ≤ m2. We have that a ≤ x. Moreover, a = xb for some b ∈ L.
Consequently, we obtain z = xnb ≤ xnm = mn+1, a contradiction. Therefore, m2 ≤ a and so a is an
OA-element by Proposition 2.8. We infer that z has an OA-factorization and if z is principal, then z is
a finite product of principal OA-elements. �

Next we study COAFLs.

Remark 4.5. Let L be a COAFL and let p ∈ L be a prime element.

(1) min(x) is finite for each x ∈ L∗.
(2) L is a CTAFL.
(3) If p is compact, then L/p is a COAFL.
(4) Then Lp is a COAFL.

Proof. (1) This can be shown along the lines of the proof of Remark 4.2.

(2) This is clear, since every OA-element of L is a TA-element.

(3) Let p be compact. Note that every element a ∈ L with a ≥ p is compact in L if and only if a is compact
in L/p. Now, let y ∈ L/p be compact. Then y ≥ p. By the assumption, y =

∏n
k=1 xk where xi is an

OA-element of L. Note that xi is an OA-element of L/p. Then we get that y = (
∏n

k=1 xk)∨x =©n
k=1xk.

Consequently, L/p is a COAFL.

(4) This can proved along similar lines as in Remark 2.17. �

Proposition 4.6. Let L be a quasi-local COAFL. Then each minimal nonmaximal prime element of L
is a weak meet principal element.

Proof. Let p ∈ L be a minimal nonmaximal prime element of L. First we show that x = p(x : p) for each
compact element x ∈ L with x ≤ p. Let x ∈ L be a compact element of L with x ≤ p. By the assumption,
we can write x =

∏n
i=1 xi where n is a positive integer and xi is an OA-element of L for each i ∈ [1, n].

Since x ≤ p, we have that xi ≤ p for some i ∈ [1, n]. If xi is not a prime element, then m2 ≤ xi ≤ p by
Proposition 2.8. We infer that m = p, a contradiction. Consequently, xi is a prime element, and hence
xi = p. We have that x = pz, where z =

∏n
k=1,k 6=i xk. Observe that x = p(x : p).

Let y ∈ L be such that y ≤ p. Since L is a C-lattice, we have that

y =
∨
{v ∈ L∗ | v ≤ y} =

∨
{p(v : p) | v ∈ L∗, v ≤ y} = p

∨
{(v : p) | v ∈ L∗, v ≤ y}.

Set w =
∨
{(v : p) | v ∈ L∗, v ≤ y}. Then w ∈ L and y = pw, and thus p is weak meet principal. �

Next we study POAFLs. We start with a simple observation.

Remark 4.7. Let L be a Prüfer lattice. Then L is a COAFL if and only if L is a POAFL.

Proof. This is obvious, since every compact element in a Prüfer lattice is principal. �
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Lemma 4.8. Let L be a quasi-local principally generated POAFL. Then every minimal nonmaximal
prime element of L is a principal element.

Proof. Let p ∈ L be a minimal nonmaximal prime element of L. Let a ∈ L be a principal element of L
with a ≤ p. By the assumption, we can write a =

∏n
k=1 qk where qi is an OA-element of L for i ∈ [1, n].

Since a ≤ p, then qj ≤ p for some j ∈ [1, n]. If qj is an OA-element that is not prime, then m2 ≤ qj ≤ p.
Therefore, m = p, a contradiction. Assume that qi is prime. Then we get that qi = p. We infer that
a = p

∏n
k=1,k 6=i qk, and thus a = pb where b =

∏n
k=1,k 6=i qk. Obviously, a = p(a : p). Now, take an element

c ∈ L with c ≤ p. By assumption, c =
∨
A for some set A of principal elements of L. We conclude that

c =
∨
A =

∨
{p(a : p) | a ∈ A} = p(

∨
{(a : p) | a ∈ A}). Therefore, p is a weak meet principal element,

and hence p is a principal element by [3, Theorem 1.2]. �

Lemma 4.9. Let (L,m) be a quasi-local principally generated C-lattice. If the join of any two principal
elements of L has an OA-factorization, then every nonmaximal prime element of L is a principal element
and dim(L) ≤ 2.

Proof. Let the join of any two principal elements of L have an OA-factorization. First, we show that
dim(L) ≤ 2. Let p ∈ L be a nonmaximal prime element of L. Consider that Lp is quasi-local and
Lp is generated by the set of elements {ap | a ∈ L is principal}. We can see that the join of any two
principal element of Lp has a prime factorization. Because ap ∨p bp = (a∨ b)p = (

∏n
i=1 xi)p =©n

i=1(xi)p
where (xi)p is a prime element of Lp. Consequently, Lp is a ZPI-lattice by [15, Theorem 8], and thus
dim(Lp) ≤ 1. Therefore, dim(L) ≤ 2.

Let q be a nonmaximal prime element of L. Assume that qm = q. If q ∈ min(0), then it is clear that
q = 0 by Nakayama’s Lemma since q is principal. Now let q be not minimal. There is a p ∈ min(0)
such that p < q, and thus there is a principal element c ∈ L such that c � p and c ≤ q. By assumption,
c ∨ p has an OA-factorization since p is principal by Lemma 4.8. Since dim(L) ≤ 2, we have that q is
minimal over c∨ p. Let c∨ p =

∏n
i=1 xi where xi is an OA-element for each i ∈ [1, n]. We get that xj ≤ q

for some j ∈ [1, n]. Note that m2 � xj , and hence xj = q. We infer that c ∨ p = q` for some ` ∈ L.
We conclude that (c ∨ p)m = c ∨ p by the assumption, and thus c ∨ p = 0. Consequently, c = p = 0,
which contradicts the fact that c ≤ p. Now assume that q 6= qm. Assume that q is a nonminimal and
nonmaximal prime element of L. Since L is principally generated, there is a principal element a ∈ L
such that a ≤ q and a � qm. Since q is nonmaximal and L is principally generated, there is a principal
element b ∈ L such that b ≤ m and b � q. It remains to show that x ≤ a of each principal element x ∈ L
such that x ≤ q. (Then q = a is principal, since L is principally generated and a ≤ q.) Let x ∈ L be
principal such that x ≤ q. Note that xb2 is principal, and thus a∨xb2 is the join of two principal elements
of L. Consequently, a ∨ xb2 has an OA-factorization. Since a ∨ xb2 ≤ p, there are v, w ∈ L such that v
is an OA-element of L, v ≤ q and a ∨ xb2 = vw. If w 6= 1, then w ≤ m, and hence a ≤ a ∨ xb2 ≤ qm, a
contradiction. Therefore, a ∨ xb2 = v is an OA-element. Assume that b2 ≤ a ∨ xb2. Since b2 is principal,
we have that 1 = (a ∨ xb2 : b2) = (a : b2) ∨ x, and thus (a : b2) = 1, since L is quasi-local. Consequently,
b2 ≤ a ≤ q, and hence b ≤ q, a contradiction. This implies that b2 � a ∨ xb2. Since xb2 ≤ a ∨ xb2 and
a ∨ xb2 is an OA-element, we conclude that x ≤ a ∨ xb2. By [3, Theorem 1.4], it follows that x ≤ a. �

Proposition 4.10. Let L be a principally generated C-lattice. If the join of any two principal elements
has an OA-factorization, then dim(L) ≤ 1.

Proof. First let every OA-element of L be a prime element. We infer that L is a ZPI-lattice by [15,
Theorem 8]. Therefore, dim(L) ≤ 1 by [4, Theorem 2.6]. Now let there be an OA-element that is not
a prime element. Then L is quasi-local by Proposition 2.7. Let m be the maximal element of L. We
conclude by Proposition 2.8 that m 6= m2. There exists some principal element c ∈ L such that c � m2

and c ≤ m.

Claim: p ≤ m2 for each nonmaximal prime element p ∈ L.
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Let p ∈ L be a nonmaximal prime element. By Lemma 4.9, we have that dim(L) ≤ 2. Therefore, we
can assume without restriction that there are no prime elements of L that are properly between p and m
(i.e., for each prime element r ∈ L with p ≤ r ≤ m, it follows that r ∈ {p,m}).
Next we show that p =

∧
{p ∨ a | a ∈ L is principal and a � p}. Assume to the contrary that

p 6=
∧
{p ∨ a | a ∈ L is principal and a � p}. Then there is a principal element y ∈ L such that y � p

and y ≤
∧
{p ∨ a | a ∈ L is principal and a � p}. Since p < m, there is a principal element b ∈ L such

that b � p and b ≤ m. Since by ∈ L is principal and by � p, we have that y ≤
∧
{p ∨ a | a ∈ L is

principal and a � p} ≤ p ∨ by. It follows from [3, Theorem 1.4] that y ≤ p, a contradiction. Therefore,
p =

∧
{p ∨ a | a ∈ L is principal and a � p}.

Assume that p � m2. It is sufficient to show that m2 ≤ p∨ a for each proper principal a ∈ L with a � p.
(Then m2 ≤

∧
{p ∨ d | d ∈ L is principal and d � p} = p, and hence p = m, a contradiction.) Let

a ∈ L be a proper principal element such that a � p. Since p is principal by Lemma 4.9, it follows that
p ∨ a has an OA-factorization in L. Since p ∨ a � m2 and p ∨ a is proper, we obtain that p ∨ a is an
OA-element. Clearly, p∨a is not a nonmaximal prime element, and hence m2 ≤ p∨a by Proposition 2.8.
Consequently, q ≤ m2. �(Claim)

It is sufficient to show that r = 0 for each nonmaximal prime element r ∈ L. Let r ∈ L be a nonmaximal
prime element. Since c has an OA-factorization and c � m2, we infer that c is an OA-element of L. By
the claim, it follows that c is not a nonmaximal prime element of L. Observe that r ≤ m2 ≤ c by the
claim and by Proposition 2.8. Since c is a (weak meet) principal element of L, r is a prime element of L
and c � r, we conclude that r = cr. Therefore, r = 0 by [3, Theorem 1.4]. �

Proposition 4.11. Let (L,m) be a quasi-local principally generated C-lattice. If the join of any two
principal elements of L has an OA-factorization and dim(L) = 1, then L is a domain.

Proof. Let p ∈ L be a minimal nonmaximal prime element with p < m. If m2 = 0, then p = m, a
contradiction. Therefore, m2 6= 0. Since (L,m) is a quasi-local, then m2 6= m. There is a principal
element x ∈ L such that x � m2. by the assumption, we infer that m2 ≤ x and x is not prime. We
show that p ≤ m2. Assume the contrary that p � m2. There is a principal element a ∈ L with a � p
and a ≤ m2. Note that an � p for a positive integer n. Note that p ∨ a3 � m2 because p � m2. By the
assumption p ∨ a3 is an OA-element. Since a3 ≤ p ∨ a3, then we infer that a2 ≤ p ∨ a3 or a ≤ p ∨ a3.
Note that we have that ((p ∨ a3) : a2) = (p : a2) ∨ a and ((p ∨ a3) : a) = (p : a) ∨ a2. If a2 ≤ p ∨ a3, then
we obtain that 1 = (p : a2) ∨ a. This implies that 1 = (p : a2) or a = 1, and hence a2 ≤ p or a = 1, a
contradiction. Assume that a ≤ p ∨ a3. We obtain that 1 = (p : a) ∨ a2. This implies that 1 = (p : a)
or a2 = 1 ≤ a, and thus a ≤ p or a = 1, a contradiction. Therefore, p ≤ m2. Since p ≤ x, we get that
px = p. By Nakayama’s Lemma and Lemma 4.8, we have that p = 0. �

Proposition 4.12. Let L be a principally generated C-lattice and set m = J(L). If the join of any two
principal elements of L has an OA-factorization, then L satisfies one of the following conditions.

(a) L is a ZPI-lattice.
(b) L is a quasi-local lattice, m2 is comparable and m is a nilpotent element.
(c) L is a quasi-local lattice domain, m2 is comparable and

∧
n∈N mn = 0.

Proof. Let the join of any two principal elements of L has an OA-factorization. Assume that every OA-
element of L is prime. By [15, Theorem 8], it follows that L is a ZPI-lattice. Now, assume that there is
an OA-element which is not a prime. We conclude that (L,m) is a quasi-local C-lattice with m2 6= m
by Propositions 2.7 and 2.8. Then there is a nonzero principal element x � m2. Clearly, x is not the
product of more than one OA-element, and thus x is an OA-element.

First let dim(L) = 0. We show that m2 is comparable. Let z ∈ L be proper such that z � m2. There is
a principal element a ∈ L with a ≤ z and a � m2. Note that a is an OA-element which is not a prime
element. We have that m2 ≤ a by Proposition 2.8, and thus m2 ≤ z. Consequently, m2 is comparable.
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Clearly, 0 has an OA-factorization. This implies that mk ≤ 0 for some positive integer k, and hence
mk = 0.

Now let dim(L) = 1. We obtain that (L,m) is a quasi-local lattice domain by Proposition 4.11. To verify
that

∧
n∈N mn = 0, assume the contrary that

∧
n∈N mn 6= 0. There is a nonzero principal element x ∈ L

with x ≤
∧

n∈N mn. Since x is a product of k OA-elements of L, we conclude that m2k ≤ x ≤ m4k ≤ m2k.

In particular, we get that x = x2. Since x is principal, we have that 1 = x∨ (0 : x). We infer that x = 1,
a contradiction. Therefore,

∧
n∈N mn = 0. Finally, we show that m2 is comparable. Let z ∈ L be proper

such that z � m2. There is a principal element a ∈ L with a ≤ z and a � m2. We get that a is a nonzero
OA-element. Therefore, m2 ≤ a (since dim(L) = 1), and thus m2 ≤ z. �

Theorem 4.13. Let L be a principally generated C-lattice and set m = J(L). The following statements
are equivalent.

(1) L is an OAFL.
(2) L is a COAFL.
(3) The join of any two principal elements of L has an OA-factorization.
(4) L satisfies one of the following conditions.

(a) L is a ZPI-lattice.
(b) L is a quasi-local lattice, m2 is comparable and m is a nilpotent element.
(c) L is a quasi-local lattice domain, m2 is comparable and

∧
n∈N mn = 0.

Proof. (1) ⇒ (2) This is obvious.

(2)⇒ (3) Note that every principal element is compact, and hence the join of each two principal elements
is compact. The statement is now immediately clear.

(3) ⇒ (4) This follows from Proposition 4.12.

(4) ⇒ (1) If L is a ZPI-lattice, then clearly L is an OAFL. Now let L be not a ZPI-lattice. It is an
immediate consequence of Lemma 4.4 that L is an OAFL. �

Theorem 4.14. Let L be a principally generated C-lattice. The following statements are equivalent.

(1) L is a ZPI-lattice.
(2) L is a Prüfer OAFL.
(3) L is a Prüfer POAFL.

Proof. (1)⇒ (2) ⇒ (3) This follows from [15, Theorem 8].

(3)⇒ (1) Let L be a Prüfer POAFL. If L is not quasi-local, then the prime elements coincide with the OA-
elements. By Theorem 4.13, we infer that L is a ZPI-lattice. Assume that (L,m) is a quasi-local lattice
with maximal element m. Then m2 is comparable by Theorem 4.13. We know from Proposition 2.12(2)
that each OA-element is either prime or equal to m2. Therefore, L is a ZPI-lattice. �

Finally, we provide a theorem that connects the various types of factorization lattices for a quasi-local
principally generated C-lattice domain.

Theorem 4.15. Let (L,m) be a quasi-local principally generated C-lattice domain. The following state-
ments are equivalent.

(1) L is an OAFL.
(2) L is a TAFL.
(3) L is a COAFL.
(4) L is a CTAFL that satisfies the ascending chain condition on prime elements.
(5) dim(L) ≤ 1 and L is a POAFL.
(6) dim(L) ≤ 1 and L is a PTAFL.
(7) dim(L) ≤ 1, m2 is comparable and

∧
n∈N mn = 0.
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Proof. (1) ⇔ (3) ⇔ (7) This follows from Theorem 4.13.

(1) ⇒ (5) ⇒ (6) This follows from Corollary 4.3.

(2) ⇔ (6) ⇔ (7) This is an immediate consequence of Theorem 3.11 and Proposition 3.12.

(2) ⇒ (4) Clearly, L is a CTAFL. Moreover, dim(L) ≤ 1 by Proposition 3.4. It is clear now that L
satisfies the ascending chain condition on prime elements.

(4) ⇒ (6) Obviously, L is a PTAFL. We infer by Proposition 3.7 that dim(L) ≤ 1. �
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