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Abstract. An integral domain D is a valuation ideal factorization domain

(VIFD ) if each nonzero principal ideal of D can be written as a finite product

of valuation ideals. Clearly, π-domains are VIFDs. In this paper, we study

the ring-theoretic properties of VIFDs and the ∗-operation analogs of VIFDs.

Among them, we show that if D is treed (resp., ∗-treed), then D is a VIFD

(resp., ∗-VIFD) if and only if D is an h-local Prüfer domain (resp., a ∗-h-local

P∗MD) if and only if every nonzero prime ideal of D contains an invertible

(resp., a ∗-invertible) valuation ideal. We also study integral domains D such

that for each nonzero nonunit a ∈ D, there is a positive integer n such that

an can be written as a finite product of valuation elements.

1. Introduction

All rings considered in this paper are commutative with identity. Let D be an

integral domain with quotient field K. An overring of D means a subring of K

containing D. As in [32, Appendix 3], we say that an ideal I of D is a valuation

ideal if there is a valuation overring V of D such that IV ∩ D = I. Clearly,

each ideal of a valuation domain is a valuation ideal. Conversely, in [18, Corollary

2.4], Gilmer and Ohm showed that if every principal ideal of D is a valuation

ideal, then D is a valuation domain. Following [9], we say that a nonzero nonunit

a ∈ D is a valuation element if aD is a valuation ideal, i.e., there is a valuation

overring V of D such that aV ∩ D = aD. In [9], we studied some ring-theoretic

properties of valuation factorization domains (VFDs ), which are integral domains

whose nonzero nonunits can be written as a finite product of valuation elements.

It is clear that valuation domains and UFDs are VFDs. In this paper, we continue

our work on ideal factorization properties of integral domains. It is well-known

that D is a Dedekind domain (resp., π-domain) if and only if every nonzero ideal

(resp., nonzero principal ideal) of D can be written as a finite product of prime

ideals; in particular, a Dedekind domain is a π-domain. Recall that a prime ideal

of D is a valuation ideal [32, page 341], so a Dedekind domain (resp., π-domain) D

has the property that every nonzero principal ideal of D can be written as a finite

product of valuation ideals, which will be called a valuation ideal factorization

domain (VIFD ). In this paper, we study some ideal-theoretic properties of VFDs

and VIFDs, and the ∗-operation analog of a VIFD, which is called a ∗-VIFD.
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This paper consists of five sections including the introduction where we review

the definitions related with the t- and w-operations. First, in Section 2, we investi-

gate valuation ideals, valuation elements and their connections to star operations.

Let I be a proper valuation ideal of D. Among others, we show that if I is ∗-
invertible, then I∗ is a valuation ideal of D and it is contained in a unique maximal

t-ideal of D. In Section 3, we study the ∗-VIFDs. We introduce the notion of

∗-VIFDs and we show that all of these rings are integrally closed weakly Matlis

domains. Furthermore, we prove that D is a VFD if and only if D is a VIFD with

Pic(D) = {0}, if and only if D is a ∗-VIFD with Cl∗(D) = {0}. It is also shown

that D is a ∗-h-local P∗MD if and only if every nonzero (∗-finite) ∗-ideal of D can

be written as a finite ∗-product of ∗-comaximal valuation ideals of D. We further

study the ∗-VIFDs that are ∗-treed. In Section 4, we consider VIFDs and t-VIFDs.

Finally, in Section 5, we investigate AVFDs, i.e., integral domains for which every

nonzero nonunit has a power that is a finite product of valuation elements. Among

other things, we show that if D is a ∗-VIFD such that Cl∗(D) is a torsion group,

then D is an AVFD.

Throughout this paper, let N, N0 and Z denote the set of all positive integers, the

set of all nonnegative integers and the set of all integers, respectively. For x, y ∈ Z
with x ≤ y, let [x, y] = {z ∈ Z | x ≤ z ≤ y}.

1.1. Definitions related to star operations. We first review some definitions

related to the t-operation which are needed for fully understanding this paper. Let

D be an integral domain with quotient field K. A D-submodule A of K is called a

fractional ideal of D if dA ⊆ D for some nonzero d ∈ D. An (integral) ideal of D

is a fractional ideal of D that is contained in D. Let F (D) (resp., f(D)) be the set

of nonzero fractional (resp., nonzero finitely generated fractional) ideals of D. For

A,B ∈ F (D), let (A : B) = {x ∈ K | xB ⊆ A} and A−1 = (D : A). Observe that

(A : B) ∈ F (D) and A−1 ∈ F (D).

Recall that a map ∗ : F (D) → F (D), I 7→ I∗ is called a star operation on D if

the following conditions are satisfied for all A,B ∈ F (D) and nonzero c ∈ K.

• A ⊆ A∗ = (A∗)∗,

• if A ⊆ B, then A∗ ⊆ B∗,
• (cA)∗ = cA∗ and

• D∗ = D.

Let ∗ be a star operation on D. We say that ∗ is of finite type if for each A ∈ F (D),

A∗ =
⋃

C∈f(D),C⊆A C∗. Besides that, ∗ is said to be stable if (A ∩ B)∗ = A∗ ∩ B∗
for all A,B ∈ F (D). If ∗1 and ∗2 are star operations on D, we mean by ∗1 ≤ ∗2
that I∗1 ⊆ I∗2 for any I ∈ F (D).

Let ∗f : F (D)→ F (D) be defined by A∗f =
⋃

C∈f(D),C⊆A C∗ for each A ∈ F (D).

Then ∗f is a star operation of finite type on D. Let ∗̃ : F (D) → F (D) be defined

by A∗̃ = {x ∈ K | xJ ⊆ A for some J ∈ f(D) with J∗ = D} for each A ∈ F (D).

Then ∗̃ is a stable star operation of finite type on D [16, Example 2.1 and Remark

2.3]. If we set

• Av = (A−1)−1,

• At =
⋃
{Iv | I ⊆ A and I ∈ f(D)},

• Aw = {x ∈ K | xJ ⊆ A for some J ∈ f(D) with Jv = D}, and

• Ad = A
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for each A ∈ F (D), then v is a star operation on D, t = vf , w = ṽ, and d is

a star operation on D such that d = df = d̃. It is known that d ≤ ∗ ≤ v,

d ≤ ∗̃ ≤ ∗f ≤ t ≤ v, and ∗̃ ≤ w for any star operation ∗ on D.

An I ∈ F (D) is called a fractional ∗-ideal of D if I∗ = I and a fractional ∗-ideal

I of D is called a ∗-ideal if I ⊆ D. A ∗-ideal is a maximal ∗-ideal if it is maximal

among the proper ∗-ideals. Let ∗-Max(D) be the set of maximal ∗-ideals of D and

let ∗-Spec(D) be the set of prime ∗-ideals of D. It may happen that ∗-Max(D) = ∅
even though D is not a field; for example, if D is a rank-one nondiscrete valuation

domain and ∗ = v, then ∗-Max(D) = ∅. However, ∗f -Max(D) 6= ∅ if and only if

D is not a field; each maximal ∗f -ideal of D is a prime ideal; ∗f -Max(D) ⊆ ∗f -

Spec(D); each proper ∗f -ideal of D is contained in a maximal ∗f -ideal. Each prime

ideal of D minimal over a ∗f -ideal is a ∗f -ideal, whence each height-one prime ideal

is a ∗f -ideal; D =
⋂

P∈∗f -Max(D)DP ; I∗̃ =
⋂

M∈∗f -Max(D) IP for all I ∈ F (D); and

∗f -Max(D) = ∗̃-Max(D) (see, for example, [24, Lemma 2.1(2)]).

An integral domain D is said to be of finite ∗-character if each nonzero nonunit

of D is contained in only finitely many maximal ∗-ideals. Recall from [26] that D is

a ∗-h-local domain if D is of finite ∗-character and every nonzero prime ∗-ideal of D

is contained in a unique maximal ∗-ideal of D. Note that D is t-h-local if and only

if D is weakly Matlis [5, page 8] and D is d-h-local if and only if D is h-local [5, page

8]. The ∗-dimension of D is defined by ∗-dim(D) = sup{n ∈ N0 | P1 ( · · · ( Pn for

some prime ∗-ideals Pi of D}. Hence, ∗-dim(D) = 1 if and only if D is not a field

and each prime ∗-ideal of D is a maximal ∗-ideal.

An I ∈ F (D) is said to be ∗-invertible if (II−1)∗ = D and a fractional ∗-ideal I

of D is said to be ∗-finite if I = J∗ for some J ∈ f(D). We say that D is a Prüfer

∗-multiplication domain (P∗MD ) if each nonzero finitely generated ideal of D is ∗f -

invertible. It is known that D is a P∗MD if and only if DP is a valuation domain

for all maximal ∗f -ideals P of D [16, Theorem 3.1]. A Prüfer domain is a PvMD

whose maximal ideals are t-ideals. Let T∗(D) be the set of ∗-invertible fractional

∗-ideals. Then T∗(D) is an abelian group under I ∗ J = (IJ)∗. Let Inv(D) (resp.,

Prin(D)) be the subgroup of T (D) of invertible (resp., nonzero principal) fractional

ideals of D. The factor group Cl∗(D) = T∗(D)/Prin(D), called the ∗-class group of

D, is an abelian group and Pic(D) = Inv(D)/Prin(D), called the Picard group of

D, is a subgroup of Cl∗(D).

Let S be a subset of D. Then S is called multiplicatively closed if 1 ∈ S and

xy ∈ S for all x, y ∈ S. It is clear that if S is a multiplicatively closed set with

0 ∈ S, then DS ' {0}, so we always assume that 0 6∈ S. Furthermore, S is said to

be divisor-closed or saturated if for all x, y ∈ D with xy ∈ S, it follows that x, y ∈ S.

If a, b ∈ D, then we write a |D b if there is some c ∈ D such that b = ac. Hence, S

is divisor-closed if and only if a |D b implies a ∈ S for any b ∈ S and a ∈ D.

Let D[X] be the polynomial ring over D. For a polynomial f ∈ D[X], let c(f)

denote the ideal ofD generated by the coefficients of f . LetNv = {f ∈ D[X] | f 6= 0

and c(f)v = D}. Then, by the Dedekind-Mertens lemma, it can be shown that Nv

is a multiplicatively closed and divisor-closed subset of D[X].

1.2. Importance of star operations. Next we give a short explanation for con-

sidering arbitrary star operations (of finite type) rather than the d-operation, the

t-operation and the w-operation. First of all, star operations enable us to unify

results that hold for all of the aforementioned operations. Besides that, we will see

later that certain results are specific to the t-operation/w-operation, while other
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results hold for arbitrary star operations of finite type. We also emphasize that

similar types of concepts have been investigated for star operations [5, 26, 30].

If not stated otherwise, then from now on D is always an integral domain with

quotient field K and ∗ is a star operation of finite type on D.

2. Valuation ideals and valuation elements

We first discuss briefly how to extend the star operation ∗ on D to arbitrary

nonzero D-submodules of K. For a nonzero D-submodule A of K, let A∗ =⋃
J∈F (D),J⊆A J∗, then A∗ =

⋃
J∈f(D),J⊆A J∗ because ∗ is of finite type, and hence

A∗ is well-defined. Next we present a few simple properties of the ∗-closure of

D-submodules of K that we will use without further mention.

Lemma 2.1. Let D be an integral domain with quotient field K, let ∗ be a star

operation of finite type on D, let c ∈ K be nonzero and let A and B be nonzero

D-submodules of K. Then A∗ is a D-submodule of K, A ⊆ A∗, cA∗ = (cA)∗,

if A ⊆ B∗, then A∗ ⊆ B∗, and (AB)∗ = (A∗B)∗. Moreover, if ∗ is stable, then

(A ∩B)∗ = A∗ ∩B∗.

Proof. It is clear that A∗ is a D-submodule of K, since A∗ is an upper directed union

of D-submodules of K. Observe that A =
⋃

J∈f(D),J⊆A J ⊆
⋃

J∈f(D),J⊆A J∗ = A∗.

Moreover, cA∗ = c
⋃

J∈F (D),J⊆A J∗ =
⋃

J∈F (D),J⊆A cJ∗ =
⋃

J∈F (D),cJ⊆cA(cJ)∗ =⋃
J∈F (D),J⊆cA J∗ = (cA)∗.

Let A ⊆ B∗. To show that A∗ ⊆ B∗, it is sufficient to show that J∗ ⊆ B∗ for each

J ∈ f(D) with J ⊆ A. Let J ∈ f(D) with J ⊆ A. Then J ⊆ B∗, and hence there

is some L ∈ f(D) such that J ⊆ L∗ and L ⊆ B. Thus, J∗ ⊆ (L∗)∗ = L∗ ⊆ B∗.
Next we show that (A∗B)∗ = (AB)∗ (for arbitrary nonzero D-submodules A

and B of K). Clearly, AB ⊆ A∗B ⊆ (A∗B)∗, and hence (AB)∗ ⊆ (A∗B)∗. Now

let x ∈ (A∗B)∗. Then x ∈ J∗ for some J ∈ f(D) with J ⊆ A∗B. Observe that

J ⊆ L∗L
′ for some L,L′ ∈ f(D) such that L ⊆ A and L′ ⊆ B. This implies that

x ∈ J∗ ⊆ (L∗L
′)∗ = (LL′)∗ ⊆ (AB)∗.

Finally, let ∗ be stable. Then

A∗ ∩B∗ =

 ⋃
J∈F (D),J⊆A

J∗

 ∩
 ⋃

L∈F (D),L⊆B

L∗


=

⋃
J∈F (D),J⊆A

⋃
L∈F (D),L⊆B

(J∗ ∩ L∗)

=
⋃

J∈F (D),J⊆A

⋃
L∈F (D),L⊆B

(J ∩ L)∗

⊆
⋃

J∈F (D),J⊆A∩B

J∗ = (A ∩B)∗ ⊆ A∗ ∩B∗,

where the third equality follows because ∗ is stable. Thus, (A∩B)∗ = A∗∩B∗. �

Let ∗ be a star operation of finite type on D. Following [15], we say that an

overring D′ of D is ∗-closed if (D′)∗ = D′.

Lemma 2.2. Let D be an integral domain, let ∗ be a stable star operation of finite

type on D and let I be a valuation ∗-ideal of D. Then there exists a ∗-closed

valuation overring W of D such that IW ∩D = I.
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Proof. There exists a valuation overring V of D such that IV ∩D = I. Set W = V∗.

Since V 2 ⊆ V , we infer that W 2 ⊆ (W 2)∗ = (V 2)∗ ⊆ W . Observe that W is a

∗-closed overring of V (since V ⊆W , W∗ = W and x+y, xy ∈W for all x, y ∈W ).

Consequently, W is a valuation overring of D (since W is an overring of a valuation

domain) and I ⊆ IW ∩D ⊆ (IW )∗ ∩D = (IV )∗ ∩D∗ = (IV ∩D)∗ = I∗ = I by

Lemma 2.1. Thus, IW ∩D = I. �

Let D× denote the unit group of D and let Spec(D) denote the set of prime

ideals of D. For each ideal I of D, let P(I) be the set of minimal prime ideals of

I (i.e., the set of prime ideals of D that are minimal over I) and let
√
I = D

√
I =⋂

P∈Spec(D),I⊆P P = {x ∈ D | xn ∈ I for some n ∈ N} be the radical of I.

Proposition 2.3. Let D be an integral domain that is not a field, let ∗ be a star

operation of finite type on D and let I be a valuation ∗-ideal of D.

(1) There exists some M ∈ ∗-Max(D) such that IM ∩D = I.

(2) If I is proper, then
√
I is a prime ∗-ideal of D.

Proof. Observe that ∗̃ is a stable star operation of finite type such that J∗̃ ⊆ J∗ for

each J ∈ F (D) and ∗-Max(D) = ∗̃-Max(D). Hence, I is a valuation ∗̃-ideal of D.

Thus, IW ∩D = I for some ∗̃-closed valuation overring W of D by Lemma 2.2.

(1) Set P = W \W×∩D. We show that P is a prime ∗̃-ideal of D. Clearly, P is a

prime ideal of D (since W \W× is a prime ideal of W ). Let x ∈ (W \W×)∗̃. Since ∗̃
is of finite type, there exists some J ∈ f(D) with x ∈ J∗̃ and J ⊆W \W×. Observe

that JW = yW for some y ∈ J (since J ∈ f(D) and W is a valuation domain). This

implies that x ∈ J∗̃ ⊆ J∗̃W ⊆ (J∗̃W )∗̃ = (JW )∗̃ = (yW )∗̃ = yW∗̃ = yW ⊆W \W×.

It follows that W \W× is ∗̃-closed, and hence P is a ∗̃-ideal of D.

Since P is a prime ∗̃-ideal of D and ∗̃ is of finite type, there exists some M ∈ ∗̃-
Max(D) such that P ⊆M . Observe that M ∈ ∗-Max(D). Since D \M ⊆ D \ P =

D \ (W \W×) = W× ∩ D ⊆ W×, we have that DM ⊆ DP ⊆ W . Consequently,

I ⊆ IM ∩D ⊆ IW ∩D = I, and hence IM ∩D = I.

(2) Let I be proper. Since ∗ is of finite type, it is clear that
√
I is a ∗-ideal of D.

Since W is a valuation domain, we have that
√
IW is a prime ideal of W . Since√

I =
√
IW ∩D =

√
IW ∩D, we infer that

√
I is a prime ideal of D. �

Corollary 2.4. Let D be an integral domain and let I be a proper t-invertible

valuation t-ideal of D. Then there exists a unique M ∈ t-Max(D) such that I ⊆M .

Proof. This is an immediate consequence of Proposition 2.3(1) and [4, Lemma

4.2]. �

The next example shows that the t-operation in Corollary 2.4 cannot be replaced

by an arbitrary star operation of finite type.

Example 2.5. Let D = Z[X] be the polynomial ring over Z and let P be the

set of prime numbers. Then D is a two-dimensional Noetherian UFD and X is a

valuation element of D (since X is a prime element of D). Moreover, the prime

ideal XD is contained in infinitely many maximal ideals of D (since (pD+XD)p∈P
is a sequence of distinct maximal ideals of D that contain XD). In particular, D is

not of finite character and there exists a nonzero prime ideal of D that is contained

in more than one maximal ideal of D.

A nonzero nonunit a ∈ D is said to be homogeneous if it is contained in a unique

maximal t-ideal of D. Following [7], we say that D is a homogeneous factorization
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domain (HoFD ) if every nonzero nonunit of D can be written as a finite product

of homogeneous elements.

Corollary 2.6. Let D be an integral domain.

(1) If a ∈ D is a valuation element, then a is homogeneous.

(2) If D is a VFD, then D is an integrally closed HoFD.

Proof. (1) Observe that aD is both a valuation ideal and a t-invertible t-ideal.

Hence, by Corollary 2.4, aD is contained in a unique maximal t-ideal of D, and

thus a is homogeneous.

(2) A VFD is integrally closed [9, Corollary 1.5]. Moreover, a valuation element

is homogeneous by (1). Thus, D is an integrally closed HoFD. �

Let D be a quasi-local domain of dimension one that is not a valuation domain.

Then every nonzero element of D is homogeneous, while D is not a VFD and D has

no valuation element [9, Corollary 1.6]. Therefore, a homogeneous element need

not be a valuation element and an HoFD need not be a VFD in general.

Remark 2.7. We want to emphasize that valuation elements are not just homoge-

neous elements, but they also satisfy another interesting property that was studied

by Zafrullah. Following [27], we say that a nonzero nonunit a ∈ D is rigid if for all

b, c ∈ D with b |D a and c |D a, it follows that b |D c or c |D b. Moreover, D is

called semirigid if every nonzero nonunit of D is a finite product of rigid elements.

Note that every valuation element is rigid [9, Corollary 1.2(2)], and hence every

VFD is semirigid. For more information on rigid elements and semirigid domains,

we refer to [27, 28, 31].

In what follows we provide connections to well-known types of elements. Let

u ∈ D be a nonzero nonunit. Then u is called an atom of D if for all a, b ∈ D

with u = ab, either a is a unit of D or b is a unit of D. We say that u is primary

if uD is a primary ideal of D. Furthermore, D is called atomic if every nonzero

nonunit of D is a finite product of atoms of D. Observe that every atom is rigid,

so every atomic domain is a semirigid domain. (Let u ∈ D be an atom of D and

let a, b ∈ D be such that a |D u and b |D u. If a ∈ D×, then clearly a |D b. Now let

a 6∈ D×. There is some c ∈ D such that u = ac. We infer that c ∈ D×, and hence

b |D u |D uc−1 = a.) It is known that D is a UFD if and only if D is an atomic

VFD [9, Corollary 2.4]. Also note that every primary element is homogeneous [6,

Lemma 2.1]. For the sake of clarity, we provide the following diagram to visualize

the relations between the various types of elements.

prime

atom valuation primary

rigid homogeneous

In general, a primary atom need not be a valuation element. (Let D be an atomic

quasi-local one-dimensional domain that is not a valuation domain and let v ∈ D
be an atom. Then v is a primary element of D but not a valuation element of D

[9, Corollary 1.6].) We also want to mention that a valuation element is in general

neither primary nor an atom. (Let V be a two-dimensional valuation domain, let
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P be the unique height-one prime ideal of V and let x ∈ P be nonzero. Then x is a

valuation element of V but x is neither primary nor an atom.) Note that an atom

does not have to be homogeneous. (Let D = Z[
√

10]. Then 3 is an atom of D and

3 is not homogeneous.) Finally, a primary element need not be rigid. (Let D be

a quasi-local one-dimensional domain that is not a valuation domain. Then there

is some nonzero nonunit y ∈ D such that y is not rigid (e.g. see [31]) and yet y

is primary.) In particular, we obtain that none of the implications in the diagram

above can be reversed.

Let I be a ∗-ideal of D. We say that I is ∗-locally principal if IM is a principal

ideal of DM for each M ∈ ∗-Max(D). It is easy to see that a ∗-invertible ∗-ideal of

D is a ∗-locally principal ideal for any star operation ∗ of finite type on D [20, 12.3

Theorem]. We are going to give a ∗-locally principal ideal analog of [9, Proposition

1.1] that, among other things, shows that if aR ∩D = aD and bR ∩D = bD, then

abR ∩D = abD for any a, b ∈ D and an overring R of D. We first need a lemma

which is also a natural generalization of [9, Proposition 1.1].

Lemma 2.8. Let D be an integral domain, let R be an overring of D, let I be a

nonzero principal ideal of D and let J be an ideal of D.

(1) If IR ∩D = I and JR ∩D = J , then (IJ)R ∩D = IJ .

(2) If (IJ)R ∩D = IJ , then JR ∩D = J .

Proof. (1) Let IR∩D = I and JR∩D = J . It suffices to show that (IJ)R∩D ⊆ IJ .

Let x ∈ (IJ)R ∩ D. Since IJ ⊆ I, we infer that x ∈ IR ∩ D = I, and hence

xI−1 ⊆ II−1 = D. Observe that xI−1 ⊆ (IJ)RI−1 = ((II−1)J)R = JR. This

implies that xI−1 ⊆ JR ∩D = J . Therefore, x ∈ xD = x(II−1) = I(xI−1) ⊆ IJ .

(2) Let (IJ)R ∩D = IJ . It suffices to show that JR ∩D ⊆ J . Let x ∈ JR ∩D.

Then xI ⊆ (IJ)R. Since I ⊆ D, it follows that xI ⊆ (IJ)R ∩D = IJ , and hence

x ∈ xD = x(II−1) ⊆ (IJ)I−1 = (II−1)J = J . Thus, JR ∩D ⊆ J . �

Proposition 2.9. Let D be an integral domain, let R be an overring of D, let ∗
be a star operation of finite type on D, let I be a nonzero ∗-locally principal ∗-ideal

of D and let J be a nonzero ∗-ideal of D.

(1) If IR ∩D = I and JR ∩D = J , then (IJ)∗R ∩D = (IJ)∗.

(2) If (IJ)∗R ∩D = (IJ)∗, then JR ∩D = J .

(3) If IR ∩D = I,
√
I ⊆
√
J and I and J are ∗-invertible, then JR ∩D = J .

In particular, IR∩D = I if and only if (In)∗R∩D = (In)∗ for some n ∈ N if and

only if (In)∗R ∩D = (In)∗ for each n ∈ N.

Proof. First we show that ((IJ)∗)M = IMJM for each M ∈ ∗-Max(D). Let M ∈ ∗-
Max(D) and let x ∈ (IJ)∗. There is some nonzero y ∈ I such that IM = yDM .

Observe that x ∈ A∗ for some nonzero finitely generated ideal A of D with A ⊆
IJ ⊆ IMJM = yJM . We have that bA ⊆ yJ for some b ∈ D \ M , and thus

x ∈ A∗ = b−1(bA)∗ ⊆ b−1(yJ)∗ = b−1yJ ⊆ yJM = IMJM . This implies that

(IJ)∗ ⊆ IMJM , and hence ((IJ)∗)M = IMJM .

(1) Let IR ∩D = I, let JR ∩D = J and let x ∈ (IJ)∗R ∩D. Since ∗ is of finite

type, it is sufficient to show that x ∈ ((IJ)∗)M for each M ∈ ∗-Max(D). Let M ∈ ∗-
Max(D). Then x ∈ ((IJ)∗R ∩ D)M = ((IJ)∗)MRM ∩ DM = IMJMRM ∩ DM =

IMJM = ((IJ)∗)M , where the third equality holds by Lemma 2.8(1) (since IM is

a principal ideal of DM , IM = (IR ∩ D)M = IMRM ∩ DM , JM = (JR ∩ D)M =

JMRM ∩DM and RM is an overring of DM ).
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(2) Let (IJ)∗R ∩ D = (IJ)∗ and let x ∈ JR ∩ D. Since ∗ is of finite type, it

remains to show that x ∈ JM for each M ∈ ∗-Max(D). Let M ∈ ∗-Max(D). Then

x ∈ JR ∩D ⊆ (JR ∩D)M = JMRM ∩DM and IMJMRM ∩DM = ((IJ)∗)MRM ∩
DM = ((IJ)∗R∩D)M = ((IJ)∗)M = IMJM . Consequently, x ∈ JMRM∩DM = JM
by Lemma 2.8(2) (since IM is a principal ideal and RM is an overring of DM ).

(3) Let IR ∩ D = I, let
√
I ⊆

√
J and let I and J be ∗-invertible. Since ∗

is of finite type and I is a ∗-invertible ∗-ideal, we have that I is ∗-finite. Since

I ⊆
√
J and I is ∗-finite, we infer that (In)∗ ⊆ J for some n ∈ N. It follows

that (In)∗ = (JL)∗ for some ∗-invertible ∗-ideal L of D (since J is a ∗-invertible

∗-ideal of D). It follows from (1) above that (In)∗R ∩ D = (In)∗, and hence

(JL)∗R ∩D = (JL)∗. Therefore, JR ∩D = J by (2) above. �

Corollary 2.10. (cf. [9, Corollary 1.2]) Let D be an integral domain, let ∗ be a

star operation of finite type on D, let I be a proper ∗-invertible valuation ∗-ideal of

D and let J be a ∗-invertible ∗-ideal of D.

(1) If L is a ∗-invertible ∗-ideal of D with I ⊆ J ∩ L, then J and L are

comparable.

(2) If
√
I ⊆
√
J , then I and J are comparable.

(3)
⋂

n∈N(In)∗ is a prime ∗-ideal of D.

(4) If
√
I (
√
J , then I ⊆

⋂
n∈N(Jn)∗.

Proof. Note that the ∗-invertible ∗-ideals of D are precisely the ∗̃-invertible ∗̃-ideals

of D [24, Lemma 2.1(3)]. By Lemma 2.2, there is a ∗̃-closed valuation overring V

of D such that IV ∩D = I.

(1) Let L be a ∗-invertible ∗-ideal of D such that I ⊆ J ∩ L. Then JV ∩D = J

and LV ∩D = L by Proposition 2.9(3). Moreover, since V is a valuation domain,

JV and LV are comparable. Thus, J and L are comparable.

(2) Let
√
I ⊆
√
J . Then JV ∩D = J by Proposition 2.9(3). Since IV and JV

are comparable, we have that I and J are comparable.

(3) Clearly,
⋂

n∈N(In)∗ is a ∗-ideal of D. Note that (In)∗ = (In)∗̃ for each

n ∈ N by [24, Lemma 2.1(3)]. There is a finitely generated ideal L of D with

I = L∗̃. Consequently, LV = aV for some a ∈ L. Note that aV = LV ⊆ IV ⊆
(IV )∗̃ = (LV )∗̃ = (aV )∗̃ = aV , and hence IV = aV . Along similar lines, one can

prove that (In)∗V = anV for each n ∈ N. It follows by Proposition 2.9(1) that

(In)∗V ∩ D = (In)∗ for each n ∈ N. Note that
⋂

n∈N a
nV is a prime ideal of V .

Consequently,
⋂

n∈N(In)∗ =
⋂

n∈N((In)∗V ∩ D) = (
⋂

n∈N(In)∗V ) ∩ D is a prime

ideal of D.

(4) Let
√
I (

√
J and let n ∈ N. Then

√
I ⊆

√
J =

√
(Jn)∗, and hence I

and (Jn)∗ are comparable by (2). If (Jn)∗ ⊆ I, then
√
J =

√
(Jn)∗ ⊆

√
I, a

contradiction. Therefore, I ⊆ (Jn)∗. �

In this paper we study integral domains D in which each nonzero principal ideal

can be written as a finite ∗-product of valuation ∗-ideals for a given star operation

∗ on D, and in this case, all of the valuation ideals in question must be ∗-invertible.

The next result shows that such a finite ∗-product of ∗-invertible valuation ∗-ideals

can be written in a specific form. For example, if I is a finite ∗-product of ∗-
invertible valuation ∗-ideals of D, say, I = (

∏n
i=1 Ii)∗ and each Ii is a proper

∗-ideal of D, then P(I) ⊆ {
√
Ik | k ∈ [1, n]} and n ≥ |P(I)|.

Proposition 2.11. Let D be an integral domain, let ∗ be a star operation of finite

type on D and let I be a finite ∗-product of ∗-invertible valuation ∗-ideals of D.

Then |P(I)| = min{m ∈ N0 | I is a ∗-product of m ∗-invertible valuation ∗-ideals
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of D} and there are ∗-invertible valuation ∗-ideals (I(P ))P∈P(I) of D such that

I = (
∏

P∈P(I) I(P ))∗ and
√
I(Q) = Q for each Q ∈ P(I).

Proof. Without restriction we can assume that I is proper. Let n be the smallest

positive integer such that I is the ∗-product of n ∗-invertible valuation ∗-ideals of D.

Then there are ∗-invertible valuation ∗-ideals Ii of D such that I = (
∏n

i=1 Ii)∗. First

we show that P(I) ⊆ {
√
Ii | i ∈ [1, n]}. Let P ∈ P(I). Then

∏n
i=1 Ii ⊆ I ⊆ P , and

hence there is some j ∈ [1, n] such that Ij ⊆ P . We infer that I ⊆ Ij ⊆
√
Ij ⊆ P .

Since
√
Ij is a prime ideal of D by Proposition 2.3(2), it follows that P =

√
Ij .

This implies that |P(I)| ≤ n. Next we show that for each P ∈ P(I), |{i ∈ [1, n] |
P ⊆

√
Ii} = |{i ∈ [1, n] | P =

√
Ii}| = 1. Let P ∈ P(I). Then P =

√
Ij for

some j ∈ [1, n], and thus {i ∈ [1, n] | P ⊆
√
Ii} ⊇ {i ∈ [1, n] | P =

√
Ii} 6= ∅. Set

I = {i ∈ [1, n] | P ⊆
√
Ii} and J = (

∏n
i=1,P⊆

√
Ii
Ii)∗. It is sufficient to show that I

is a singleton. Note that
√
J =

⋂n
i=1,P⊆

√
Ii

√
Ii = P (since {i ∈ [1, n] | P =

√
Ii} 6=

∅). Clearly, J is a ∗-invertible ∗-ideal of D. Since
√
Ij = P =

√
J , we infer by

Proposition 2.9(3) that J is a valuation ideal of D. Because of the minimality of

n, we have that I is a singleton.

Since [1, n] ⊆
⋃

Q∈P(I){i ∈ [1, n] | Q ⊆
√
Ii}, it follows that n ≤

∑
Q∈P(I) |{i ∈

[1, n] | Q ⊆
√
Ii}| = |P(I)|, and hence |P(I)| = n. Let f : [1, n]→ P(I) be defined

by f(i) =
√
Ii for each i ∈ [1, n]. Then f is a well-defined bijection. For each

Q ∈ P(I), set I(Q) = If−1(Q). Then I = (
∏

Q∈P(I) I(Q))∗ and
√
I(Q) = Q for

each Q ∈ P(I). �

We continue our investigation of ideals that are finite ∗-products of ∗-invertible

valuation ∗-ideals. The next result serves as a preparatory result for Theorem 3.7,

but it is more generally applicable, since it holds for arbitrary integral domains.

Proposition 2.12. Let D be an integral domain, let ∗ be a star operation of finite

type on D and let Ω be the set of finite ∗-products of ∗-invertible valuation ∗-ideals

of D. Then for all I, J, L ∈ Ω with (JL)∗ ⊆ I, there are some J ′, J ′′, L′, L′′ ∈ Ω

such that I = (J ′L′)∗, J = (J ′J ′′)∗ and L = (L′L′′)∗.

Proof. First we show that for each ∗-invertible valuation ∗-ideal I of D and all

J, L ∈ Ω with (JL)∗ ⊆ I, there are some J ′, J ′′, L′, L′′ ∈ Ω such that J = (J ′J ′′)∗,

L = (L′L′′)∗ and I = (J ′L′)∗. By Proposition 2.11, it is sufficient to show by

induction that for each n ∈ N0, each ∗-invertible valuation ∗-ideal I of D and all

J, L ∈ Ω with |P(J)|+ |P(L)| = n and (JL)∗ ⊆ I, there are some J ′, J ′′, L′, L′′ ∈ Ω

such that J = (J ′J ′′)∗, L = (L′L′′)∗ and I = (J ′L′)∗. Let n ∈ N0, let I be a

∗-invertible valuation ∗-ideal of D and let J, L ∈ Ω be such that |P(J)|+ |P(L)| =
n and (JL)∗ ⊆ I. Without restriction let I be proper. Since I is a valuation

ideal of D,
√
I is a prime ideal of D by Proposition 2.3(2), and thus J ⊆

√
I

or L ⊆
√
I. Without restriction let J ⊆

√
I. By Proposition 2.11, there are ∗-

invertible valuation ∗-ideals (J(P ))P∈P(J) of D such that J = (
∏

P∈P(J) J(P ))∗.

Consequently, J(Q) ⊆
√
I for some Q ∈ P(J). This implies that

√
J(Q) ⊆

√
I. It

follows from Corollary 2.10(2) that J(Q) and I are comparable.

Case 1: J(Q) ⊆ I. Then J(Q) = (IA)∗ for some ∗-invertible ∗-ideal A of D.

It follows from Proposition 2.9(2) that A is a valuation ideal of D. Set J ′ = I,

J ′′ = (A
∏

P∈P(J)\{Q} J(P ))∗, L
′ = D and L′′ = L. Then J ′, J ′′, L′, L′′ ∈ Ω,

J = (J(Q)
∏

P∈P(J)\{Q} J(P ))∗ = (J ′J ′′)∗, L = (L′L′′)∗ and I = (J ′L′)∗.

Case 2: I ( J(Q). Then I = (J(Q)C)∗ for some ∗-invertible ∗-ideal C of

D. We infer by Proposition 2.9(2) that C is a valuation ideal of D. Set B =



10 G. W. CHANG AND A. REINHART

(
∏

P∈P(J)\{Q} J(P ))∗. Then B ∈ Ω and (J(Q)BL)∗ = (JL)∗ ⊆ I = (J(Q)C)∗.

Since J(Q) is ∗-invertible, it follows that (BL)∗ ⊆ C. Moreover, P(B) = P(J)\{Q},
and hence |P(B)| + |P(L)| < n. Therefore, there are B′, B′′, L′, L′′ ∈ Ω such that

B = (B′B′′)∗, L = (L′L′′)∗ and C = (B′L′)∗ by the induction hypothesis. Set

J ′ = (J(Q)B′)∗ and J ′′ = B′′. Then J ′, J ′′ ∈ Ω, J = (J(Q)B)∗ = (J ′J ′′)∗ and

I = (J(Q)C)∗ = (J ′L′)∗.

It remains to show by induction that for each m ∈ N0 and all I, J, L ∈ Ω such

that I is a ∗-product of m ∗-invertible valuation ∗-ideals of D and (JL)∗ ⊆ I, there

are some J ′, J ′′, L′, L′′ ∈ Ω such that J = (J ′J ′′)∗, L = (L′L′′)∗ and I = (J ′L′)∗.

The statement is clearly true for m = 0. Let m ∈ N0 and I, J, L ∈ Ω be such

that I is a ∗-product of m + 1 ∗-invertible valuation ∗-ideals of D and (JL)∗ ⊆ I.

Clearly, there are some A,B ∈ Ω such that A is a ∗-product of m ∗-invertible

valuation ∗-ideals of D and B is a ∗-invertible valuation ∗-ideal of D such that

I = (AB)∗. Then (JL)∗ ⊆ I ⊆ B. As shown before, there are M ′,M ′′, N ′, N ′′ ∈
Ω such that J = (M ′M ′′)∗, L = (N ′N ′′)∗ and B = (M ′N ′)∗. We have that

(M ′′N ′′B)∗ = (M ′M ′′N ′N ′′)∗ = (JL)∗ ⊆ I = (AB)∗, and hence (M ′′N ′′)∗ ⊆ A.

It follows by the induction hypothesis that there are C ′, C ′′, D′, D′′ ∈ Ω such that

M ′′ = (C ′C ′′)∗, N
′′ = (D′D′′)∗ and A = (C ′D′)∗. Set J ′ = (M ′C ′)∗, J

′′ = C ′′,

L′ = (N ′D′)∗ and L′′ = D′′. Then J ′, J ′′, L′, L′′ ∈ Ω, J = (M ′M ′′)∗ = (J ′J ′′)∗,

L = (N ′N ′′)∗ = (L′L′′)∗ and I = (AB)∗ = (C ′D′M ′N ′)∗ = (J ′L′)∗. �

3. ∗-valuation ideal factorization domains

A π-domain is an integral domain whose nonzero principal ideals can be written

as a finite product of prime ideals [2]. Hence, each nonzero principal ideal of a π-

domain can be written as a finite product of valuation ideals, because a prime ideal

is a valuation ideal. In this section, we study such type of integral domains in the

more general setting of star operations. We begin this section with the definition of

∗-VIFDs for which we note that an ideal I of an integral domain D is a fractional

ideal of D with I ⊆ D, so D is also a ∗-ideal of D.

Definition 3.1. Let D be an integral domain and let ∗ be a star operation on D.

Then D is called a ∗-valuation ideal factorization domain (∗-VIFD ) if each nonzero

principal ideal I of D can be written as a finite ∗-product of valuation ideals of D,

i.e., there are some n ∈ N and valuation ideals Ii of D such that I = (
∏n

i=1 Ii)∗.

We say that D is a VIFD if D is a d-VIFD.

Let ∗1 and ∗2 be two star operations of finite type on D such that ∗1 ≤ ∗2. It

is easy to see that (I∗1)∗2 = (I∗2)∗1 = I∗2 for all I ∈ F (D). Hence, by definition, a

∗1-VIFD is a ∗2-VIFD. In particular,

VIFD ⇒ ∗-VIFD ⇒ t-VIFD

for any star operation ∗ of finite type.

Lemma 3.2. Let D be an integral domain, let ∗ be a star operation of finite type

on D and let I be a ∗-invertible valuation ideal of D. Then I∗ is a ∗-invertible

valuation ∗-ideal of D.

Proof. Since ∗-Max(D) = ∗̃-Max(D), a ∗-invertible ideal of D is ∗̃-invertible, so I

is a ∗̃-invertible ideal of D. There exists a valuation overring V of D such that

IV ∩ D = I. Set W = V∗̃ and note that W is a valuation overring of D by the

proof of Lemma 2.2. Since ∗̃ is stable, we have that I∗̃ ⊆ I∗̃W ∩D ⊆ (I∗̃W )∗̃ ∩D =

(IV )∗̃ ∩ D∗̃ = (IV ∩ D)∗̃ = I∗̃, and hence I∗̃W ∩ D = I∗̃. We infer that I∗̃ is a
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∗̃-invertible valuation ∗̃-ideal of D. Therefore, I∗̃ is a ∗-invertible valuation ∗-ideal

of D. Finally, note that I∗̃ = (I∗̃)∗ = I∗. �

We next give a first elementary characterization of ∗-VIFDs. Note that these

characterizations view the concepts of ∗-VIFDs from three different angles. First,

we can replace finite ∗-products of valuation ideals by finite ∗-products of valuation

∗-ideals (and vice versa). Second, we can lift the existence of representations of

arbitrary nonzero principal ideals as finite ∗-products of valuation ideals to arbitrary

∗-invertible ∗-ideals. Finally, we prove the interchangeability of the star operations

∗ and ∗̃ in this characterization.

Proposition 3.3. Let D be an integral domain and let ∗ be a star operation of

finite type on D. The following statements are equivalent.

(1) D is a ∗-VIFD.

(2) D is a ∗̃-VIFD.

(3) Each nonzero principal ideal of D is a finite ∗-product of valuation ∗-ideals.

(4) Each ∗-invertible ∗-ideal of D is a finite ∗-product of valuation ∗-ideals.

(5) Each ∗-invertible ∗-ideal of D is a finite ∗-product of valuation ideals.

Proof. (1) ⇒ (3) This is an immediate consequence of Lemma 3.2.

(2) ⇒ (1) This follows from the fact that ∗̃ ≤ ∗.
(3) ⇒ (2) This is an immediate consequence of the following observation: If I

and J are ∗-invertible ∗-ideals of D, then I and J are ∗̃-invertible ∗̃-ideals of D and

(IJ)∗̃ = ((IJ)∗̃)∗ = (IJ)∗ (since (IJ)∗̃ is a ∗̃-invertible ∗̃-ideal of D).

(3) ⇒ (4) Let I be a proper ∗-invertible ∗-ideal of D. Choose a nonzero a ∈ I.

Clearly, aD = (
∏m

j=1 Jj)∗ with m ∈ N and proper ∗-invertible valuation ∗-ideals

Jj . Observe that Jj is a t-invertible t-ideal for each j ∈ [1,m]. Consequently,

for each j ∈ [1,m], Jj is contained in a unique maximal t-ideal by Corollary 2.4.

We infer that aD is contained in only finitely many maximal t-ideals of D, and

hence I is contained in only finitely many maximal t-ideals of D. Since I is a

t-invertible t-ideal of D, we have that IM is a principal ideal of DM for each M ∈ t-
Max(D). Let N ∈ t-Max(D) be such that I ⊆ N . Then IN = bDN for some

b ∈ I. Note that bD = (
∏n

i=1 Ii)∗ for n ∈ N and ∗-invertible valuation ∗-ideals

Ii of D. Without restriction we can assume that there is some r ∈ [1, n] such

that Ii ⊆ N for each i ∈ [1, r] and Ii * N for each i ∈ [r + 1, n]. Observe that

IN = ((
∏r

i=1 Ii)∗)N . Let ` ∈ N and let (Ni)
`
i=1 be the distinct maximal t-ideals of

D that contain I. Then for each i ∈ [1, `] there is some mi ∈ N and some finite

∗-product (
∏mi

j=1 Ji,j)∗ of ∗-invertible valuation ∗-ideals of D such that Ji,j ⊆ Ni

for each j ∈ [1,mi] and such that INi
= ((

∏mi

j=1 Ji,j)∗)Ni
. Note that for each N ∈ t-

Max(D), we have that IN = ((
∏`

i=1

∏mi

j=1 Ji,j)∗)N (since every proper ∗-invertible

valuation ∗-ideal of D is contained in a unique maximal t-ideal of D). Since I

and (
∏`

i=1

∏mi

j=1 Ji,j)∗ are ∗-invertible ∗-ideals of D (and hence t-ideals of D), this

implies that I = (
∏`

i=1

∏mi

j=1 Ji,j)∗ is a finite ∗-product of valuation ∗-ideals of D.

(4) ⇒ (5) ⇒ (1) This is obvious. �

Corollary 3.4. Let D be an integral domain and let ∗ be a star operation of finite

type on D. The following statements are equivalent.

(1) D is a VFD.

(2) Cl∗(D) = {0} and every ∗-invertible ∗-ideal of D is a finite ∗-product of

valuation ideals.

(3) D is a ∗-VIFD and Cl∗(D) = {0}.
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Proof. (1) ⇒ (2) Recall from [9, Corollary 2.3(1)] that Clt(D) = {0}, so Cl∗(D) =

{0}. Now let J be a proper ∗-invertible ∗-ideal of D. Then J = aD for some nonzero

nonunit a ∈ D. Since D is a VFD, J is a finite product of principal valuation ideals

of D. Thus, J is a finite ∗-product of principal valuation ideals of D.

(2) ⇒ (3) This follows directly from the fact that a nonzero principal ideal is a

∗-invertible ∗-ideal.

(3) ⇒ (1) Let a ∈ D be a nonzero nonunit. Then aD = (
∏n

i=1 Ii)∗ for some ∗-
invertible valuation ∗-ideals Ii of D by Proposition 3.3. Clearly, each Ii is principal,

and hence aD is a finite ∗-product of principal valuation ideals of D. Consequently,

aD is a finite product of principal valuation ideals of D. Thus, a is a finite product

of valuation elements of D. �

Corollary 3.5. Let D be an integral domain and let ∗1 and ∗2 be star operations

of finite type on D such that ∗1 ≤ ∗2. Then D is a VFD if and only if D is a

∗1-VIFD and Cl∗2(D) = {0}.

Proof. If D is a VFD, then it is an immediate consequence of Corollary 3.4 that

D is a ∗1-VIFD and Cl∗2(D) = {0}. Now let D be a ∗1-VIFD and Cl∗2(D) = {0}.
Then Cl∗1(D) = {0}, and hence D is a VFD by Corollary 3.4. �

A π-domain is a VIFD, because a prime ideal is a valuation ideal. We next study

the relationship between a VFD and a VIFD, which is an analog of the fact that a

UFD is a π-domain with trivial Picard group.

Corollary 3.6. Let D be a Krull domain.

(1) D is a t-VIFD.

(2) D is a VFD if and only if D is a UFD.

(3) D is a VIFD if and only if D is a π-domain.

Proof. (1) This is clear.

(2) A Krull domain is a UFD if and only if its t-class group is trivial. Conse-

quently, the result follows from (1) and Corollary 3.4.

(3) Observe that t-dim(D) ≤ 1. In general, a π-domain is a VIFD. Conversely,

suppose that D is a VIFD. It suffices to show that each height-one prime ideal of D

is invertible by [2, Theorem 1]. Let P be a height-one prime ideal. Choose a ∈ P
such that aDP = PP . Then aD is a finite product of valuation ideals, so P contains

an invertible valuation ideal, say Q, containing a. By Proposition 2.3, QP ∩D = Q,

and since PP = aDP ⊆ QP , it follows that Q = P . Thus, P is invertible. �

Following [1, 12], we say that D is a ∗-Schreier domain if for all ∗-invertible

∗-ideals I, J and L of D such that (JL)∗ ⊆ I, there are some ∗-invertible ∗-ideals

J ′ and L′ of D such that J ⊆ J ′, L ⊆ L′ and I = (J ′L′)∗. Recall from [1, Corollary

3.3] that D is a Schreier domain if and only if D is an integrally closed d-Schreier

domain with Pic(D) = {0}, so there is a clear distinction between the concepts of

Schreier and d-Schreier domains (cf. [12, Proposition 2]).

Theorem 3.7. Let D be an integral domain and let ∗ be a star operation of finite

type on D. Then D is a ∗-VIFD if and only if D is a ∗-Schreier domain and each

nonzero prime ∗-ideal of D contains a ∗-invertible valuation (∗-)ideal of D.

Proof. (⇒) First let D be a ∗-VIFD. Then every ∗-invertible ∗-ideal of D is a finite

∗-product of ∗-invertible valuation ∗-ideals of D by Proposition 3.3. In particular,

the set of ∗-invertible ∗-ideals is the set of finite ∗-products of ∗-invertible valuation

∗-ideals of D. We infer by Proposition 2.12 that D is a ∗-Schreier domain. Now let
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P be a nonzero prime ∗-ideal of D. Then there is a nonzero nonunit a ∈ D such

that aD ⊆ P . Since aD is a finite ∗-product of ∗-invertible valuation ∗-ideals of D,

we have that P contains a ∗-invertible valuation ∗-ideal of D.

(⇐) Now let D be a ∗-Schreier domain such that each nonzero prime ∗-ideal

of D contains a ∗-invertible valuation ∗-ideal of D. Let Ω be the set of all finite

∗-products of ∗-invertible valuation ∗-ideals of D. Assume that D is not a ∗-VIFD.

Then there exists a ∗-invertible ∗-ideal I of D such that I 6∈ Ω. Let Σ = {J | J
is a ∗-ideal of D such that I ⊆ J and A * J for each A ∈ Ω}. Assume that

I 6∈ Σ. Then there are n ∈ N and ∗-invertible valuation ∗-ideals Ii of D such that

(
∏n

i=1 Ii)∗ ⊆ I. Since D is a ∗-Schreier domain, it follows (by induction) that there

are some ∗-invertible ∗-ideals Ji of D such that I = (
∏n

i=1 Ji)∗ and Ij ⊆ Jj for

each j ∈ [1, n]. We infer by Proposition 2.9(3) that Jj is a valuation ideal of D for

each j ∈ [1, n]. Therefore, I ∈ Ω, a contradiction. Hence, I ∈ Σ. Then Σ 6= ∅,
and since ∗ is of finite type and each element of Ω is ∗-finite, we have that Σ is

ordered inductively (under inclusion). Consequently, there is a maximal element

P ∈ Σ by Zorn’s lemma. We show that P is a prime ∗-ideal of D. Clearly, P

is a proper ∗-ideal of D. Assume that P is not a prime ideal of D, then there

are a, b ∈ D such that ab ∈ P and a, b 6∈ P . We have that P ( (P + aD)∗ and

P ( (P + bD)∗, and hence (P + aD)∗ 6∈ Σ and (P + bD)∗ 6∈ Σ. Consequently,

there are A,B ∈ Ω such that A ⊆ (P + aD)∗ and B ⊆ (P + bD)∗. This implies

that (AB)∗ ⊆ (P 2 + aP + bP + abD)∗ ⊆ P and (AB)∗ ∈ Ω, a contradiction.

Hence, P is a prime ∗-ideal of D. Now since I ⊆ P , we have that P is nonzero,

and thus P contains a ∗-invertible valuation ∗-ideal J of D. Note that J ∈ Ω, a

contradiction. �

The next result is a valuation ideal analog of [9, Proposition 1.7(4)] that if a ∈ D
is a valuation element, then either a is a unit of DS or a is a valuation element of

DS for any multiplicatively closed subset S of D.

Lemma 3.8. Let D be an integral domain, let S be a multiplicatively closed subset

of D and let I be a valuation ideal of D. Then IS is a valuation ideal of DS.

Proof. Let V be a valuation overring of D such that IV ∩ D = I. Then IS =

(IV ∩ D)S = ISVS ∩ DS and VS is a valuation overring of DS . Thus, IS is a

valuation ideal of DS . �

Let ∗ be a star operation of finite type on D and let ∗S : F (DS) → F (DS) be

defined by (IS)∗S = (I∗)S for each I ∈ F (D). Then ∗S is a star operation of finite

type on DS [20, 4.4 Theorem]. If P is a prime ideal of D such that S = D \P , then

we write ∗P instead of ∗S .

Proposition 3.9. Let D be an integral domain, let ∗ be a star operation of finite

type on D and let P be a prime ∗-ideal of D. If D is a ∗-VIFD, then DP is a VFD.

Proof. Let a ∈ D be a nonzero nonunit of DP . Then aD = (
∏n

i=1 Ii)∗ for some

n ∈ N and valuation ∗-ideals Ii of D. If j ∈ [1, n], then Ij is ∗-invertible, and hence

(Ij)P = ajDP for some aj ∈ Ij . Therefore,

aDP =
(( n∏

i=1

Ii

)
∗

)
P

=
(( n∏

i=1

Ii

)
P

)
∗P

=
( n∏

i=1

(Ii)P

)
∗P
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=
( n∏

i=1

(aiDP )
)
∗P

=
( n∏

i=1

ai

)
DP .

We infer by Lemma 3.8 that ai is either a unit of DP or a valuation element of DP

for each i ∈ [1, n]. Consequently, DP is a VFD. �

An integral domain is called a Mori domain if it satisfies the ACC on t-ideals.

Moreover, we say that D is completely integrally closed if for each x ∈ K for which

there is some nonzero c ∈ D such that cxn ∈ D for all n ∈ N, it follows that x ∈ D.

Observe that D is a Krull domain if and only if D is a completely integrally closed

Mori domain [17, Theorem 2.3.11]. The purpose of the next result is to generalize

[9, Corollary 2.4] that characterizes when a VFD is a Mori domain.

Corollary 3.10. Let D be a t-VIFD. The following statements are equivalent.

(1) D is a Mori domain.

(2) DM is a UFD for each M ∈ t-Max(D).

(3) D is a Krull domain.

Proof. (1) ⇒ (2) Let M ∈ t-Max(D). Then DM is a Mori domain [17, Proposition

2.10.4.2]. Moreover, DM is a VFD by Proposition 3.9. Thus, DM is a UFD [9,

Corollary 2.4].

(2) ⇒ (3) Clearly, DM is a Krull domain for each M ∈ t-Max(D). Furthermore,

D is of finite t-character by Corollary 2.4. Consequently, D is a Krull domain.

(3) ⇒ (1) This is obvious. �

Let ∗ be a star operation of finite type on D. Next, we are going to show that

a ∗-VIFD is an integrally closed weakly Matlis domain. However, since ∗ ≤ t, a

∗-VIFD is a t-VIFD, so it suffices to show that a t-VIFD is an integrally closed

weakly Matlis domain.

Proposition 3.11. Let D be an integral domain such that every nonzero prime

t-ideal of D contains a t-invertible valuation ideal of D. Then D is an integrally

closed weakly Matlis domain.

Proof. It is an immediate consequence of Lemma 3.2 that every nonzero prime t-

ideal of D contains a t-invertible valuation t-ideal. Let D be the integral closure

of D and let Ω be the set of t-invertible t-ideals I of D such that ID ∩D = I. It

follows from Proposition 2.9 that Ω is a multiplicatively closed and divisor-closed

subset of the monoid of t-invertible t-ideals of D. (The notions of multiplicatively

closed and divisor-closed can be defined in analogy for monoids. For instance, see

[17].) Assume that Ω is not the set of all t-invertible t-ideals of D. Then there

exists a t-invertible t-ideal J of D such that J 6∈ Ω. Since Ω is divisor-closed, we

infer that L * J for each L ∈ Ω. Let Σ = {A | A is a t-ideal of D such that J ⊆ A
and L * A for each L ∈ Ω}. It is clear that J ∈ Σ. Observe that Σ is ordered

inductively under inclusion (since each element of Ω is t-finite). Consequently, Σ

has a maximal element Q by Zorn’s lemma. It is straightforward to show that Q

is a nonzero prime t-ideal of D (e.g. as in the proof of Theorem 3.7). Hence, Q

contains a t-invertible valuation t-ideal B of D. On the other hand, we have that

B ∈ Ω, a contradiction. We infer that Ω is the set of all t-invertible t-ideals of

D. Next we show that D is integrally closed. It remains to prove that D ⊆ D.
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Let x ∈ D. Then x = a
b for some a ∈ D and some nonzero b ∈ D. Observe that

bD ∈ Ω. It follows that a = bx ∈ bD ∩D = (bD)D ∩D = bD. Thus, x ∈ D.

Finally, we show that D is weakly Matlis. It follows from Proposition 2.3(1) that

for each nonzero prime t-ideal P of D, there exists a t-invertible t-ideal I of D and

an M ∈ t-Max(D) such that I ⊆ P and IM ∩D = I. We infer by [4, Theorem 4.3]

that D is weakly Matlis. �

It is an immediate consequence of Proposition 3.11 that if every nonzero prime

∗-ideal of D contains a ∗-invertible valuation ideal, then D is an integrally closed

weakly Matlis domain. Nevertheless, it follows from Example 2.5 that D need not

be ∗-h-local.

Corollary 3.12. Let D be an integral domain and let ∗ be a star operation of finite

type on D. If D is a ∗-VIFD, then D is an integrally closed weakly Matlis domain.

Proof. This is an immediate consequence of Proposition 3.11. �

We say that D is a ∗-treed domain if the set of prime ∗-ideals of D is treed under

inclusion. Hence, D is ∗-treed if and only if Spec(DM ) is linearly ordered under

inclusion for all maximal ∗-ideals M of D. The class of ∗-treed domains includes

P∗MDs, integral domains of ∗-dimension one, and treed domains. Moreover, D is

said to be a ring of Krull type if D is a PvMD of finite t-character and D is called

an independent ring of Krull type if D is a weakly Matlis PvMD.

Theorem 3.13. Let D be an integral domain and let ∗ be a star operation of finite

type on D. The following statements are equivalent.

(1) D is a ∗-h-local P∗MD.

(2) Every nonzero (∗-finite) ∗-ideal of D can be written as a finite ∗-product of

∗-comaximal valuation ideals.

(3) Every nonzero principal ideal of D can be written as a finite ∗-product of

∗-comaximal valuation ideals.

(4) D is ∗-treed and D is a ∗-VIFD.

(5) D is ∗-treed and every nonzero prime ideal of D contains a ∗-invertible

valuation ideal.

(6) D is ∗-treed and every nonzero ∗-ideal of D is a finite ∗-product of valuation

ideals.

Proof. (1) ⇒ (2), (6) Since D is a P∗MD, it is clear that D is ∗-treed. It remains

to show that every nonzero proper ∗-ideal of D is a finite ∗-product of ∗-comaximal

valuation ideals. Let I be a nonzero proper ∗-ideal of D. Then
⋂

M∈∗-Max(D) IM =

I, and since D is of finite ∗-character, there are only finitely many maximal ∗-ideals,

say, (Mi)
k
i=1, such that I = (

⋂k
i=1 IMi

) ∩D. Let Ii = IMi
∩D for i ∈ [1, k]. Then,

since DMi is a valuation domain, each Ii is a valuation ∗-ideal. Note that if i, j ∈
[1, k] are distinct, then (DMi

)Mj
is the quotient field of D. Hence, (Ii+Ij)∗ = D for

all distinct i, j ∈ [1, k], and thus
⋂k

i=1 Ii = (
∏k

i=1 Ii)∗. Therefore, I = (
∏k

i=1 Ii)∗ is

a finite ∗-product of the ∗-comaximal valuation ideals Ii.

(2) ⇒ (3) This is clear.

(3)⇒ (4) Let M be a maximal ∗-ideal of D and let a ∈M be nonzero. Then, by

assumption, aD = (
∏n

i=1Qi)∗ for some n ∈ N and proper ∗-comaximal valuation

ideals Qi of D. Note that Qi and Qj are ∗-comaximal for each distinct i, j ∈ [1, n],

so M contains exactly one of the Qi’s, say Q1 for convenience. Consequently,
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aDM =
(( n∏

i=1

Qi

)
∗

)
M

=
( n∏

i=1

(Qi)M

)
∗M

= (Q1)M

and (Q1)M is a valuation ideal of DM by Lemma 3.8, which means that a is a val-

uation element of DM . Thus, every nonzero nonunit of DM is a valuation element,

and hence DM is a valuation domain [18, Corollary 2.4]. Therefore, D is ∗-treed.

(4) ⇒ (5) Let P be a nonzero prime ideal of D, and choose a nonzero a ∈ D.

Then aD = (
∏n

i=1Qi)∗ for some n ∈ N and valuation ideals Qi of D. Clearly, for

each i ∈ [1, n], Qi is ∗-invertible and P contains at least one of the Qi’s.

(5) ⇒ (1) It follows from Proposition 3.11 that D is a weakly Matlis domain.

It suffices to show that D is a P∗MD; equivalently, DM is a valuation domain for

each M ∈ ∗-Max(D). Now let M be a maximal ∗-ideal of D. Then Spec(DM ) is

linearly ordered under inclusion because ∗-Spec(D) is treed, and each prime ideal

of DM contains a valuation element by assumption and Lemma 3.8. Now if b ∈ DM

is a nonzero nonunit, then
√
bDM is a prime ideal, so there is a valuation element

c ∈
√
bDM . Hence,

√
cDM ⊆

√
bDM , and thus b is a valuation element of DM [9,

Proposition 1.1(3)]. Thus, DM is a valuation domain [9, Corollary 1.4].

(6) ⇒ (4) This is obvious. �

Corollary 3.14. Let D be a t-treed domain. Then D is a VFD if and only if

Clt(D) = {0} and every nonzero prime ideal of D contains a valuation element.

Proof. (⇒) It is clear that every nonzero prime ideal of D contains a valuation

element. Thus, the result follows because a VFD has a trivial t-class group [9,

Corollary 2.3(1)].

(⇐) If a ∈ D is a valuation element, then aD is a t-invertible valuation ideal.

Hence, D is an independent ring of Krull type by Theorem 3.13. Therefore,

Clt(D) = {0} implies that D is a weakly Matlis GCD-domain, so D is a VFD

[9, Theorem 3.4]. �

Corollary 3.15. Let D be an integral domain and let ∗ be a star operation of finite

type on D such that ∗-dim(D) = 1. The following statements are equivalent.

(1) D is a P∗MD of finite ∗-character.

(2) D is a ∗-VIFD.

(3) Every nonzero prime ideal of D contains a ∗-invertible valuation ideal.

(4) Each nonzero ∗-ideal of D is a finite ∗-product of valuation ideals.

Proof. Since ∗-dim(D) = 1, we have that D is ∗-treed. Moreover, D is ∗-h-local

if and only if D is of finite ∗-character (since every nonzero prime ∗-ideal of D is

a maximal ∗-ideal). Now the equivalence is an immediate consequence of Theo-

rem 3.13. �

Next we characterize when a ∗-VIFD with ∗-dim(D) = 1 is atomic, which is a

variant of [10, Theorem 4.3], because D is a ∗-VIFD if D is a P∗MD of finite ∗-
character and ∗-dim(D) = 1 by Corollary 3.15. We first need a definition. Assume

that D is a P∗MD of finite ∗-character and ∗-dim(D) = 1. Let M ∈ ∗-Max(D).

Then DM is a one-dimensional valuation domain, and hence there exists a valuation

vM : K \ {0} → R (where R is the additive group of real numbers) such that

DM \ {0} = {x ∈ K \ {0} | vM (x) ≥ 0}. For each x ∈ K \ {0}, let ||x|| =∑
M∈∗-Max(D) vM (x) (this is well-defined, since D is of finite ∗-character). Observe
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that for each nonzero a, b ∈ D, a |D b if and only if vN (a) ≤ vN (b) for each N ∈ ∗-
Max(D). Moreover, ||xy|| = ||x||+ ||y|| for all x, y ∈ K \ {0}. Let R>0 denote the

set of positive real numbers.

We say that D satisfies the ACCP if D satisfies the ACC on principal ideals of

D. Moreover, D is called a BF-domain if D is atomic and for each nonzero nonunit

b ∈ D, there is some n ∈ N such that b is not a product of more than n atoms of

D. The next result can be proved along the same lines as [10, Theorem 4.3], but

for the sake of completeness, we include a proof.

Proposition 3.16. Let D be an integral domain and let ∗ be a star operation

of finite type on D such that D is a P∗MD, D is of finite ∗-character and ∗-
dim(D) = 1. The following statements are equivalent.

(1) For each nonzero nonunit a ∈ D, there exists some r ∈ R>0 such that

||b|| ≥ r for each nonzero nonunit b ∈ D such that b |D a.

(2) D is a BF-domain.

(3) D satisfies the ACCP.

(4) D is atomic.

Proof. (1) ⇒ (2) Let a ∈ D be a nonzero nonunit and let t = inf{||b|| | b ∈ D is a

nonzero nonunit such that b |D a}. Note that t > 0. Set k = b ||a||t c. It is sufficient

to show that if ` ∈ N is such that a is a product of ` nonunits of D, then ` ≤ k. Let

` ∈ N be such that a is a product of ` nonunits of D. Then a =
∏`

i=1 ai for some

nonunits ai ∈ D. Observe that t` ≤
∑`

i=1 ||ai|| = ||a||, and thus ` ≤ k.

(2) ⇒ (3) ⇒ (4) This follows from [17, Propositions 1.1.4 and 1.3.2].

(4)⇒ (1) Let a ∈ D be a nonzero nonunit. Note that P(aD) is the set of maximal

∗-ideals of D that contain aD (since ∗-dim(D) = 1). Set Ω = {P(uD) | u ∈ D

is an atom such that P(uD) ⊆ P(aD)}. Then Ω is finite (since D is of finite

∗-character) and Ω 6= ∅ (since D is atomic). Consequently, there exists a finite

nonempty set A of atoms of D such that Ω = {P(uD) | u ∈ A}. Note that

{vP (u) | u ∈ A, P ∈ P(uD)} is finite and nonempty, since A is finite and nonempty

and D is of finite ∗-character. Set r = min{vP (u) | u ∈ A, P ∈ P(uD)}. Then

r ∈ R>0.

Assume that there exists a nonzero nonunit b ∈ D with ||b|| < r and b |D a.

Since D is atomic, there is an atom v ∈ D with v |D b. We have that P(vD) ∈ Ω

(since v |D a), and hence P(vD) = P(uD) for some u ∈ A. Let M ∈ ∗-Max(D). If

v 6∈ M , then u 6∈ M , and thus vM (v) = 0 = vM (u). If v ∈ M , then u ∈ M , and

hence vM (v) ≤ ||v|| ≤ ||b|| ≤ r ≤ vM (u). In any case, we have that vN (v) ≤ vN (u)

for each N ∈ ∗-Max(D). Consequently, v |D u. This implies that u = vε for some

ε ∈ D× (since u and v are atoms of D). There exists some P ∈ P(vD) = P(uD).

Note that vP (u) = vP (v) ≤ ||v|| ≤ ||b|| < r ≤ vP (u), a contradiction. �

4. VIFDs and t-VIFDs

We begin this section with easy examples of VIFDs, which are Dedekind domains.

Dedekind domains are integral domains whose nonzero ideals can be written as a

finite product of prime ideals. Then Dedekind domains are π-domains, and D is a

Dedekind domain if and only if D is a π-domain of Krull dimension at most one.

Example 4.1. Let D be a Dedekind domain. Then D is a VIFD because each

prime ideal is a valuation ideal. Moreover, note that a Dedekind domain is a PID

if and only if its ideal class group is trivial. Note also that if D is a VFD, then

Clt(D) = {0} [9, Corollary 2.3(1)]. Hence, D is a VFD if and only if D is a PID.
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As in [23], we say that D is a ZPUI domain if every nonzero proper ideal I of D

can be written as I = J
∏n

i=1 Pi, where J is an invertible ideal of D, n ∈ N and the

(Pi)
n
i=1 are prime ideals of D. It is known that D is a ZPUI domain if and only if

D is a strongly discrete h-local Prüfer domain [23, Theorem 2.3]. As a w-operation

analog, we say that D is a w-ZPUI domain if every nonzero proper w-ideal of D

can be written as I = (J
∏n

i=1 Pi)w for some w-invertible ideal J of D, n ∈ N and

(Pi)
n
i=1 pairwise w-comaximal prime w-ideals of D [8, Definition 3.1]. It is known

that D is a w-ZPUI domain if and only if D is a strongly discrete independent ring

of Krull type [8, Theorem 3.5].

Following [14], we say that D is a unique representation domain (URD ) if each

t-invertible t-ideal of D can be uniquely expressed as a finite t-product of pairwise t-

comaximal t-ideals with prime radical. Then D is a URD if and only if each nonzero

principal ideal of D can be written as a finite t-product of pairwise t-comaximal

t-ideals with prime radical, if and only if D is t-treed and each nonzero principal

of D has only finitely many minimal prime ideals [14, Corollary 2.12]. Hence, we

have the following corollary, while a URD need not be a w-VIFD (see, for example,

[14, Corollary 2.17] and Corollary 4.6).

Proposition 4.2. Let D be an integral domain.

(1) If D is a ZPUI domain, then D is a VIFD.

(2) If D is a w-ZPUI domain, then D is a w-VIFD.

(3) If D is a w-VIFD that is t-treed, then D is a URD.

Proof. (1) Let D be a ZPUI domain. Then D is an h-local Prüfer domain, and thus

the result follows by Theorem 3.13.

(2) A w-ZPUI domain is an independent ring of Krull type. Thus, if D is a

w-ZPUI domain, then D is a w-VIFD by Theorem 3.13.

(3) This follows from Proposition 2.3(2), Lemma 3.2 and Theorem 3.13. �

The next result shows that the localization of a w-VIFD is also a w-VIFD as in

the case of VIFD that every localization of a VIFD is a VIFD by Lemma 3.8.

Proposition 4.3. Let D be a w-VIFD and let S be a multiplicatively closed subset

of D.

(1) DS is a w-VIFD.

(2) If Clt(DS) = {0}, then DS is a VFD.

(3) If S = D \
⋃n

i=1Mi for some n ∈ N and maximal t-ideals Mi of D, then

DS is a VFD.

Proof. (1) Let A be a nonzero principal ideal of DS . Then A = aDS for some

nonzero nonunit a of D. Hence, by assumption, aD = (
∏n

i=1 Ii)w for some valuation

ideals Ii of D, and since
∏n

i=1 Ii is t-invertible, we have that

A =
(( n∏

i=1

Ii

)
w

)
S

=
(( n∏

i=1

Ii

)
S

)
wS

=
( n∏

i=1

(Ii)S

)
wS

=
( n∏

i=1

(Ii)S

)
t
.

The last equality holds, since (
∏n

i=1(Ii)S)wS
is a wS-invertible wS-ideal of DS , and

thus it is a t-ideal of DS . Note that (Ii)S is a valuation ideal by Lemma 3.8, and

hence DS is a w-VIFD by Proposition 3.3.

(2) This follows from (1) and Corollary 3.4.

(3) If I is a t-invertible ideal of D, then II−1 *
⋃n

i=1Mi, and hence IS is

invertible. Thus, IS is principal because Pic(DS) = {0}. Thus, by the proof of (1)
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above, every nonzero principal ideal of DS can be written as a finite (t-)product of

principal valuation ideals, which implies that DS is a VFD. �

Let D[X] be the polynomial ring over D. A nonzero prime ideal Q of D[X] is

called an upper to zero in D[X] if Q ∩ D = (0). Following [21], we say that D is

a UMT-domain if each upper to zero in D[X] is a maximal t-ideal of D[X]. It is

known that D is a PvMD if and only if D is an integrally closed UMT-domain [21,

Proposition 3.2].

Lemma 4.4. Let D be a UMT-domain, let D[X] be the polynomial ring over D

and let Nv = {f ∈ D[X] | f 6= 0 and c(f)v = D}. Then D is a t-treed domain if

and only if D[X]Nv is treed.

Proof. The result follows directly from the fact that D is a UMT-domain if and

only if each prime ideal of D[X]Nv
is extended from D [21, Theorem 3.1]. �

It is easy to see that if D is a Krull domain, then D is a t-VIFD, t-Spec(D) is

treed, and D is an independent ring of Krull type. Now we characterize when D is

a t-VIFD under the assumption that D is t-treed.

Theorem 4.5. Let D be a t-treed domain, let D[X] be the polynomial ring over D

and let Nv = {f ∈ D[X] | f 6= 0 and c(f)v = D}. The following statements are

equivalent.

(1) Every nonzero t-ideal of D is a finite t-product of valuation ideals.

(2) D is a t-VIFD.

(3) D is an independent ring of Krull type.

(4) D[X] is an independent ring of Krull type.

(5) D[X] is a t-VIFD and D is a UMT-domain.

(6) D[X]Nv
is a VFD and D is a UMT-domain.

(7) D[X]Nv
is an h-local Prüfer domain.

(8) Every nonzero prime ideal of D contains a t-invertible valuation ideal.

Proof. (1) ⇒ (2) This is clear.

(2) ⇒ (8) ⇒ (3) ⇒ (1) This follows from Theorem 3.13.

(3) ⇔ (4) See [3, Corollary 2.9].

(4) ⇒ (5) Note that D[X] is a PvMD, so D is a PvMD [22, Theorem 3.7] and

D[X] is t-treed. Thus, the result follows by the equivalence of (2) and (3) above.

(5) ⇒ (6) Clt(D[X]Nv ) = {0} by [22, Theorem 2.14, Proposition 2.1 and Corol-

lary 2.3]. Thus, D[X]Nv
is a VFD by Propositions 3.3 and 4.3(2).

(6) ⇒ (7) Since D is a UMT-domain, D[X]Nv
is treed by Lemma 4.4. Thus,

D[X]Nv is an independent ring of Krull type [9, Theorem 3.4]. Moreover, since

each maximal ideal of D[X]Nv
is a t-ideal, the result follows.

(7) ⇒ (4) See [8, Lemma 2.2]. �

We say that D is a generalized Krull domain (in the sense of [25]) if D is a PvMD

such that t-dim(D) ≤ 1 and D is of finite t-character. Recall that t-dim(D) = 1 if

and only if D is not a field and each maximal t-ideal of D is a height-one prime ideal,

so an integral domain of t-dimension one is t-treed. The class of integral domains

of t-dimension at most one includes Krull domains, generalized Krull domains, and

one-dimensional integral domains.

Corollary 4.6. Let D be an integral domain with t-dim(D) = 1. The following

statements are equivalent.

(1) Each nonzero t-ideal of D is a finite t-product of valuation ideals.
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(2) D is a t-VIFD.

(3) D is a generalized Krull domain.

(4) D is a ring of Krull type.

Proof. It is clear that if t-dim(D) = 1, then D is an independent ring of Krull type

if and only if D is a generalized Krull domain, if and only if D is a ring of Krull

type. Thus, the result follows directly from Theorem 4.5. �

Let D(X) = { fg | f, g ∈ D[X] and c(g) = D}. Then D(X), called the Nagata

ring of D, is a ring such that D[X] ⊆ D(X) ⊆ D[X]Nv . It is known that each

nonzero prime ideal of a treed domain is a t-ideal. Hence, a treed domain is a

t-treed domain whose nonzero maximal ideals are t-ideals. We next characterize

when a treed domain is a VIFD.

Corollary 4.7. Let D be a treed domain. The following statements are equivalent.

(1) D is an h-local Prüfer domain.

(2) D is a VIFD.

(3) Each nonzero ideal of D is a finite product of valuation ideals.

(4) Every nonzero principal ideal of D can be written as a finite product of

comaximal valuation ideals.

(5) Every nonzero principal ideal of D can be written as a finite intersection of

comaximal valuation ideals.

(6) Every nonzero prime ideal of D contains an invertible valuation ideal.

(7) D(X) is a VFD and D is a UMT-domain.

Proof. (1) ⇔ (2) ⇔ (3) ⇔ (4) ⇔ (6) These follow directly from Theorem 3.13.

(1) ⇔ (7) Since D is treed, every nonzero prime of D is a t-ideal. Moreover, if

each maximal ideal of D is a t-ideal, then (i) D is an independent ring of Krull type

if and only if D is an h-local Prüfer domain and (ii) D(X) = D[X]Nv . Thus, the

result is an immediate consequence of Theorem 4.5.

(4) ⇔ (5) This follows from the fact that if I and J are comaximal ideals of D,

then IJ = I ∩ J . �

Next, we provide a variant of [9, Proposition 4.6]. Recall that D satisfies the

Principal Ideal Theorem if every minimal prime ideal of a nonzero principal ideal of

D is of height one. For example, Noetherian domains and Krull domains satisfy the

Principal Ideal Theorem, while a VFD does (in general) not satisfy the Principal

Ideal Theorem.

Theorem 4.8. Let D be a t-VIFD. The following statements are equivalent.

(1) D is a generalized Krull domain.

(2) t-dim(D) ≤ 1.

(3) D satisfies the Principal Ideal Theorem.

(4) D is completely integrally closed.

(5)
⋂

n∈N(In)t = (0) for each proper t-invertible t-ideal I of D.

Proof. (1) ⇒ (2), (4) It is obvious that t-dim(D) ≤ 1. If M ∈ t-Max(D), then DM

is a valuation domain of dimension ≤ 1, and hence DM is completely integrally

closed. Therefore, D =
⋂

M∈t-Max(D)DM is completely integrally closed.

(2) ⇒ (3) This is obvious.

(3) ⇒ (1) We have to show that D is a PvMD, D is of finite t-character and

t-dim(D) ≤ 1. It follows from Corollary 3.12 that D is of finite t-character. Let

M ∈ t-Max(D). Observe that DM satisfies the Principal Ideal Theorem. Moreover,
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DM is a VFD by Proposition 3.9. Consequently, DM is a PvMD by [9, Proposition

4.6]. It follows from [13, Theorem 4.1(2)] that D is a PvMD. Finally, let P be a

nonzero prime t-ideal of D. Since D satisfies the Principal Ideal Theorem, P is

the union of all height-one prime ideals of D that are contained in P . Since D is

t-treed, there is precisely one height-one prime ideal of D that is contained in P ,

and hence P is a height-one prime ideal of D. Thus, t-dim(D) ≤ 1.

(4) ⇒ (5) Let I be a proper t-invertible t-ideal of D and set J =
⋂

n∈N(In)t.

Observe that I−1J ⊆ J , and thus I−1 ⊆ (J : J). Assume that J 6= (0). Then

(J : J) = D (since D is completely integrally closed), and hence I = Iv = I−1 = D,

a contradiction.

(5) ⇒ (3) Let P be a minimal prime ideal of a nonzero principal ideal of D.

Since D is a t-VIFD, there exists a t-invertible valuation t-ideal I of D such that

P is a minimal prime ideal of I. Let Q be a prime ideal of D such that Q ( P . It

suffices to show that Q = (0). Assume that Q 6= (0). There exists some x ∈ Q\{0}.
We infer that xD ⊆ J ⊆ Q for some t-invertible valuation t-ideal J of D. Observe

that
√
J ⊆ Q ( P =

√
I. Therefore, x ∈ xD ⊆ J ⊆

⋂
n∈N(In)t = (0) by

Corollary 2.10(4), a contradiction. �

5. Almost valuation factorization domains

We will say that D is an almost valuation factorization domain (AVFD ) if for

each nonzero nonunit a ∈ D, there is an n ∈ N such that an can be written as a

finite product of valuation elements. Clearly, a VFD is an AVFD and a t-VIFD

with torsion t-class group is an AVFD (see Proposition 5.5).

Lemma 5.1. Let D be an integral domain and let b ∈ D be a nonzero nonunit that

can be written as a finite product of valuation elements of D.

(1) min{k ∈ N | b is a product of k valuation elements of D} = |P(bD)|.
(2) There are valuation elements (yP )P∈P(bD) of D such that b =

∏
P∈P(bD) yP

and
√
yQD = Q for each Q ∈ P(bD).

Proof. This can be proved along the same lines as [9, Lemma 1.12 and Proposition

1.13]. �

For the next result we mimic the proof of [9, Proposition 2.1] that a VFD is a

Schreier domain.

Proposition 5.2. Let D be an integral domain and let Ω be the set of all finite

products of units and valuation elements of D. Then for each x, y, z ∈ Ω with

x |D yz, there are some a, b ∈ Ω such that x = ab, a |D y, b |D z and y
a ,

z
b ∈ Ω.

Proof. If r, s ∈ Ω, then we write r |Ω s if r |D s and s
r ∈ Ω.

Claim: For each valuation element x ∈ D and all y, z ∈ Ω such that x |D yz, there

are some a, b ∈ Ω such that x = ab, a |Ω y and b |Ω z.

By Lemma 5.1(1), it is sufficient to show by induction that for all k ∈ N, for

each valuation element x ∈ D and for all y, z ∈ Ω such that x |D yz and |P(yD)|+
|P(zD)| = k, there are some a, b ∈ Ω such that x = ab, a |Ω y and b |Ω z.

Let k ∈ N, let x ∈ D be a valuation element and let y, z ∈ Ω be such that

x |D yz and |P(yD)| + |P(zD)| = k. Since yz ∈ xD ⊆
√
xD ∈ Spec(D) by [9,

Proposition 1.7(1)], we have that y ∈
√
xD or z ∈

√
xD. Without restriction let

y ∈
√
xD. By Lemma 5.1(2) there are valuation elements (yP )P∈P(yD) of D such

that y =
∏

P∈P(yD) yP and
√
yQD = Q for each Q ∈ P(yD). Consequently, there
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is some Q ∈ P(yD) such that yQ ∈
√
xD, and hence

√
yQD ⊆

√
xD. We infer by

[9, Corollary 1.2(1)] that yQD ⊆ xD or xD ⊆ yQD. Set y′ =
∏

P∈P(yD)\{Q} yP .

Case 1: yQD ⊆ xD. Then yQ = xu for some u ∈ D. It follows from [9, Proposition

1.1(3)] that u is a unit or a valuation element of D. Set a = x and b = 1. Obviously,

a, b ∈ Ω, x = ab and b |Ω z. Moreover, a |D yQ |D y and y
a = uy′ ∈ Ω, and thus

a |Ω y.

Case 2: xD ( yQD. Then x = yQw for some nonunit w ∈ D. We infer by [9,

Proposition 1.1(3)] that w is a valuation element of D. Observe that yQw = x |D
yz = yQy

′z, and thus w |D y′z. Furthermore, P(y′D) = P(yD) \ {Q}, and hence

|P(y′D)|+ |P(zD)| < k. We infer by the induction hypothesis that there are some

a′, b ∈ Ω such that w = a′b, a′ |Ω y′ and b |Ω z. Set a = yQa
′. Then a ∈ Ω,

x = yQw = yQa
′b = ab and a |Ω y. This proves the claim.

Note that Ω consists precisely of the units and the finite nonempty products of

valuation elements of D. Therefore, it is sufficient to show by induction that for all

n ∈ N, x ∈ D and y, z ∈ Ω such that x is a product of n valuation elements of D and

x |D yz, there are some a, b ∈ Ω such that x = ab, a |Ω y and b |Ω z. If n = 1, then

the statement follows from the claim. Now let n ∈ N, x ∈ D and y, z ∈ Ω be such

that x is a product of n+1 valuation elements of D and x |D yz. Then x =
∏n+1

i=1 vi
for some valuation elements vi of D. Set x′ =

∏n
i=1 vi. Then x′ |D yz. We infer by

the induction hypothesis that there are some a′, b′ ∈ Ω such that x′ = a′b′, a′ |Ω y

and b′ |Ω z. Since a′b′vn+1 = x |D yz, we infer that vn+1 |D y
a′

z
b′ . Since vn+1 is a

valuation element of D and y
a′ ,

z
b′ ∈ Ω, it follows by the claim that there are some

a′′, b′′ ∈ Ω such that vn+1 = a′′b′′, a′′ |Ω y
a′ and b′′ |Ω z

b′ . Set a = a′a′′ and b = b′b′′.

Then a, b ∈ Ω, x = x′vn+1 = a′b′a′′b′′ = ab, a |Ω y and b |Ω z. �

We say that D is an almost Schreier domain if for all nonzero x, y, z ∈ D with

x |D yz there are n ∈ N and a, b ∈ D such that xn = ab, a |D yn and b |D zn

[11]. It is known that if D is an almost Schreier domain, then Clt(D) is a torsion

group [11, Theorem 3.1] and if D is an integrally closed almost Schreier domain,

then D[X] is an almost Schreier domain [11, Theorem 4.4].

Theorem 5.3. Let D be an integral domain. Then D is an AVFD if and only if

D is an almost Schreier domain and every nonzero prime t-ideal of D contains a

valuation element of D.

Proof. Let Ω be the set of all finite products of units and valuation elements of D.

(⇒) Let D be an AVFD. Let x, y, z ∈ D be nonzero such that x |D yz. Since D

is an AVFD, there are r, s, t ∈ N such that xr, ys, zt ∈ Ω. Set n = rst. Then n ∈ N,

xn, yn, zn ∈ Ω and xn |D ynzn. We infer by Proposition 5.2 that there are a, b ∈ D
such that xn = ab, a |D yn and b |D zn. Therefore, D is an almost Schreier domain.

Now let P be a nonzero prime t-ideal of D. Choose a nonzero a ∈ P . Then there

exists n ∈ N such that an is a finite product of valuation elements of D. Note that

an ∈ P . Thus, P contains a valuation element of D.

(⇐) Let D be an almost Schreier domain for which every nonzero prime t-ideal

contains a valuation element of D. Let Σ = {a ∈ D | an ∈ Ω for some n ∈ N}.
Clearly, Ω and Σ are multiplicatively closed subsets of D. We show that Σ is a

divisor-closed subset of D. Let a ∈ Σ and b ∈ D be such that b |D a. There are

some n,m ∈ N and vi ∈ D such that an =
∏m

i=1 vi and vi is a unit or a valuation

element of D for each i ∈ [1,m]. We have that bn |D
∏m

i=1 vi. Since D is an almost

Schreier domain, it follows by induction that there are some k ∈ N and wi ∈ D
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such that bnk =
∏m

i=1 wi and wj |D vkj for each j ∈ [1,m]. Let j ∈ [1,m]. If vj
is a unit of D, then wj is a unit of D. Now let vj be a valuation element of D.

Since
√
vjD ⊆

√
wjD, we have that wj is a unit or a valuation element of D by

[9, Proposition 1.1(3)]. Consequently, bnk ∈ Ω, and thus b ∈ Σ.

It remains to show that D\{0} ⊆ Σ. Assume that there is some z ∈ D\(Σ∪{0}).
Since Σ is a divisor-closed subset of D (as shown before), we have that zD∩Σ = ∅.
Therefore, there exists a prime t-ideal P of D such that zD ⊆ P and P ∩ Σ = ∅.
Since z ∈ P , we have that P is nonzero, and thus P contains a valuation element

of D. This implies that ∅ 6= P ∩ Ω ⊆ P ∩ Σ = ∅, a contradiction. �

Corollary 5.4. Let D be an AVFD. Then D is an integrally closed weakly Matlis

domain and Clt(D) is a torsion group.

Proof. It is an immediate consequence of Proposition 3.11 and Theorem 5.3 that

D is an integrally closed weakly Matlis almost Schreier domain. We infer by [11,

Theorem 3.1] that Clt(D) is a torsion group. �

Recall that (i) VFDs are AVFDs by definition and (ii) D is a VFD if and only if

D is a VIFD with Pic(D) = {0}, if and only if D is a w-VIFD with Clt(D) = {0}
by Corollary 3.5. The next result also shows that a VIFD D for which Pic(D) is a

torsion group is an AVFD.

Proposition 5.5. Let D be an integral domain and let ∗ be a star operation of

finite type on D such that D is a ∗-VIFD and Cl∗(D) is a torsion group. Then D

is an AVFD.

Proof. Let a ∈ D be a nonzero nonunit. Then aD = (
∏n

i=1 Ii)∗ for some n ∈ N and

proper valuation ∗-ideals Ii of D by Proposition 3.3. Clearly, each Ii is ∗-invertible,

so by assumption that Cl∗(D) is a torsion group, there is an m ∈ N such that for

each i ∈ [1, n], there is some ai ∈ D such that (Imi )∗ = aiD. Then each ai is a

valuation element by Proposition 2.9. Thus, am can be written as a finite product

of valuation elements. �

We say that D is an almost GCD domain (AGCD domain) if for each a, b ∈ D,

there is an n ∈ N such that anD ∩ bnD is principal [29]. It is known that an

integrally closed domain D is an AGCD domain if and only if D is a PvMD such

that Clt(D) is a torsion group [29, Corollary 3.8 and Theorem 3.9] and an AGCD

domain is an almost Schreier domain [11, Proposition 2.2].

Corollary 5.6. Let D be a t-treed domain. The following statements are equivalent.

(1) D is an AVFD.

(2) D is an integrally closed weakly Matlis AGCD domain.

(3) D is an independent ring of Krull type such that Clt(D) is a torsion group.

(4) Clt(D) is a torsion group and each nonzero prime ideal of D contains a

valuation element.

(5) D is a t-VIFD such that Clt(D) is a torsion group.

(6) D[X] is an AVFD.

Proof. (1)⇒ (4) It is clear that each nonzero prime ideal of D contains a valuation

element. Moreover, Clt(D) is a torsion group by Corollary 5.4.

(2) ⇔ (3) See, for example, [29, Corollary 3.8 and Theorem 3.9].

(3) ⇒ (1) Note that D is a t-VIFD by Theorem 4.5. Thus, by Proposition 5.5,

D is an AVFD.
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(3) ⇒ (6) Observe that D is a PvMD with Clt(D) torsion. Hence, Clt(D[X]) is

a torsion group [29, Theorem 5.6]. Moreover, D[X] is a t-VIFD by Theorem 4.5.

Thus, D[X] is an AVFD by Proposition 5.5.

(4) ⇒ (3), (5) This follows from Theorem 4.5.

(5) ⇒ (1) This is an immediate consequence of Proposition 5.5.

(6) ⇒ (1) Let D[X] be an AVFD. Let a be a nonzero nonunit of D. Then a is a

nonzero nonunit of D[X], and hence there are some k, n ∈ N and valuation elements

vi of D[X] such that ak =
∏n

i=1 vi. Observe that vi ∈ D for each i ∈ [1, n], and

hence vi is a valuation element of D for each i ∈ [1, n] by [9, Lemma 2.5]. Therefore,

D is an AVFD. �

Corollary 5.7. Let D be an integral domain and let D[X] be the polynomial ring

over D. Then D[X] is an AVFD if and only if D is an AVFD and every upper to

zero in D[X] contains a valuation element of D[X].

Proof. (⇒) Let D[X] be an AVFD. Then D is an AVFD by Corollary 5.6 and every

upper to zero in D[X] contains a valuation element of D[X] by Theorem 5.3.

(⇐) Now let D be an AVFD such that every upper to zero in D[X] contains a

valuation element of D[X]. It follows by Theorem 5.3 and Corollary 5.4 that D

is an integrally closed almost Schreier domain and each nonzero prime (t-)ideal of

D contains a valuation element of D. We infer by [11, Theorem 4.4] that D[X]

is an almost Schreier domain. Now let Q be a nonzero prime t-ideal of D[X]. If

Q∩D = (0), then Q contains a valuation element of D[X] by assumption. Now let

Q∩D 6= (0) and set P = Q∩D. Then P is a nonzero prime ideal of D, and thus P

contains a valuation element of D. Consequently, Q contains a valuation element

of D. It follows from [9, Lemma 2.5] that Q contains a valuation element of D[X].

Therefore, D[X] is an AVFD by Theorem 5.3. �

Example 5.8. Let L be an algebraic number field and let D be an order in L.

Then D is an almost Schreier domain [11, Remark 6.4] and if D is the principal

order in L (i.e., D is integrally closed ), then D is an AVFD by Corollary 5.6.

It is known that an atomic VFD is a UFD [9, Corollary 2.4], and hence it satisfies

the Principal Ideal Theorem. The next result shows that this is true for AVFDs.

Proposition 5.9. Let D be an atomic domain.

(1) If D is an AVFD, then D satisfies the Principal Ideal Theorem.

(2) If D is a t-VIFD such that Clt(D) is a torsion group, then D is a generalized

Krull domain.

Proof. (1) Let D be an AVFD, let x ∈ D be nonzero and let P ∈ P(xD). There

exists an n ∈ N such that xn is a finite product of valuation elements of D. Note

that P ∈ P(xnD), and hence P ∈ P(vD) for some valuation element v ∈ D. This

implies that P =
√
vD by Proposition 2.3(2). Assume that P is not a height-one

prime ideal of D. Then there is a nonzero prime ideal Q of D such that Q ( P .

Note that Q contains a valuation element a ∈ D. Clearly, there is an atom u ∈ Q
such that aD ⊆ uD. We infer by [9, Proposition 1.1(2)] that u is a valuation

element of D. Moreover,
√
uD ⊆ Q ( P =

√
vD, and hence uD ( vD ( D [9,

Corollary 1.2(1)]. This contradicts the fact that u is an atom of D.

(2) Let D be a t-VIFD such that Clt(D) is a torsion group. Then D is an AVFD

by Proposition 5.5. Consequently, D satisfies the Principal Ideal Theorem by (1),

and hence D is a generalized Krull domain by Theorem 4.8. �



VALUATION IDEAL FACTORIZATION DOMAINS 25

The exponent of a group G, denoted exp(G), is defined by inf{k ∈ N | xk = 1 for

all x ∈ G}. We proceed with providing a partial generalization of [9, Corollary 2.4]

that characterizes when a VFD is atomic. Let N≥m = {x ∈ N | x ≥ m} for each

m ∈ N.

Theorem 5.10. Let D be an integral domain such that exp(Clt(D)) is finite. Then

D is a Krull domain if and only if D is an atomic t-VIFD, and in this case, D is

an AVFD.

Proof. Clearly, every Krull domain is an atomic t-VIFD. Conversely, suppose that

D is an atomic t-VIFD. It follows from Proposition 5.9(2) that D is a generalized

Krull domain. Therefore, D satisfies the ACCP by Proposition 3.16.

Next we show that D satisfies the ACC on t-invertible t-ideals of D. Let (Ii)i∈N
be an ascending sequence of t-invertible t-ideals of D. Let n be the exponent

of Clt(D). Observe that (Ini )t is a principal ideal of D for each i ∈ N. Since

D satisfies the ACCP, there exists some m ∈ N such that (Inm)t = (Ink )t for all

k ∈ N≥m. Let k ∈ N≥m and let M ∈ t-Max(D). There are nonzero a, b ∈ D

such that (Im)M = aDM and (Ik)M = bDM . It follows that anDM = ((Inm)t)M =

((Ink )t)M = bnDM , and thus (a
b )n is a unit of DM . Note that DM is integrally

closed by Corollary 3.12. Consequently, a
b ∈ DM , and hence a

b is a unit of DM .

This implies that (Im)M = aDM = bDM = (Ik)M . Therefore, Im = Ik.

It remains to show that every nonzero t-ideal of D is t-invertible. Let I be a

nonzero t-ideal of D. Then there exists a maximal element J of the set of all t-

invertible t-ideals of D that are contained in I. Assume that J ( I. Then there

exists some a ∈ I \ J . Since D is a PvMD, we infer that (J + aD)t is a t-invertible

t-ideal of D. Furthermore, J ( (J + aD)t ⊆ I, a contradiction. Therefore, I = J

is a t-invertible t-ideal of D.

It is obvious that if exp(Clt(D)) is finite, then Clt(D) is a torsion group. Hence,

in this case, D is an AVFD by Proposition 5.5. �

We end this paper with an example which shows that the assumption that

exp(Clt(D)) is finite in Theorem 5.10 is crucial.

Example 5.11. Let D be a one-dimensional atomic Prüfer domain of finite char-

acter such that D is not a Dedekind domain. (For an example of such a domain

see [19].) Then D is an atomic t-VIFD that is not a Krull domain.
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[6] D.F. Anderson, G.W. Chang, J. Park, Generalized weakly factorial domains, Houst. J. Math.

29 (2003) 1–13.

[7] G.W. Chang, Unique factorization property of non-unique factorization domains, J. Algebra

Appl. 20 (2021), 2150038 18 pp.

[8] G.W. Chang and H.S. Choi, Ideal factorization in strongly discrete independent rings of

Krull type, J. Algebra Appl. 22 (2023), 2350045 21 pp.



26 G. W. CHANG AND A. REINHART

[9] G.W. Chang and A. Reinhart, Unique factorization property of non-unique factorization

domains II, J. Pure App. Algebra 224 (2020), 106430 18 pp.

[10] J. Coykendall and R.E. Hasenauer, Factorization in Prüfer domains, Glasg. Math. J. 60
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