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PUMPING IN MODELS OF FLOW
IN A LOOP OF RIGID PIPES

Georg Propst !

Abstract. This article studies ordinary differential equations modeling incompress-
ible flow in rigid pipes that connect two distensible vessels, one of which is periodically
forced. The forcing controls either the pressure or the volume of the excited vessel and
- in part of the period - can be replaced by free relaxation. The pressure losses at the
junctions of the pipes and vessels are quadratic with or without switches according
to the direction of the flow. Stability and net flow of the equilibria of the unforced
systems is investigated. Pumping solutions are defined and proven to exist in case of
nonlinear pressure losses at the junctions. In contrast to often-quoted literature, it is
shown that ’impedance defined’ piecewise linear models can not produce net flow with
continuous solutions. For partial forcing models numerical simulations are reported.

Keywords: valveless pumping, impedance defined flow, periodic solutions, cir-
cular net flow

1. INTRODUCTION

In flow configurations with elastic tubes and/or rigid pipes that are free of
valves, pumping effects such as average flow can be generated by periodic exci-
tation. This was observed experimentally, eg. [2, 5, 9, 11, 15, 16|, as well as in
numerical simulations with mathematical models, eg. [6, 7, 11, 15, 16]. All these
references and the present article deal with closed loop configurations so that av-
erage flow is possible for periodic motion. This is not possible in non-closed-loop
configurations such as in [1, 13, 14].

However, many of the present-day engineering applications are non-closed-loop
configurations with elastic tubes, see eg. [17] and the references therein. The
mathematical models of configurations with elastic tubes are nonlinear partial
differential equations with dynamic boundary conditions. The proof of well-
posedness of such systems involves rather advanced functional analytic methods,
see [12] for an overwiew and the references therein for the proofs. Numerical
simulations for a non-closed-loop thick-wall elastic tube are used in [4]. Physical
measurements with a closed loop consisting of a rigid and an elastic tube are
described in [8].
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FIGURE 1. Reproduction of Figure 3 (a) in [9]

One of the origins of research on valveless pumping is in cardiovascular science
[5, 9], where one is interested primarily in closed loop configurations. In the
present article we consider two distensible vessels that are connected by two
rigid pipes all of which are filled with an incompressible fluid such as water.
This is the configuration of [9]. The momentum equations for rigid pipes are
ordinary differential equations. [9] is quoted in [1, 6, 10, 11, 13] and many other
published papers, even in [8, 17]. Yet, the outdated International Journal of
Cardiovascular Medicine and Science is not easy to get. For ease of reference,
transparency and reproducibility Figure 3 (a) and equations (1a),(2),(3),(4),(1b)
of [9] are shown in Figure 1 and equations (1),(2),(3),(4),(5). We also reproduce
the sentence between (4) and (5).

In [9] (and iterated in [10]) a piecewise linear model for the flows @1, Q5 in two
rigid pipes that connect two distensible reservoirs is considered; see Figure 1. The
time interval [0, 00) is covered by intervals of length 7" > 0, [kT, (k + 1)T), k €
Ny = {0,1,2,...} and each of these intervals is split into [T, kT + T) (Phase
a) and [kT' 4+ Ty, (k+1)T) (Phase b), where 0 < Ty < T'. With the nomenclature
of [9] the model equations are

Qo(t) = Q1(t) + Qa(t) (

po(t) — pi(t) = Ri@Qu(t) (2
po(t) = pi(t) = Lad Qa(t)/dt (
Q1(1) + Q2(t) = Crdpi (1) /dt (

When reservoir Cj is not compressed, eq. (1) is replaced by

Qu(t) + @a2(t) = —Codpo(t)/dt ()
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The reservoir Cy is periodically compressed (Phase a) modeled by the enforce-
ment of Q1 + Q2 in equation (1) and released (Phase b) according to equation (5).
For the (numerical) computation of an (asymptotically) periodic solution of this
model, one needs to track the volumes Vy, V; whose derivatives are F(Q1 + Q2)
and this also yields the pressures p; = C;'V;. In [9] the continuity of the so-
lutions is not discussed, however the graphical simulation results seem to show
discontinuities at kT, kT + Tp. In fact, for Ry, Ly # 0, suppose that Q1 (t), Q2(t)
are T-periodic solutions of (2)-(3); then they are continuous during Phase a and
Phase b. So, by the fundamental theorem of calculus, we integrate (2)-(3) over
a full period and get for the average Q; of @,

- 1 (k+1)T
Q= = / Q:(t) dt
' T kT 1( )
L2 kT+To d (k+1)T d
= - t)dt — t)dt
TR, (/kT dtQQ( ) +/kT+T0 dtQQ( )
L ([ | | |
= TR <ml¥£% Qat) — lim Qa(t) + lim  Qa(t) = lim Qz(t)) .

Periodicity of Qo implies lim 11y Q2(t) = limyyr Q2(t). It follows that @ # 0
if and only if either Q»(t) is discontinuous at k7" or at kT+T; or at both such that
the jumps do not cancel each other. In particular, a continuous periodic solution
of this model has average flow @Q; = 0. So the main result of [9], namely nonzero
average flow, must have been produced by simulations with discontinuous flows
— without stating this aspect explicitely; [10] reports on avoiding a discontinuity
(in pp), but Q1 in Figure 2.11 of [10] again looks very discontinuous.

However, discontinuous (in time) flows are not physically realistic, in particular
not for valveless models that are of concern here.

It happens in mathematical modeling that physically unrealistic features are
accepted, just for simplicity and as long as the features are not important for
the aspect of interest. But in [9, 10] discontinuous (in time) flow is crucial
for the main theme of the model, namely average flow in a valveless circular
configuration. The discontinuities are not discussed in these works, nor in the
many publications citing [9]. In [9] the discontinuities are missed, uncommented
simulation artefacts. This should be repaired.

In the present article we generalize the model of [9] (a full momentum equation
for either pipe) and introduce more flexibility (lengths and cross sections of the
pipes, etc). But as long as the model is (piecewise) linear and the solutions are
continuous, there will be neither pumping nor average flow. Thus, we introduce
nonlinear loss terms of the form ¢ gQ? and - for some versions - prove existence
of continuous periodic and pumping solutions with average flow. For the two
phase models, we present simulation results that are continuous and pumping.
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That the models are simple is advantageous, since thereby the role of the var-
ious parameters and in particular of the non-linearity becomes very clear. Some
of the quoted references were (co)authored by physiologists, so they understand
and accept that some aspects of the cardiovascular system are represented by a
configuration as simple as in Figure 1.

2. THE MODELS

Let p° p' be the time varying pressures in two fluid filled vessels that are
connected by a rigid pipe of length ¢ > 0. The idealized momentum equation for
the motion of the fluid in the pipe is

plu(t) = p°(t) = p'(t). (6)
p > 0 is the density of the incompressible fluid and u is the fluid velocity in
direction from vessel 0 toward vessel 1. ' stands for the derivative with respect
to time t. We will frequently suppress writing the explicit t-dependence. We
model pipe friction by subtracting the pressure Rfu from the right hand side of
(6). R > 0 is Poiseuille’s friction coefficient of the pipe. According to Bernoulli’s
law along streamlines, the pressure drop due to acceleration at the junctions of
the pipe and the vessels, is modeled by subtracting ¢ §u2 from the pressure in
the vessel, where ( > 1 is a dimensionless friction coefficient depending on the
geometry and smoothness of the junction. Thereby it is assumed that the fluid
in the vessel is at rest. This is in accordance with flow out of the vessel into
the pipe when the cross section of the vessel is large in comparison to the cross
section of the pipe. But it is less in accordance with flow in the direction from
the pipe into the vessel. To take this asymmetry into account, the quadratic
term is turned off for the latter direction leading to (1 + (—1)sgnu)(5u?® for
vessel j = 0,1 (cf. [15, 16]). Modeling a vessel to be distensible like an elastic
balloon, we let p? = C¥(V? — VJ), where C? > 0,V7,j = 0,1 are given model
parameters. The variation of the hydrostatic pressure at the bottom of a vertical
rigid cylindrical open tank due to the variation of the level height of the fluid in
the tank yields a linear model of the same structure (eg. eq. (7) in [13]). We will
consider closed loop configurations with two pipes connecting the two vessels as
in [9]. The subindices i are used for the two pipes. We combine three types
of forcing in vessel 0 and two versions of the quadratic terms: with or without
signum switches.

2.1. Pressure forcing (prefor). Let p(t) be a controllable pressure in addition

to the elasticity or to the hydrostatic pressure in vessel 0. Denoting the constant

cross section of pipe 7 by A; > 0 we get for i = 1,2 and j = 0,1

1 +sgnu; ., 1—sgnu; ;. p ,

- 2 (- — 2 s 7
D e L)

V], = —(—1)j (A1u1 + AQUQ) (8)

p&u; =D —l—po — pl — Rilu; — (
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where p/ = C9(VJ — VJ). Tt is reasonable to assume that the volume V, out-
side of the always filled and undeformed pipes is constant, i.e. VO(t) + V1(¢) =
Vi. Then (7),(8) can be reduced to an equivalent model with state vector
(up(t), uz(t),VO(t)) € R3: We omit the j = 1 equation in (8) and call the re-
maining V%-equation (3’); and we replace p° — p! in (7) by —P, + CV? and call
the result (2°). The constants are P, = C°V? + CY(V, — V!) and C = C° + C.
If (ug,ug, V) is a solution of (27),(3’), then (uy,uz, V°, Vi, — V) is a solution of
(7),(8) and the first three components of a solution to (7),(8) are a solution to
(27),(3"). We refer to (7),(8) or (27),(3”) as model preforsgn; when the signum
switches (1 =& sgnu;) are replaced by 1, we call it prefor.

2.2. Flow forcing (flofor). Similar as in [15],[16],[13](model (d)) instead of
the pressure p let the flow in and out of vessel 0 be controlled by a forcing
function f(t): V% = —f. A possible physical realization is given by a rigid
tank whose time varying volume is enforced by a piston (cf. [15],[16]). Of course,
VI = +f or V! =V, — VO Subtracting (7); from (7), in prefor, and using
Ajuy + Asus = f and its derivative, gives

p(Alfg—f-Ale)Ué = (p51 f Alefg AQRlEl)UQ

L 2 2
+2A1 (A265 — A201)u3 (9)
+Ry 0 f — —51f + ply f’

where &; = ¢} — (. We refer to this model as flofor; when each ¢} is multiplied
by the switch %(1 +(—1)7sgnu;), we call it floforsgn. These are inhomogeneous
ODEs with a time dependent coefficient of wu,.

For some of the analysis it is more convenient not to eliminate u? in the right
hand side of (7);— (7)2, which, by u; = (f — Asug)/A;, gives

p(Algg —+ A2€1>’U,/2 = —(Alegg -+ Agngl)Ug —+ gAl ((52’&% — 511&) -+ nglf -+ pglf/-
(10)

2.3. Partial forcing (parflo). Inspired by [9] we look at a model wherein each
time-period is split into two phases.. Let 7" > 0 and 7" > T, > 0 be fixed. For
k € Z, the time interval [KT, kT +Tj) is called phase a and kT + Ty, (k+1)T) is
called phase b. During phase a the model for the flow is flofor (or floforsgn)
with some appropriate forcing f(¢), and during phase b the model is prefor (or
preforsgn respectively) with p = 0, which means 'relaxation’ for vessel 0. Initial
conditions (i.c.) are given at ¢t = 0, for notational uniformity we denote them by
u2(0—), V2(0—). In case of periodicity the solution may be extended to t < 0.

The two phase model has the four state components ui,us, V°, V1 and, for
k=0,1,2,...,1is defined as follows:
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Phase a, t € [kT, kT + Tp):
Us satisfies (9) with i.c. ug(kT) = ug(kT—)

1
U = A_l(f_A2u2)

VY = —f withic VOkT)=VkT-)
vt = v, -V
f is continuously differentiable and satisfies

the continuity condition f(kT) = Ajuy(kT—) + Agus(kT—)
Phase b, t € [kT + Ty, (k+ 1)T):

u; satisfy (2") with p =0 and i.c. u;(kT + Ty) = u; (KT + To—)
VOI = —(A1u1 + AQUQ), with i.c. VO(I{ZT + To) = Vo(k?T + Tg—)
Vl — ‘/'* . VO

(t—) denotes the left-hand limit at t. The two phase model is called parflo
(parflosgn respectively). A solution of a two phase model is continuously dif-
ferentiable on (KT, kT +1Ty), [kT+To, (k+1)T") and continuous at k7T, kT +Tp, k =
0,1,2,.... The continuity of uy, V°, V! is a consequence of the initial conditions
and the continuity of u; follows from the continuity condition on f. Because of
the continuity condition, the forcing f is not independent of the state, never-
theless in (KT, kT + Tp) it may be any continuously differentiable function. For
example, similar to [9] (but not as rough), it could imitate a beating heart by
f(t) = f(kT)+a(t — kT). If we choose a = 2(VO(KT) — Ty f(kT) — V) /T3, then
f enforces VO(KT + To—) = V. V is a model parameter (in [9] V) = 0).

Since f = 0 enforces constant volumes in phase a, there is no unforced parflo,
parflosgn unless 7 = 0 so that it coincides with prefor, preforsgn with p = 0.

3. EQUILIBRIA, NET FLOW AND STABILITY

To shorten the presentation we exclude the case Ry = Ry = 0.

An equilibrium of an unforced dynamic system is a solution such that all time
derivatives vanish.

A (constant or nonconstant) periodic solution to one of the above models is
called a net flow (or average flow) if the means of its velocity components are
not zero.

In the non-loop models as in [13, 14], net flow is impossible, because the
volumes in two tanks connected by one pipe must be periodic too.

First we show that equilibria of preforsgn do not exhibit net flow. We write ¢;
for the factor in front of Su? in (7), i.e. §; = —¢} if u; <0 and {; = +¢ if u; > 0.
Let (u1,uz, V?, V1) be an equilibrium of preforsgn with p = 0. Because of (8)
uy > 0 implies uy < 0 and u; < 0 implies uy > 0. In case p° — p! > 0, (7) implies
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Rilu; + GEu? > 0. So if uy < 0 we have the contradiction Ryljuy — ({5ui < 0
and if u; > 0, then us < 0 and we have the contradiction Rofouy — %%’u% < 0.
Thus u; = us = 0 which implies p° — p! = 0. An analogous argument holds
in case p° — p' < 0. Therefore, in equilibrium only p® — p! = 0 is possible,
which implies R;l;u; + quf = 0. So either uy = uy = 0 or (pu; = —2RY;
with R;, R, > 0. But in both the cases u; > 0 and u; < 0 the product (u;
is positive, and we have a contradiction. Therefore in the unforced preforsgn
model every equilibrium has zero flow, u; = uy = 0. V° and V! must be such
that CO(V? - V) =CY (V! - V) or VO = P, /C, VI =V, - VO

Note that the nonlinear term in (7) or (2’) is continuously differentiable: for
u; > 0 its partial derivative wrt u; is —(?pu; and for u; < 0 it is +¢!pu; which
coincide at u; = 0. The Jacobian of the homogeneous right hand side of (27),(3’)
in an equilibrium (uy, ug, V°) is

—Ri/p—Gui /b 0 C/pty
0 —Ry/p+ Gua/lz C/pls (11)
—A; —A, 0

for u; > 0, since then uy < 0. For u; < 0 and uy > 0, —(} is replaced by +(}
and +(j is replaced by —(J. Thus, the characteristic polynomial of the Jacobian
at (0,0,V0) is
R, R CAy R CA, Ry
AA+—)A+—) + A+ —=)+—A+—).
p p pb p pla p
In the simple case Ry = Ry =: R > 0 the eigenvalues are

R R C A A

)\1:—— and )\2’3:—%:& 4—)02—;(Z+E>,

the real parts of which are all negative and the equilibrium (0, 0, V;) of preforsgn
(27),(3%) is locally exponentially stable. The decay rate increases with R and
decreases with p.

For prefor with p = 0 in equilibrium we have 0 = p° — p' — Riliu; + 6;5u?
and 0 = Aju; + Asus. u; = 0 is possible only if p® — p! = 0 with the volumina
as in preforsgn. For uy,uy; # 0 we use the ui-equation to replace p° — p' in the
ug-equation, use u; = —Asus/A;, multiply by A; and divide by us to get the
contradiction A Ryly + Ay Rl = 0 in case A25, — A36, = 0 (in particular in the
linear model when d; = d2 = 0) and

2A1 A1R2£2 + A2R1£1
Uy =
2T A5, — A26
From uy we get p° — p* which yields VO = (p° — p! + P,)/C and V.
This formula can be interpreted as follows: s = (3 —(J > 0 means that in pipe
2 the pressure loss at the junction of vessel 1 is larger than at vessel 0 resulting

# 0, if A76y — A28, # 0. (12)
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in a force from 0 toward 1 and a positive us. Similarly a negative d; favors a
negative u; and thus a positive us.

The Jacobian of prefor (2°),(3") (with §; = ¢! — ¢?) is as in (11) except
that —( is replaced by +d; and +(; is replaced by +d,. For Ry = Ry > 0
the stability of the equilibrium (0,0, V?) is established as for preforsgn above.
The characteristic polynomial of (2),(3’) of prefor at the netflow equilibrium
(u1,uz, V) in (12) is

Ry 0

AMA+———= A+ ——-=
(A + P flul)( + ’ €2U2)+

Let us consider the case

_ ﬁu1 _ B @UQ =:a. (13)
P b p 2
In this case the eigenvalues of the Jacobian are as those for (0,0,V°) with R/p
replaced by a; so the net flow equilibrium is unstable if a < 0. When R; =
Ry =: R > 0, the first equality in (13) holds iff §; Asly = —2A1¢;. And a < O iff
Ry — d9pus < 0 which holds, for example, if A; = Ay, 01 = {5,061 = —d9 # 0.

The model flofor with f = 0 in case A2, — A36; = 0 has the only equilibrium
ug = 0, otherwise there is the additional netflow equilibrium uy # 0 of (12). The
derivative with respect to us of the right hand side of (9) is —A; Roly — Ay Ry 0q +
4-(AJ0y — A301)uz. So uy = 0 is stable and the netflow equilibrium is unstable.

Finally, consider floforsgn with f = 0. The equilibrium uy, = 0 is stable,
because the derivative of (9) is negative at us = 0. If uy > 0 then u; < 0
since Aju; + Asus = 0 and in (9) §; is replaced by +({, ds is replaced by —(3.
So (9) implies 0 = — (A1 Raly + AxRily)us + 55-(AF(—¢3) — A3(})u3 which is a
contradiction since CZ] > 1. Analogously, uy < 0 leads to a contradiction. Thus
floforsgn does not have netflow equilibria.

In summary, the unforced sgn models have zero flow equilibria only. The
explanation is that the sgn switches at each end of the pipes together resist
flow in any direction. But in the no-sgn models the difference of the friction
coefficients ¢; = ¢} — ¢ may be nonzero and if A?5, — A3, # 0, then there is a
netflow with us in the direction of the sign of this quantity. However, these net
flow equilibria are unstable and thus are not physically realistic.

CA, Ry 0
A — = Z2uy)+
pl ( p b 2)

CA,
A — — —uy).
P£2( p b 2

4. EXISTENCE OF PERIODIC SOLUTIONS
The models prefor and flofor can be written in the form
' = Az + b(t) + eh(t, x, ), (14)

where A € R"*" is a constant matrix, the continuous function b is T-periodic, &
is a scalar and h is R™ valued. We deduce the existence of T-periodic solutions
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from the theory in [3] chapter IV, and check the sufficient properties of A, b, h,
listed after [3, IV (2.4)], namely

e 1/ = Ax is noncritical with respect to periodic functions,

e h is continuous and locally Lipschitz in x uniformly in ¢ and uniformly in

€ in a bounded interval that contains 0.
In prefor we let Ry = Ry > 0. Then the eigenvalues of the constant matrix A
in (2),(3), which is (11) with ¢/ = 0, all have negative real part. The same is
true for the 1 x 1 matrix
1

A=
p(Alfg -+ Agél)
in (9). Therefore, ' = Az is noncritical with respect to periodic functions
(p(t) — P.)/ply

b(t) = | (p(t) —OP*)/ pls

(—Alefg — Aglel)

in prefor and

_ 1 14 2 /
- p<A1€2+A2€1)(R1€lf 2A151f +p£1f)

in flofor. Let € be that number among 91, 9, that has the largest absolute value.
For prefor we define the nonlinear term

b(t)

Uy P 51U%/2€€1
h(t, (%) ,5) = 5 (52’&%/2862
Vo 0

Because |0;/¢| < 1 and |u? — w?| < |u + w||u — w|, h is locally Lipschitz in the
second argument with the required uniformity. The same is true for A in flofor,
1 (51 A2 1 52 51
- - (e - A2_ o AZ 2
Alfg + A2€1< g Al fU2 + 2A1( ! 3 2 )u2>,
if f is continuous and periodic. Therefore, [3, IV Theorem 2.1] yields

h(t —
(7u27€> c

Theorem 4.1. Suppose p is continuous and T-periodic. There are positive con-
stants €1, p1 such that for |6;| = |¢} — (P| < &1 there exists a T-periodic solution
of prefor and this is the only such solution in a p; neighborhood of the periodic
solution of the linear system with 6; = 0. If f is continuous and T-periodic, the
same statement (with appropriate €1, p1) holds for £lofor.

REMARK. The existence proof with the help of (14) is not applicable for the
sgn models. The difficulty in preforsgn is not lack of Lipschitz continuity, as
sgnuu? is continuously differentiable at u; = 0. But

¢ = 50— )+ gsmnu(¢) 4+ )

_ L+sgnu; 1 —sgnu;

Y
! 2 i 2
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where (P + ¢! > 2 can not be made small. Moreover in floforsgn, the terms
involving §; depend on u; = (f — Asus)/A; and are discontinuous in time. So
we have no proof of existence of periodic solutions to the sgn models.

In our formulation of parflo we tried to mimic [9] and included the continuity
condition on the forcing f in order to guarantee continuity of u;. But this makes
f depend on the state variables u; and so this model is not a standard ODE
problem. Also, splitting the period into two parts before and after k7" + T} is not
covered by existence proofs in the literature on periodic solutions. Another, more
standard version would be to prescribe the pressure p in vessel 0 during phase
a and set it to zero during phase b. Of course, continuity of the state variables
u;, V7 is to be brought about by adequate initial conditions at k7" and kT + Tp.
This renders a forcing that is independent of the state variables, but possibly
discontinuous at kT, kT + Ty. Instead of analyzing the existence of periodic
solutions to such a model (call it parpre), we propose to use the above results
on prefor and approximate a discontinuous forcing p by continuous functions.

5. PUMPING SOLUTIONS

In [13] a dynamic system that has a solution with certain properties was defined
to be a pump. The following definition is a bit more specific, less precise and
more handy.

Definition 5.1. A periodic solution x with mean T to a dynamic system z'(t) =
F(x(t), f(t)) where f is a periodic forcing with mean f is called a pumping
solution if F(T, f) # 0, i.e. T is not an equilibrium of the f-forced system.

Here and throughout we write T for the mean % ftHT x dt of a periodic function
x on R with period T" > 0.
Suppose uy, uz, V°, V1 is a periodic solution of prefor with p = 0. Taking the
mean in (7), (8) gives
0 = —Riliu; + 51%“'_@2 +p° —p!

Extracting p® — p! from the uj-equation and inserting it into the us-equation, we

get
— A
Rylytuy — 52%“3 = _RIEIA_TU_Q — 5151@

or, if Ry + Ry > 0, o o
_ p Ooud — du?
. 16
2T A Ryly 1+ ARyl (16)
which is nonzero iff 52u_§ =+ 51u_%, e.g. if 9102 < 0. So we have a pumping solution
(unless us in (12) equals w3 in (16)).
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The same formula for @z holds for a periodic solution of flofor with f = 0.
This can be seen by taking the average in (10).
In parflo we need to split the integrals into the part over [kT', kT +T5) denoted

T4T0 4, dr, and the part over (kT + Ty, (k+1)T)

kT
denoted by a superscript b, e.g. u} = k(:l;i;)oT ur dr. Let uy,ug, VO, V! be a T-

periodic solution of parflo. Then

by a superscript a, e.g. uf =

(k+1)T

0= [ Vidr = (V)4 (V) =~ (v + Agu)
kT

or

1
ul{ = A_(_fa — Azug) (17)
1
From (10) and u; = Ail(f — Asus) we get in Phase a
p(fgué — Elull) = _RQEQUQ —+ R1€1u1 + 5(527@ — 511/%)

Subtracting (7); from (7), the same equation holds in Phase b. Integration
yields

1
p(ﬁgu; — Elull)“ = —R2€2ug + lelA—Um — Agug) + g(égug — 51u§)a
1
1
p(ﬁgu’Z — Klull)b = —Rgggug + RIEIA_(_fa — Agug) + g(égug — 61U%)b
1

where we used (17). Taking the sum of these two equations, the left hand sides
cancel because of periodicity and continuity at kT + Ty. In the sum of the right
hand sides f* and — f cancel, so again we arrive at formula (16) for u5.

A physical interpretation of (16) is that a positive §; = ¢} — ¢? has the effect
of a valve in positive u;-direction by reducing the mean of the pressure at vessel
1 more than at vessel 0; this supports positive flow from 0 to 1. The —¢; in
the wy formula represents the inhibition of positive flow in pipe 2 by a pressure
difference due to §; > 0. For example if 5 > 0 (< 0) and d; < 0 (> 0), then
both pipes contribute to a positive (negative) average velocity us.

REMARK. Similar computations for the sgn models lead to terms of the form

u:? =1 fOT sgnu;(t) u;(t)? dt in addition to u2 > 0. But the sign of u:? depends of
the shape of u;(t), and so the prediction of pumping in the sgn models is not as

straightforward as in the non-sgn models.

6. SIMULATIONS

We briefly report on numerical simulations with parflo, parflosgn using
f(t) = Ayug(kT—) + Asus(kT—) + a(t — kT) during Phase a as described in
section 2. It happened that the numerical solution with parflo led to a blow
up in finite time. Roughly speaking, this behavior is induced by opposite signs
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of the §;, large |9;|, large C; and small R;. We never observed a blow up with
parflosgn (which, incidently, can produce subharmonics with period 27", eg.
with the parameters of the example below, except T = 1,C° = C! = 5). But
in a wide range of physically reasonable parameters the observation was that
both parflo and parflosgn converge to a limit cycle with period 7'. Figure 2
shows the last two cycles of length T = 2 of a simulation with parflo that was
started at ¢ = 0 and stopped at ¢t = 600. For this simulation the parameters
are T = 2,T0 = T/5,p = 1,61 = EQ = 30,A1 = AQ = 5,R1 = RQ = 0.5,00 =
Cl=25V0=V)=1,¢ =1, =2, =2, =150 that 6 = —6; = 1,
Vo(0) = VI(0) = 30,u1(0) = uz(0) = 0,V = V°0)/4. In the centimeter-
gram-second system of units these values could describe a laboratory desktop
configuration with water as fluid. With the same parameters the result with
parflosgn looks quite similar, only the vertical distance of the parallel curves
for u; and wuy is about half as wide and the maxima (minima) are somewhat
smaller (larger). Numerical integration of the simulation results over the last

period gives u; = —0.8860 (—0.2808) and u; = 0.8875 (0.2830) for parflo
(for parflosgn). This means counter-clockwise net flow as predicted in (16).
However, because A; = A, in this example, we should have 1y = —us, otherwise

the solution could not be periodic. That discrepancy seems to be due to inexact
numerical integration rather than to non-periodicity in u;(t).

In this example we have chosen identical pipes in order to demonstrate that
pumping is not due to asymmetric properties (inertia or friction) of the two pipes,
as deemed necessary in some of the literature, eg. [1, 5, 9, 15, 16]. Of course, if
we let, in addition, 6; = dy, then in parflo, u;(t) = us(t),t > 0 and w; = 0 as
in (16). The same is true for parflosgn if ¢/ = ¢J,j = 0,1. On the other hand,
the curves u(t), us(t) are not parallel as in Figure 2 when the pipe parameters
l;, R; are chosen different for i = 1 and i = 2.
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