


2 Pumping in models of flow in a loop of rigid pipes

Figure 1. Reproduction of Figure 3 (a) in [9]

One of the origins of research on valveless pumping is in cardiovascular science
[5, 9], where one is interested primarily in closed loop configurations. In the
present article we consider two distensible vessels that are connected by two
rigid pipes all of which are filled with an incompressible fluid such as water.
This is the configuration of [9]. The momentum equations for rigid pipes are
ordinary differential equations. [9] is quoted in [1, 6, 10, 11, 13] and many other
published papers, even in [8, 17]. Yet, the outdated International Journal of
Cardiovascular Medicine and Science is not easy to get. For ease of reference,
transparency and reproducibility Figure 3 (a) and equations (1a),(2),(3),(4),(1b)
of [9] are shown in Figure 1 and equations (1),(2),(3),(4),(5). We also reproduce
the sentence between (4) and (5).

In [9] (and iterated in [10]) a piecewise linear model for the flows Q1, Q2 in two
rigid pipes that connect two distensible reservoirs is considered; see Figure 1. The
time interval [0,∞) is covered by intervals of length T > 0, [kT, (k + 1)T ), k ∈
N0 = {0, 1, 2, . . . } and each of these intervals is split into [kT, kT + T0) (Phase
a) and [kT +T0, (k+ 1)T ) (Phase b), where 0 < T0 < T . With the nomenclature
of [9] the model equations are

Q0(t) = Q1(t) +Q2(t) (1)

p0(t)− p1(t) = R1Q1(t) (2)

p0(t)− p1(t) = L2 dQ2(t)/dt (3)

Q1(t) +Q2(t) = C1 d p1(t)/dt (4)

When reservoir C0 is not compressed, eq. (1) is replaced by

Q1(t) +Q2(t) = −C0 d p0(t)/dt (5)
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The reservoir C0 is periodically compressed (Phase a) modeled by the enforce-
ment of Q1+Q2 in equation (1) and released (Phase b) according to equation (5).
For the (numerical) computation of an (asymptotically) periodic solution of this
model, one needs to track the volumes V0, V1 whose derivatives are ∓(Q1 + Q2)
and this also yields the pressures pi = C−1i Vi. In [9] the continuity of the so-
lutions is not discussed, however the graphical simulation results seem to show
discontinuities at kT, kT + T0. In fact, for R1, L2 6= 0, suppose that Q1(t), Q2(t)
are T -periodic solutions of (2)-(3); then they are continuous during Phase a and
Phase b. So, by the fundamental theorem of calculus, we integrate (2)-(3) over
a full period and get for the average Q1 of Q1

Q1 =
1

T

∫ (k+1)T

kT

Q1(t) dt

=
L2

TR1

(∫ kT+T0

kT

d

dt
Q2(t) dt+

∫ (k+1)T

kT+T0

d

dt
Q2(t) dt

)

=
L2

TR1

(
lim

t↑kT+T0
Q2(t)− lim

t↓kT
Q2(t) + lim

t↑(k+1)T
Q2(t)− lim

t↓kT+T0
Q2(t)

)
.

Periodicity of Q2 implies limt↑(k+1)T Q2(t) = limt↑kT Q2(t). It follows that Q1 6= 0
if and only if either Q2(t) is discontinuous at kT or at kT+T0 or at both such that
the jumps do not cancel each other. In particular, a continuous periodic solution
of this model has average flow Q1 = 0. So the main result of [9], namely nonzero
average flow, must have been produced by simulations with discontinuous flows
– without stating this aspect explicitely; [10] reports on avoiding a discontinuity
(in p0), but Q1 in Figure 2.11 of [10] again looks very discontinuous.

However, discontinuous (in time) flows are not physically realistic, in particular
not for valveless models that are of concern here.

It happens in mathematical modeling that physically unrealistic features are
accepted, just for simplicity and as long as the features are not important for
the aspect of interest. But in [9, 10] discontinuous (in time) flow is crucial
for the main theme of the model, namely average flow in a valveless circular
configuration. The discontinuities are not discussed in these works, nor in the
many publications citing [9]. In [9] the discontinuities are missed, uncommented
simulation artefacts. This should be repaired.

In the present article we generalize the model of [9] (a full momentum equation
for either pipe) and introduce more flexibility (lengths and cross sections of the
pipes, etc). But as long as the model is (piecewise) linear and the solutions are
continuous, there will be neither pumping nor average flow. Thus, we introduce
nonlinear loss terms of the form ζ ρ

2
Q2
i and - for some versions - prove existence

of continuous periodic and pumping solutions with average flow. For the two
phase models, we present simulation results that are continuous and pumping.
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That the models are simple is advantageous, since thereby the role of the var-
ious parameters and in particular of the non-linearity becomes very clear. Some
of the quoted references were (co)authored by physiologists, so they understand
and accept that some aspects of the cardiovascular system are represented by a
configuration as simple as in Figure 1.

2. The models

Let p0, p1 be the time varying pressures in two fluid filled vessels that are
connected by a rigid pipe of length ` > 0. The idealized momentum equation for
the motion of the fluid in the pipe is

ρ`u′(t) = p0(t)− p1(t). (6)

ρ > 0 is the density of the incompressible fluid and u is the fluid velocity in
direction from vessel 0 toward vessel 1. ′ stands for the derivative with respect
to time t. We will frequently suppress writing the explicit t-dependence. We
model pipe friction by subtracting the pressure R`u from the right hand side of
(6). R ≥ 0 is Poiseuille’s friction coefficient of the pipe. According to Bernoulli’s
law along streamlines, the pressure drop due to acceleration at the junctions of
the pipe and the vessels, is modeled by subtracting ζ ρ

2
u2 from the pressure in

the vessel, where ζ ≥ 1 is a dimensionless friction coefficient depending on the
geometry and smoothness of the junction. Thereby it is assumed that the fluid
in the vessel is at rest. This is in accordance with flow out of the vessel into
the pipe when the cross section of the vessel is large in comparison to the cross
section of the pipe. But it is less in accordance with flow in the direction from
the pipe into the vessel. To take this asymmetry into account, the quadratic
term is turned off for the latter direction leading to 1

2
(1 + (−1)jsgnu)ζ ρ

2
u2 for

vessel j = 0, 1 (cf. [15, 16]). Modeling a vessel to be distensible like an elastic
balloon, we let pj = Cj(V j − V j

∗ ), where Cj > 0, V j
∗ , j = 0, 1 are given model

parameters. The variation of the hydrostatic pressure at the bottom of a vertical
rigid cylindrical open tank due to the variation of the level height of the fluid in
the tank yields a linear model of the same structure (eg. eq. (7) in [13]). We will
consider closed loop configurations with two pipes connecting the two vessels as
in [9]. The subindices i are used for the two pipes. We combine three types
of forcing in vessel 0 and two versions of the quadratic terms: with or without
signum switches.

2.1. Pressure forcing (prefor). Let p(t) be a controllable pressure in addition
to the elasticity or to the hydrostatic pressure in vessel 0. Denoting the constant
cross section of pipe i by Ai > 0 we get for i = 1, 2 and j = 0, 1

ρ`iu
′
i = p+ p0 − p1 −Ri`iui − (

1 + sgnui
2

ζ0i −
1− sgnui

2
ζ1i )

ρ

2
u2i (7)

V j ′ = −(−1)j(A1u1 + A2u2) (8)
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where pj = Cj(V j − V j
∗ ). It is reasonable to assume that the volume V∗ out-

side of the always filled and undeformed pipes is constant, i.e. V 0(t) + V 1(t) ≡
V∗. Then (7),(8) can be reduced to an equivalent model with state vector
(u1(t), u2(t), V

0(t)) ∈ R3: We omit the j = 1 equation in (8) and call the re-
maining V 0-equation (3’); and we replace p0 − p1 in (7) by −P∗ + CV 0 and call
the result (2’). The constants are P∗ = C0V 0

∗ + C1(V∗ − V 1
∗ ) and C = C0 + C1.

If (u1, u2, V
0) is a solution of (2’),(3’), then (u1, u2, V

0, V∗ − V 0) is a solution of
(7),(8) and the first three components of a solution to (7),(8) are a solution to
(2’),(3’). We refer to (7),(8) or (2’),(3’) as model preforsgn; when the signum
switches 1

2
(1± sgnui) are replaced by 1, we call it prefor.

2.2. Flow forcing (flofor). Similar as in [15],[16],[13](model (d)) instead of
the pressure p let the flow in and out of vessel 0 be controlled by a forcing
function f(t): V 0 ′ = −f . A possible physical realization is given by a rigid
tank whose time varying volume is enforced by a piston (cf. [15],[16]). Of course,
V 1 ′ = +f or V 1 = V∗ − V 0. Subtracting (7)1 from (7)2 in prefor, and using
A1u1 + A2u2 = f and its derivative, gives

ρ(A1`2 + A2`1)u
′
2 = (ρδ1

A2

A1

f − A1R2`2 − A2R1`1)u2

+
ρ

2A1

(A2
1δ2 − A2

2δ1)u
2
2 (9)

+R1`1f −
ρ

2A1

δ1f
2 + ρ`1f

′

where δi = ζ1i − ζ0i . We refer to this model as flofor; when each ζji is multiplied
by the switch 1

2
(1+(−1)jsgnui), we call it floforsgn. These are inhomogeneous

ODEs with a time dependent coefficient of u2.
For some of the analysis it is more convenient not to eliminate u21 in the right

hand side of (7)1− (7)2, which, by u1 = (f − A2u2)/A1, gives

ρ(A1`2 +A2`1)u
′
2 = −(A1R2`2 +A2R1`1)u2 +

ρ

2
A1(δ2u

2
2 − δ1u21) +R1`1f + ρ`1f

′.

(10)

2.3. Partial forcing (parflo). Inspired by [9] we look at a model wherein each
time-period is split into two phases.. Let T > 0 and T > T0 ≥ 0 be fixed. For
k ∈ Z, the time interval [kT, kT +T0) is called phase a and [kT +T0, (k+ 1)T ) is
called phase b. During phase a the model for the flow is flofor (or floforsgn)
with some appropriate forcing f(t), and during phase b the model is prefor (or
preforsgn respectively) with p ≡ 0, which means ’relaxation’ for vessel 0. Initial
conditions (i.c.) are given at t = 0, for notational uniformity we denote them by
u2(0−), V 0(0−). In case of periodicity the solution may be extended to t < 0.

The two phase model has the four state components u1, u2, V
0, V 1 and, for

k = 0, 1, 2, . . . , is defined as follows:
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Phase a, t ∈ [kT, kT + T0):

u2 satisfies (9) with i.c. u2(kT ) = u2(kT−)

u1 =
1

A1

(f − A2u2)

V 0 ′ = −f with i.c. V 0(kT ) = V 0(kT−)

V 1 = V∗ − V 0

f is continuously differentiable and satisfies

the continuity condition f(kT ) = A1u1(kT−) + A2u2(kT−)

Phase b, t ∈ [kT + T0, (k + 1)T ):

ui satisfy (2’) with p ≡ 0 and i.c. ui(kT + T0) = ui(kT + T0−)

V 0 ′ = −(A1u1 + A2u2), with i.c. V 0(kT + T0) = V 0(kT + T0−)

V 1 = V∗ − V 0

(t−) denotes the left-hand limit at t. The two phase model is called parflo

(parflosgn respectively). A solution of a two phase model is continuously dif-
ferentiable on [kT, kT+T0), [kT+T0, (k+1)T ) and continuous at kT, kT+T0, k =
0, 1, 2, . . . . The continuity of u2, V

0, V 1 is a consequence of the initial conditions
and the continuity of u1 follows from the continuity condition on f . Because of
the continuity condition, the forcing f is not independent of the state, never-
theless in (kT, kT + T0) it may be any continuously differentiable function. For
example, similar to [9] (but not as rough), it could imitate a beating heart by
f(t) = f(kT ) + a(t− kT ). If we choose a = 2(V 0(kT )−T0f(kT )−V 0

0 )/T 2
0 , then

f enforces V 0(kT + T0−) = V 0
0 . V 0

0 is a model parameter (in [9] V 0
0 = 0).

Since f ≡ 0 enforces constant volumes in phase a, there is no unforced parflo,

parflosgn unless T0 = 0 so that it coincides with prefor, preforsgn with p ≡ 0.

3. Equilibria, net flow and stability

To shorten the presentation we exclude the case R1 = R2 = 0.
An equilibrium of an unforced dynamic system is a solution such that all time

derivatives vanish.
A (constant or nonconstant) periodic solution to one of the above models is

called a net flow (or average flow) if the means of its velocity components are
not zero.

In the non-loop models as in [13, 14], net flow is impossible, because the
volumes in two tanks connected by one pipe must be periodic too.

First we show that equilibria of preforsgn do not exhibit net flow. We write ζi
for the factor in front of ρ

2
u2i in (7), i.e. ζi = −ζ1i if ui < 0 and ζi = +ζ0i if ui > 0.

Let (u1, u2, V
0, V 1) be an equilibrium of preforsgn with p ≡ 0. Because of (8)

u1 > 0 implies u2 < 0 and u1 < 0 implies u2 > 0. In case p0− p1 > 0, (7) implies
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Ri`iui + ζi
ρ
2
u2i > 0. So if u1 < 0 we have the contradiction R1`1u1 − ζ11

ρ
2
u21 < 0

and if u1 > 0, then u2 < 0 and we have the contradiction R2`2u2 − ζ12
ρ
2
u22 < 0.

Thus u1 = u2 = 0 which implies p0 − p1 = 0. An analogous argument holds
in case p0 − p1 < 0. Therefore, in equilibrium only p0 − p1 = 0 is possible,
which implies Ri`iui + ζi

ρ
2
u2i = 0. So either u1 = u2 = 0 or ζiρui = −2Ri`i

with R1, R2 > 0. But in both the cases ui > 0 and ui < 0 the product ζiui
is positive, and we have a contradiction. Therefore in the unforced preforsgn

model every equilibrium has zero flow, u1 = u2 = 0. V 0 and V 1 must be such
that C0(V 0 − V 0

∗ ) = C1(V 1 − V 1
∗ ) or V 0 = P∗/C, V

1 = V∗ − V 0.
Note that the nonlinear term in (7) or (2’) is continuously differentiable: for

ui ≥ 0 its partial derivative wrt ui is −ζ0i ρui and for ui ≤ 0 it is +ζ1i ρui which
coincide at ui = 0. The Jacobian of the homogeneous right hand side of (2’),(3’)
in an equilibrium (u1, u2, V

0) is−R1/ρ− ζ01u1/`1 0 C/ρ`1
0 −R2/ρ+ ζ12u2/`2 C/ρ`2
−A1 −A2 0

 (11)

for u1 ≥ 0, since then u2 ≤ 0. For u1 ≤ 0 and u2 ≥ 0, −ζ01 is replaced by +ζ11
and +ζ12 is replaced by −ζ02 . Thus, the characteristic polynomial of the Jacobian
at (0, 0, V 0) is

λ(λ+
R1

ρ
)(λ+

R2

ρ
) +

CA1

ρ`1
(λ+

R2

ρ
) +

CA2

ρ`2
(λ+

R1

ρ
).

In the simple case R1 = R2 =: R > 0 the eigenvalues are

λ1 = −R
ρ

and λ2,3 = −R
2ρ
±

√
R2

4ρ2
− C

ρ
(
A1

`1
+
A2

`2
),

the real parts of which are all negative and the equilibrium (0, 0, V0) of preforsgn
(2’),(3’) is locally exponentially stable. The decay rate increases with R and
decreases with ρ.

For prefor with p ≡ 0 in equilibrium we have 0 = p0 − p1 − Ri`iui + δi
ρ
2
u2i

and 0 = A1u1 + A2u2. ui = 0 is possible only if p0 − p1 = 0 with the volumina
as in preforsgn. For u1, u2 6= 0 we use the u1-equation to replace p0 − p1 in the
u2-equation, use u1 = −A2u2/A1, multiply by A1 and divide by u2 to get the
contradiction A1R2`2 +A2R1`1 = 0 in case A2

1δ2−A2
2δ1 = 0 (in particular in the

linear model when δ1 = δ2 = 0) and

u2 =
2A1

ρ

A1R2`2 + A2R1`1
A2

1δ2 − A2
2δ1

6= 0, if A2
1δ2 − A2

2δ1 6= 0. (12)

From u2 we get p0 − p1 which yields V 0 = (p0 − p1 + P∗)/C and V 1.
This formula can be interpreted as follows: δ2 = ζ12−ζ02 > 0 means that in pipe

2 the pressure loss at the junction of vessel 1 is larger than at vessel 0 resulting
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in a force from 0 toward 1 and a positive u2. Similarly a negative δ1 favors a
negative u1 and thus a positive u2.

The Jacobian of prefor (2’),(3’) (with δi = ζ1i − ζ0i ) is as in (11) except
that −ζ01 is replaced by +δ1 and +ζ12 is replaced by +δ2. For R1 = R2 > 0
the stability of the equilibrium (0, 0, V 0) is established as for preforsgn above.
The characteristic polynomial of (2’),(3’) of prefor at the netflow equilibrium
(u1, u2, V

0) in (12) is

λ(λ+
R1

ρ
− δ1
`1
u1)(λ+

R2

ρ
− δ2
`2
u2) +

CA1

ρ`1
(λ+

R2

ρ
− δ2
`2
u2) +

CA2

ρ`2
(λ+

R1

ρ
− δ1
`1
u1).

Let us consider the case

R1

ρ
− δ1
`1
u1 =

R2

ρ
− δ2
`2
u2 =: a. (13)

In this case the eigenvalues of the Jacobian are as those for (0, 0, V 0) with R/ρ
replaced by a; so the net flow equilibrium is unstable if a < 0. When R1 =
R2 =: R > 0, the first equality in (13) holds iff δ1A2`2 = −δ2A1`1. And a < 0 iff
R`2 − δ2ρu2 < 0 which holds, for example, if A1 = A2, `1 = `2, δ1 = −δ2 6= 0.

The model flofor with f ≡ 0 in case A2
1δ2−A2

2δ1 = 0 has the only equilibrium
u2 = 0, otherwise there is the additional netflow equilibrium u2 6= 0 of (12). The
derivative with respect to u2 of the right hand side of (9) is −A1R2`2−A2R1`1 +
ρ
A1

(A2
1δ2 − A2

2δ1)u2. So u2 = 0 is stable and the netflow equilibrium is unstable.
Finally, consider floforsgn with f ≡ 0. The equilibrium u2 = 0 is stable,

because the derivative of (9) is negative at u2 = 0. If u2 > 0 then u1 < 0
since A1u1 + A2u2 ≡ 0 and in (9) δ1 is replaced by +ζ11 , δ2 is replaced by −ζ02 .
So (9) implies 0 = −(A1R2`2 + A2R1`1)u2 + ρ

2A1
(A2

1(−ζ02 ) − A2
2ζ

1
1 )u22 which is a

contradiction since ζji ≥ 1. Analogously, u2 < 0 leads to a contradiction. Thus
floforsgn does not have netflow equilibria.

In summary, the unforced sgn models have zero flow equilibria only. The
explanation is that the sgn switches at each end of the pipes together resist
flow in any direction. But in the no-sgn models the difference of the friction
coefficients δi = ζ1i − ζ0i may be nonzero and if A2

1δ2 − A2
2δ1 6= 0, then there is a

netflow with u2 in the direction of the sign of this quantity. However, these net
flow equilibria are unstable and thus are not physically realistic.

4. Existence of periodic solutions

The models prefor and flofor can be written in the form

x′ = Ax+ b(t) + εh(t, x, ε), (14)

where A ∈ Rn×n is a constant matrix, the continuous function b is T -periodic, ε
is a scalar and h is Rn valued. We deduce the existence of T -periodic solutions
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from the theory in [3] chapter IV, and check the sufficient properties of A, b, h,
listed after [3, IV (2.4)], namely

• x′ = Ax is noncritical with respect to periodic functions,
• h is continuous and locally Lipschitz in x uniformly in t and uniformly in
ε in a bounded interval that contains 0.

In prefor we let R1 = R2 > 0. Then the eigenvalues of the constant matrix A
in (2’),(3’), which is (11) with ζji = 0, all have negative real part. The same is
true for the 1× 1 matrix

A =
1

ρ(A1`2 + A2`1)
(−A1R2`2 − A2R1`1)

in (9). Therefore, x′ = Ax is noncritical with respect to periodic functions

b(t) =

(p(t)− P∗)/ρ`1
(p(t)− P∗)/ρ`2

0


in prefor and

b(t) =
1

ρ(A1`2 + A2`1)
(R1`1f −

ρ

2A1

δ1f
2 + ρ`1f

′)

in flofor. Let ε be that number among δ1, δ2 that has the largest absolute value.
For prefor we define the nonlinear term

h(t,

u1u2
V0

 , ε) =
ρ

2

δ1u21/2ε`1δ2u
2
2/2ε`2
0

 .

Because |δi/ε| ≤ 1 and |u2 − w2| ≤ |u + w||u − w|, h is locally Lipschitz in the
second argument with the required uniformity. The same is true for h in flofor,

h(t, u2, ε) =
1

A1`2 + A2`1
(
δ1
ε

A2

A1

fu2 +
1

2A1

(A2
1

δ2
ε
− A2

2

δ1
ε

)u22),

if f is continuous and periodic. Therefore, [3, IV Theorem 2.1] yields

Theorem 4.1. Suppose p is continuous and T -periodic. There are positive con-
stants ε1, ρ1 such that for |δi| = |ζ1i − ζ0i | < ε1 there exists a T -periodic solution
of prefor and this is the only such solution in a ρ1 neighborhood of the periodic
solution of the linear system with δi = 0. If f is continuous and T -periodic, the
same statement (with appropriate ε1, ρ1) holds for flofor.

Remark. The existence proof with the help of (14) is not applicable for the
sgn models. The difficulty in preforsgn is not lack of Lipschitz continuity, as
sgnuiu

2
i is continuously differentiable at ui = 0. But

−δ1 =
1 + sgnui

2
ζ0i −

1− sgnui
2

ζ1i =
1

2
(ζ0i − ζ1i ) +

1

2
sgnui(ζ

0
i + ζ1i )
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where ζ0i + ζ1i ≥ 2 can not be made small. Moreover in floforsgn, the terms
involving δ1 depend on u1 = (f − A2u2)/A1 and are discontinuous in time. So
we have no proof of existence of periodic solutions to the sgn models.

In our formulation of parflo we tried to mimic [9] and included the continuity
condition on the forcing f in order to guarantee continuity of u1. But this makes
f depend on the state variables ui and so this model is not a standard ODE
problem. Also, splitting the period into two parts before and after kT +T0 is not
covered by existence proofs in the literature on periodic solutions. Another, more
standard version would be to prescribe the pressure p in vessel 0 during phase
a and set it to zero during phase b. Of course, continuity of the state variables
ui, V

j is to be brought about by adequate initial conditions at kT and kT + T0.
This renders a forcing that is independent of the state variables, but possibly
discontinuous at kT, kT + T0. Instead of analyzing the existence of periodic
solutions to such a model (call it parpre), we propose to use the above results
on prefor and approximate a discontinuous forcing p by continuous functions.

5. Pumping solutions

In [13] a dynamic system that has a solution with certain properties was defined
to be a pump. The following definition is a bit more specific, less precise and
more handy.

Definition 5.1. A periodic solution x with mean x to a dynamic system x′(t) =
F (x(t), f(t)) where f is a periodic forcing with mean f is called a pumping
solution if F (x, f) 6= 0, i.e. x is not an equilibrium of the f -forced system.

Here and throughout we write x for the mean 1
T

∫ t+T
t

x dτ of a periodic function
x on R with period T > 0.

Suppose u1, u2, V
0, V 1 is a periodic solution of prefor with p = 0. Taking the

mean in (7), (8) gives

0 = −Ri`iui + δi
ρ

2
u2i + p0 − p1

0 = A1u1 + A2u2. (15)

Extracting p0 − p1 from the u1-equation and inserting it into the u2-equation, we
get

R2`2u2 − δ2
ρ

2
u22 = −R1`1

A2

A1

u2 − δ1
ρ

2
u21

or, if R1 +R2 > 0,

u2 = A1
ρ

2

δ2u22 − δ1u21
A1R2`2 + A2R1`1

, (16)

which is nonzero iff δ2u22 6= δ1u21, e.g. if δ1δ2 < 0. So we have a pumping solution
(unless u2 in (12) equals u2 in (16)).
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The same formula for u2 holds for a periodic solution of flofor with f = 0.
This can be seen by taking the average in (10).

In parflo we need to split the integrals into the part over [kT, kT+T0) denoted

by a superscript a, e.g. ua1 =
∫ kT+T0
kT

u1 dτ , and the part over [kT + T0, (k + 1)T )

denoted by a superscript b, e.g. ub1 =
∫ (k+1)T

kT+T0
u1 dτ . Let u1, u2, V

0, V 1 be a T -
periodic solution of parflo. Then

0 =

∫ (k+1)T

kT

V ′0 dτ = (V ′0)a + (V ′0)b = −fa − (A1u1 + A2u2)
b

or

ub1 =
1

A1

(−fa − A2u
b
2). (17)

From (10) and u1 = 1
A1

(f − A2u2) we get in Phase a

ρ(`2u
′
2 − `1u′1) = −R2`2u2 +R1`1u1 +

ρ

2
(δ2u

2
2 − δ1u21).

Subtracting (7)1 from (7)2, the same equation holds in Phase b. Integration
yields

ρ(`2u
′
2 − `1u′1)a = −R2`2u

a
2 +R1`1

1

A1

(fa − A2u
a
2) +

ρ

2
(δ2u

2
2 − δ1u21)a

ρ(`2u
′
2 − `1u′1)b = −R2`2u

b
2 +R1`1

1

A1

(−fa − A2u
b
2) +

ρ

2
(δ2u

2
2 − δ1u21)b

where we used (17). Taking the sum of these two equations, the left hand sides
cancel because of periodicity and continuity at kT + T0. In the sum of the right
hand sides fa and −fa cancel, so again we arrive at formula (16) for u2.

A physical interpretation of (16) is that a positive δi = ζ1i − ζ0i has the effect
of a valve in positive ui-direction by reducing the mean of the pressure at vessel
1 more than at vessel 0; this supports positive flow from 0 to 1. The −δ1 in
the u2 formula represents the inhibition of positive flow in pipe 2 by a pressure
difference due to δ1 > 0. For example if δ2 > 0 (< 0) and δ1 < 0 (> 0), then
both pipes contribute to a positive (negative) average velocity u2.
Remark. Similar computations for the sgn models lead to terms of the form

û2i := 1
T

∫ T
0

sgnui(t)ui(t)
2 dt in addition to u2i > 0. But the sign of û2i depends of

the shape of ui(t), and so the prediction of pumping in the sgn models is not as
straightforward as in the non-sgn models.

6. Simulations

We briefly report on numerical simulations with parflo, parflosgn using
f(t) = A1u1(kT−) + A2u2(kT−) + a(t − kT ) during Phase a as described in
section 2. It happened that the numerical solution with parflo led to a blow
up in finite time. Roughly speaking, this behavior is induced by opposite signs
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of the δi, large |δi|, large Ci and small Ri. We never observed a blow up with
parflosgn (which, incidently, can produce subharmonics with period 2T , eg.
with the parameters of the example below, except T = 1, C0 = C1 = 5). But
in a wide range of physically reasonable parameters the observation was that
both parflo and parflosgn converge to a limit cycle with period T . Figure 2
shows the last two cycles of length T = 2 of a simulation with parflo that was
started at t = 0 and stopped at t = 600. For this simulation the parameters
are T = 2, T0 = T/5, ρ = 1, `1 = `2 = 30, A1 = A2 = 5, R1 = R2 = 0.5, C0 =
C1 = 25, V 0

∗ = V 1
∗ = 1, ζ11 = 1, ζ01 = 2, ζ12 = 2, ζ02 = 1 so that δ2 = −δ1 = 1,

V 0(0) = V 1(0) = 30, u1(0) = u2(0) = 0, V 0
0 = V 0(0)/4. In the centimeter-

gram-second system of units these values could describe a laboratory desktop
configuration with water as fluid. With the same parameters the result with
parflosgn looks quite similar, only the vertical distance of the parallel curves
for u1 and u2 is about half as wide and the maxima (minima) are somewhat
smaller (larger). Numerical integration of the simulation results over the last
period gives u1 = −0.8860 (−0.2808) and u2 = 0.8875 (0.2830) for parflo

(for parflosgn). This means counter-clockwise net flow as predicted in (16).
However, because A1 = A2 in this example, we should have u1 = −u2, otherwise
the solution could not be periodic. That discrepancy seems to be due to inexact
numerical integration rather than to non-periodicity in ui(t).

In this example we have chosen identical pipes in order to demonstrate that
pumping is not due to asymmetric properties (inertia or friction) of the two pipes,
as deemed necessary in some of the literature, eg. [1, 5, 9, 15, 16]. Of course, if
we let, in addition, δ1 = δ2, then in parflo, u1(t) = u2(t), t ≥ 0 and ui = 0 as
in (16). The same is true for parflosgn if ζj1 = ζj2 , j = 0, 1. On the other hand,
the curves u1(t), u2(t) are not parallel as in Figure 2 when the pipe parameters
`i, Ri are chosen different for i = 1 and i = 2.
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