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A mathematical model for the deformation of the eyeball by
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In a certain kind of eye surgery, the human eyeball is deformed sustainably by the application of an elastic
band. This article presents a mathematical model for the mechanics of the combined eye/band structure
along with an algorithm to compute the model solutions. These predict the immediate and the lasting
indentation of the eyeball. The model is derived from basic physical principles by minimizing a potential
energy subject to a volume constraint. Assuming spherical symmetry, this leads to a two-point boundary-
value problem for a non-linear second-order ordinary differential equation that describes the minimizing
static equilibrium. By comparison with laboratory data, a preliminary validation of the model is given.
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1. Introduction

In this article, the deformation of the human eyeball that is caused by the application of an elastic band
is considered. The vertical circumferential application of a closed elastic band, called a cerclage, around
the eyeball is a common clinical practice. Its purpose is to dent the eyeball such that an existing retinal
separation is reduced or reversed.

In rhegmatogenous retinal detachment, the neurosensory retina loses contact to the underlying retinal
pigment epithelium, with fluid from the liquefied vitreous entering and expanding the potential space
between those membranes through a break in the retina. The pathomechanism of retinal detachment was
discovered byGonin (1920) at the beginning of the 20th century. Gonin also realized that sealing the
retinal break is essential for successful reattachment of the retina. Over the following years and decades,
a number of methods for closing retinal breaks were developed. Scleral buckling procedures gained
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widespread acceptance and in the 1940s, Schepens introduced the use of encircling bands (cerclage)
for a 360◦ buckling of the sclera (Schepenset al., 1957). Currently, scleral buckling procedures are
being compared against newer surgical techniques in a large multicentre clinical trial (Heimannet al.,
2007). To interpret clinical outcome, it is essential to understand the mechanical effects of buckling
surgery. The mathematical model we present for the effects of an encircling elastic band can provide
some deeper insight into the mechanics of retinal detachment surgery. At the beginning of the procedure,
the conjunctiva is opened along the corneal limbus. The sclera is easily accessible, as the eyeball is not
encased by a tight membrane, but is loosely embedded in the intraorbital fat, surrounded by thin fibrous
sheaths providing sufficient space for effortless eye movements. This episcleral space (Tenon’s space)
between the sclera and the episcleral sheets is opened next during surgery. Then, the four straight eye
muscles are exposed and the elastic band is sutured to the outside of the sclera beneath the muscles. Care
must be taken that the sutures keep the band in place, but do not hinder longitudinal movements of the
band, as the next step is to tighten the band. This means pulling the overlapping ends of the elastic band
into opposite directions, thus shortening the band, and then securing the band in this tightened state with
a locking suture.

The immediate effect of the application of the stretched narrow band is a slight indentation of the
sclera and the choroid beneath the band and an increase of the intraocular pressure. After the surgery,
in the course of a day, the intraocular pressure goes back to its nominal value by autoregulated decrease
of aqueous humour and vitreous within the eyeball. When the pressure eventually is back to the nom-
inal value, the indentation of the sclera by the band is deeper than immediately after surgery. It is left
to the expertise of the surgeon to predict the final deformation of the eyeball as well as the magnitude
of the intraocular pressure immediately caused by the application of the stretched band. In many in-
stances, a deep final indentation is desirable, but the intraocular pressure at surgery must be kept within
a physiologically admissible range.

The purpose of the present article is to establish a mathematically formulated model for the defor-
mation of the eyeball that allows us to model the mechanisms during and after the surgery described
above. In order to set the stage for our approach, we begin by briefly describing another approach which
is extremely simple and yet another which is relatively complex. First, a simple model is obtained as
follows. If all forces due to the deformation of the sclera and the choroid were neglected, the intraoc-
ular pressure and the band forces would be at equilibrium. Thus, a simple estimate of the intraocular
pressure at surgery is the force per unit area that is exerted by the cerclage. Furthermore, the inden-
tation when the pressure is back to its nominal value could be estimated by determining the radius
of the stretched annular band when its exerted force is equal to the nominal pressure. Both these es-
timates can be done by back-of-the-envelope calculations using the material parameters of the band.
However, these estimates are far off the physical data that are described in Section5.2. Therefore,
the forces due to the ocular rigidity and the deformation of the membrane have to be taken into ac-
count. On the other hand, a relatively complex model is obtained by representing the sclera and choroid
with finite thicknesses, modelling these with finite elements and carrying out a detailed force bal-
ance or energy minimization (Alastrúe et al., 2006; Pandolfi & Manganiello, 2006; Seoet al., 2003).
Intermediate between the levels of complexity of these alternative approaches, our model treats the
surface of the eyeball as a membrane of negligible thickness in which non-linear elastic effects are
incorporated.

While still being relatively simple, this formulation requires and enhances the understanding of the
detailed mechanics of the system under investigation. Furthermore, our simulation tool facilitates an
enhanced intuitive conception of the eyeball–band configuration for clinicians. In order to validate our
mathematical model, its predictions are compared to physical data, acquired in laboratory measurements
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on enucleated human eyes. The quantitative congruence of the predictions and the data indicates that
the model could be used to predict the short- and long-term effect of the elastic band. Ideally, the
model and the simulation tool will provide the surgeon with a patient-specific prediction of the final
(i.e. postoperative) indentation. This facilitates the choice of the appropriate material properties of the
cerclage and helps the surgeon to decide on the initial stretch.

To the best of our knowledge, no mathematical model that combines the eyeball and an elastic
band is found in the literature. However, much information is available on the anatomy, physiology and
mechanics of the human eye (see, e.g.Bryant & McDonnell, 1996; Elsheikhet al., 2008a,b; Hoeltzel
et al., 1992). In addition to this information, we rely on the classical theory of surface phenomena
(Pelliceret al., 1995). In fact, we model the eyeball as a spherical elastic membrane. This is an ideal-
ized approximation because a real eyeball is not strictly spherical nor strictly rotationally symmetric.
Moreover, the thickness of the eye’s covering is not constant as in our model, but varies between 0.3
and 1.3 mm (e.g.Collins & van der Werff, 1980, p. 2) and we neglect the anisotropy of the cornea and
sclera (Elsheikhet al., 2008b; Pinskyet al., 2005). Our idealized approximations are motivated by the
simplicity of the resulting model and the relative ease of its analytic and numerical use, and it is, to some
extent, justified by the agreement of our model’s predictions with physical measurements. The amount
by which the predictions differ, when working with a geometrically and physically more realistic, higher
dimensional model, may be demonstrated by implementing such a model, but this is not the subject of
the present article.

In our model, the sphere contains a given volume of incompressible fluid and is deformed by the
forces of the elastic band. The physically appropriate deformation is one which minimizes potential en-
ergy under a constant-volume constraint. The optimality system for the associated Lagrangian function
is a non-linear 1D second-order ordinary differential equation with an integral constraint. This optimal-
ity system is discretized by finite differences and is solved using an approximate Newton iteration. This
solution process provides a mapping from the ‘preoperative’ state to the ‘intraoperative’ state which
develops immediately after the cerclage operation. To invert this mapping in order to find the volume of
a spherical band-free eyeball corresponding to a specified band-loaded state, we use a simple bisection
iteration. We use this bisection approach to find a reduced volume resulting from autoregulation and
corresponding to a band-loaded ‘postoperative’ state with a normal pressure. The associated geometry
is our prediction of the membrane shape and indentation in the postoperative state. By comparison with
laboratory data, a preliminary validation of the model is given.

2. The model

To address the clinical questions posed in Section1, a mathematical model is developed here which
addresses the following three phases of the cerclage operation, which are diagrammed in Fig.1.

• Preoperative phase: The eyeball is spherical with a fixed radiusr1 and thus a fixed volumeV1 of
incompressible fluid. The outer surface of the eyeball is elastic, and the eye has a normal inner
pressurep1.

• Intraoperative phase: Immediately after the cerclage has been fastened tautly to the eyeball, the
band applies a certain force to the eye. Because of the elasticity of the outer surface of the eye, the
band force creates a deformation in the surface geometry including an indentation around the band.
Adding to the force of the existing tension in the outer surface, the band force increases the internal
pressure fromp1 to p > p1, which must not be so high as to cause damage to the eye. Since the
fluid inside the eyeball is incompressible, the volumeV1 remains unchanged.



168 S. L. KEELINGET AL.

FIG. 1. Schematic sequence of the three stationary states before, during and after applying the cerclage to the eyeball.

• Postoperative phase: Within a day, an autoregulation mechanism reduces the volume of fluid in the
eye fromV1 to V0 < V1 and thereby brings the pressure fromp down to a target pressurept < p,
typically equal to the normal pressurept = p1. At this point, the indentation of the eyeball surface
around the band is deeper than intraoperatively. Also, if the band was removed and the surface was
returned to spherical shape, the radius would ber0 corresponding to the volumeV0 and the pressure
would bep0 < pt.

As indicated with respect to the preoperative phase, the undistorted eyeball is approximated here by a
perfect sphere. Its surface is modelled to be a physically homogeneous elastic membrane of small thick-
ness. The interior of the membrane is filled with homogeneous incompressible fluid. All other anatomic
features are neglected. In view of the model’s purpose and on the basis of related material found in
Blyth & Pozrikidis (2004), Bryant & McDonnell (1996), Collins & van der Werff(1980), Elsheikh
et al. (2008a), Friberg & Lace(1988), Purslow & Karwatowski(1996) and Schmitz-Valckenberg &
Meyer-Schwickerath(1975), we believe that these simplifications lead to a model which is still suffi-
ciently close to reality. The assumptions on the cerclage are that it is a linearly elastic band of rect-
angular cross-section. For the range of strains and time scales that are considered here, the validity of
this assumption was confirmed in systematic physical measurements of elasticity by Messphysik Mate-
rials Testing GmbH (Altenmarkt bei Fürstenfeld, Austria). The encircling bands were provided by FCI
Ophthalmics. We do not model any friction between the sphere and the band as frictionless fixation of
the band to the sclera is one goal of the surgical procedure and can be observed and checked during
surgery when the elastic band is tightened.

For the mathematical description of the system, a spherical coordinate system(r, θ, φ) is used with
origin in the centre of the undistorted sphere as illustrated in Fig.2. The rectangular(x, y, z) and cylin-
drical coordinates(R, θ, z) are also used when convenient, where the vertical axis in Fig.2 is thez-axis,
which is perpendicular to the(x, y)-plane coinciding with the polar(R, θ)-plane. The rayφ = 0 crosses
the membrane where the eyeball would have its pupil, and the circular band is located perpendicular to
this ray withinz1 6 z 6 z2. Typically, the configuration is equatorial, i.e.z1 = −z2, and the band is
narrow. When the band is attached to the sphere, the coupled system is in equilibrium if and only if
the forces due to the deformation of the sphere and the forces due to the strain of the band cancel each
other.

Let r1 be the radius of the undistorted sphere andR̂ be the rest radius of the cylindrical band when
no forces are applied. Both are given parameters. The sphere stretches the band ifr1 > R̂. Let v(θ, φ)
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FIG. 2. Spherical coordinates(r, θ, φ) are used to represent the model geometry. The pupil is centred atφ = 0 and the cerclage
lies on the surface betweenφ1 6 φ 6 φ2. All model variables are assumed to be independent ofθ .

denote ther -coordinate of the distorted membrane at the location(θ, φ). Because the configuration is
rotationally symmetric with respect to thez-axis,v will not depend onθ . Thus,v = v(φ).

The force per unit area exerted by the band when it is stretched to radiusR> R̂ is given as follows.
Under the assumption that the band remains cylindrical, letL̂b = 2π R̂ be the rest length of the band
while Lb = 2πR is the stretched length. The band has a widthωb = z2 − z1 and a small thicknessδb,
so the area of the cross-section of the band isAb = ωbδb. Using the Young’s modulusEb of the band,
the tangential force in the stretched band is given byFtan = EbAb(Lb − L̂b)/L̂b = Ebωbδb(R− R̂)/R̂.
Then, the force per unit width, or tension, through a rectangular cross-section in the stretched band is
Ftan/ωb = Ebδb(Lb − L̂b)/L̂b. According to the Laplace law for a cylinder (Adamson, 1997), this
tension is related to the force per unit areaf directed towards the central axis of the cylindrical band
according toFtan/ωb = R f or f = Ebδb(R − R̂)/(RR̂). Thus, the vectorial force of the band is given
by

fff = −eeeR f (v sinφ, z), f (R, z) =

{
Ebδb

( 1
R̂

− 1
R

)
, z1 6 z6 z2,

0, otherwise,
(2.1)

where

eeeR = 〈cosθ, sinθ, 0〉> (2.2)

are the rectangular components of the unit vector directed from thez-axis towards the cylindrical band.
Note that the bending stiffness of the band or its resistance to a departure from cylindrical shape is not
explicitly modelled here. Thus, the band may depart mildly from a strictly cylindrical shape, and thus,
(2.1) is obtained by repeating the above argument for infinitesimally small cylindrical sections of the
band.

For the undistorted sphere with volumeV1 = 4πr 3
1/3 and radiusv ≡ r1, the relation between the

internal pressurep1 and the tensionT1 in the elastic membrane is given by Laplace’s law for the sphere
(Adamson, 1997),

2T1 = p1r1. (2.3)
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When the volume of the internal incompressible fluid is varied, the variation of the intraocular pressure
can be modelled by ln(p/p1) = σ(V−V1), whereσ is called Friedenwald’s coefficient of ocular rigidity
(Collins & van der Werff, 1980). Since Friedenwald’s formula is used in the present context only for the
band-free spherical eyeball, the formula is written in the following form for spherical volumes:

ln
p

p1
=

4πσ

3
(r 3 − r 3

1), (2.4)

wherep is the pressure in the spherical eyeball with radiusr .
When the membrane is no longer spherical, the local tension is determined by the following proposed

perturbation of (2.3):

T(v) = T0 + Emδm

[
S(v)

S(r0)
− 1

]
, T0 = T0(v), r0 = r0(v). (2.5)

Here,r0(v) is determined from the constant-volume condition seen below in (2.25),

r 3
0 =

1

2

∫ π

0
v3 sinφ dφ, (2.6)

while T0(v) is determined fromr0 using (2.4) and (2.3),

T0 =
1

2
r0p0 =

1

2
r0p1 exp

[
4πσ

3
(r 3

0 − r 3
1)

]
. (2.7)

Then,S(v) denotes the surface area of the eyeball with geometryv:

S(v) =
∫ 2π

0

∫ π

0
v sinφ

√
v2 + v2

φ dφ dθ = 2π
∫ π

0
v sinφ

√
v2 + v2

φ dφ, (2.8)

where the surface element in the first integral is given below in (2.12). In (2.5), Em is the Young’s
modulus andδm is the thickness of the scleral membrane. Note that the system of equations (2.5–2.8)
establishes a non-linear relation between the geometryv and the proposed spatially invariant tension
T(v). The relation (2.5) is postulated on the basis of dimensional analysis as follows. Specifically,
a relative expansion is required next toEmδm, and any relative expansion other than with respect to
surface area can be ruled out with the assumptions that the tension is spatially invariant and increases
when the surface area is increased. For instance, a relative volume expansion is not appropriate in place
of [S(v)/S(r0(v)) − 1] since such a formula would leave the tension unchanged at constant volume
and varying surface area. Also, if certain lengths were defined in the membrane and a relative length
expansion were used in place of [S(v)/S(r0(v))− 1], this could lead to a spatially varying tension. The
tension still satisfies the usual relation to mean curvature seen below in (2.26), but a constitutive relation,
given by (2.5–2.8), is required to determine the tension and geometry simultaneously.

In what follows, we derive a model for the geometry of the membrane by minimizing the mechanical
potential energy (Pelliceret al., 1995) under the constraint of a given internal volume. A slightly differ-
ent formulation, which is also based on a minimal energy formulation (without a volume constraint), is
discussed inBlyth & Pozrikidis(2004). Note that force balancing methods (as used, e.g. inPrestonet al.,
2008) represent an interesting alternative to energy minimization methods. However, the integration of
constraints in these methods is usually more difficult.
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To derive our model, we suppose that a small membrane elementS is disturbed from equilibrium by
a change dS in surface area and a change dV in volume of the eyeball. These perturbations dV and dS
from the equilibrium state increase the potential energyF of the band-eyeball-system as follows,

dF = T dS − F dV (2.9)

and this increased potential energy is then available for work to return the system to equilibrium. Specif-
ically, −F dV is the work performed by the force per unit area−F external to the membrane (i.e. band
plus pressure forces) to return the membrane element to its equilibrium state once its volume is per-
turbed by dV. Also, T dS is the work performed by the membrane tension or force per unit lengthT to
return the membrane element to its equilibrium state once its area is perturbed by dS.

For the band-loaded equilibrium state, letv denote the radial function representing the eyeball geom-
etry, and letp denote the corresponding intraocular pressure. Then, according to (2.9), the mechanical
potential energyF of the band–eyeball system has a variational derivative with respect tov for a pertur-
bationv̄ in the membrane elementS which is given by

δF

δv
(v; v̄) = T(v)

δS

δv
(v; v̄)− F(v, p)

δV

δv
(v; v̄). (2.10)

These components of the potential energy of the band–eyeball system are determined explicitly as
follows.

To obtain the geometrical constructions required below, recall that the radial coordinatev(φ) of the
eye is assumed to be independent ofθ . Then, note that when the membrane surface is expressed in terms
of the Cartesian coordinate vector according to

XXX(φ, θ; v) = 〈v(φ) cosθ sinφ, v(φ) sinθ sinφ, v(φ) cosφ〉>, (2.11)

the surface element is given by

S(v)= |XXXφ(φ, θ; v)× XXXθ (φ, θ; v)|dφ dθ

= v sinφ
√
v2 + v2

φ dφ dθ
or

δS

δv
(v; v̄) =

2v2v̄ + v̄v2
φ + vvφv̄φ

√
v2 + v2

φ

sinφ dφ dθ

(2.12)
and the outwardly directed unit vector normal to the membrane at(v, θ, φ) is given by

nnn(v)=
XXXφ(φ, θ; v)× XXXθ (φ, θ; v)

|XXXφ(φ, θ; v)× XXXθ (φ, θ; v)|

=
1

√
v2 + v2

φ

〈− cosθ(v cosφ)φ,− sinθ(v cosφ)φ, (v sinφ)φ,〉>. (2.13)

Also, the volume element in the cone from the origin toS(v) is given by

V(v) = sinφ dφ dθ
∫ v(φ)

0
r 2 dr or

δV

δv
(v; v̄) = v̄v2 sinφ dφ dθ. (2.14)

Equipped with these geometric components, consider first−F(v, p)δV/δv(v; v̄). When the mem-
brane is positioned atv(φ) with the pressurep, the sum of outwardly directed normal forces per unit
area, external to the membrane, isF(v, p) = p − f (v sinφ, v cosφ)eee>

Rnnn(v), where

− f (v sinφ, v cosφ)eee>
Rnnn(v) = f (v sinφ, v cosφ)

(v cosφ)φ√
v2 + v2

φ

(2.15)
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is the membrane normal component of the band force. The variationδV/δv(v; v̄) is given by (2.14).
By summing−F(v, p)δV/δu(v; v̄) over all membrane elementsS, the variational derivative of the
potential energy in the presence of forces external to the membrane is given by

δVe

δv
(v; v̄) = −2π

∫ π

0





f (v sinφ, v cosφ)

(v cosφ)φ√
v2 + v2

φ

+ p





v̄v2 sinφ dφ. (2.16)

Now, considerT(v)δS/δv(v; v̄). When the membrane is positioned atv(φ), the membrane tension
T(v) is given by (2.5). The variationδS/δv(v; v̄) is given by (2.12). By summingT(v)δS/δv(v; v̄)
over all membrane elementsS, the variational derivative of the potential energy in the presence of
forces internal to the membrane is given by

δVi

δv
(v; v̄) = 2π

∫ π

0
T(v)






2v2v̄ + v̄v2
φ + vvφv̄φ

√
v2 + v2

φ





sinφ dφ. (2.17)

Now, consider the incompressibility constraint. For a given radiusr1 of the undistorted sphere, the
constant-volume condition requires that

Vc(v) =
∫ 2π

0

∫ π

0

∫ v(φ)

0
r 2 sinφ dr dφ dθ −

4πr 3
1

3
=

2π

3

∫ π

0
v3 sinφ dφ −

4πr 3
1

3
= 0. (2.18)

To minimize the potential energyVe(u) + Vi(u) subject toVc(u) = 0, the following Lagrangian
function

L(v, λ) =
1

2π
[Ve(v)+ Vi(v)− λVc(v)] (2.19)

is required to be stationary inv

0 =
δL

δv
(v; v̄)=

∫ π

0
T(v)






2v2v̄ + v̄v2
φ + vvφv̄φ

√
v2 + v2

φ





sinφ dφ

−
∫ π

0
v̄





f (v sinφ, v cosφ)

(v cosφ)φ√
v2 + v2

φ

+ (p1 + λ)





v2 sinφ dφ, ∀ v̄ ∈ H1([0, π ]),

(2.20)

and in the Lagrange multiplierλ

0 =
δL

δλ
(λ; λ̄) = −

λ̄

3

∫ π

0
v3 sinφ dφ +

2λ̄r 3
1

3
, ∀ λ̄ ∈ RRR, (2.21)

wherev̄ and λ̄ are perturbations ofv andλ and p1 is used in (2.20) consistent with ther1 in (2.21)
and (2.4). The spaceH1([0, π ]) in (2.20) is defined as follows. In order to formulate the optimality
system more precisely, membrane geometries are considered to lie in a Sobolev spaceH ν(S2) of func-
tions whose weak derivatives up to orderν are Lebesgue square integrable on the sphereS2, i.e. in
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L2(S2). Because of theθ -independence of membrane geometries, these Sobolev spaces can be reduced
to weighted Sobolev spacesHν([0, π ]) on the interval [0, π ] equipped with the inner product

(u, v)2Hν ([0,π ]) =
ν∑

m=0

∫ π

0
Dm
φ uDm

φ v sinφ dφ, (2.22)

whereDm
φ denotes themth derivative with respect toφ. In particular, under conditions given explicitly

in Appendix A, the right side of (2.20) is well defined forv̄, v ∈ H1([0, π ]). Also, providedv ∈
H2([0, π ]), the optimality condition (2.20) can be expressed as a pointwise differential condition onv
by integrating (2.20) by parts as follows:

δL

δv
(v; v̄)=

∫ π

0
v̄





T(v)




2v2 + v2

φ√
v2 + v2

φ



−



 f (v sinφ, v cosφ)
(v cosφ)φ√
v2 + v2

φ

+ (p1 + λ)



 v2





sinφ dφ

−
∫ π

0
v̄





T(v) sinφ

vvφ√
v2 + v2

φ





φ

dφ + v̄





T(v) sinφ

vvφ√
v2 + v2

φ






∣
∣
∣
∣
∣
∣

φ=π

φ=0

. (2.23)

Whenv ∈ H2([0, π ]) holds, then (2.20) and (2.23) imply that

−





T(v)

vvφ√
v2 + v2

φ

sinφ





φ

+ T(v)
2v2 + v2

φ√
v2 + v2

φ

sinφ

=





f (v sinφ, v cosφ)

(v cosφ)φ√
v2 + v2

φ

+ (p1 + λ)





v2 sinφ, 0< φ < π,

vφ = 0, φ = 0, π. (2.24)

In particular, the boundary condition is derived by choosingv̄ in (2.23) to vanish in most of the interval
(0, π) while satisfyingv̄ sinφ ≈ 1 on the boundary. The optimality condition that (2.21) holds for all
λ̄ ∈ RRR implies the condition

∫ π

0
v3 sinφ dφ = 2r 3

1 . (2.25)

Now, suppose thatv ∈ H2([0, π ]) and p ∈ RRR satisfy (2.25) and

−





T(v)vvφ sinφ
√
v2 + v2

φ





φ

+
T(v)v2 sinφ
√
v2 + v2

φ

+ T(v) sinφ
√
v2 + v2

φ

=



 f (v sinφ, v cosφ)
(v cosφ)φ√
v2 + v2

φ

+ p



 v2 sinφ, 0< φ < π, vφ = 0, φ = 0, π. (2.26)
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Then, the radial functionv and the constant internal pressurep = p1 + λ satisfy (2.25) and (2.24) with
λ = 0, and the Lagrangian function is stationary in(v, 0). Sinceλ = 0 holds, the constraint (2.25) is not
active but rather it is fulfilled naturally by the geometry and the pressure satisfying (2.25) and (2.26).
Therefore, the mathematical problem to be solved for the intraoperative state is to seek a radial function
v and a constant internal pressurep which satisfy (2.25) and (2.26).

Thus, after computingv and p from (2.25) and (2.26) for a givenr1 in (2.25), define the cerclage
operator

C(r1) = (v, p) (2.27)

which to a given band-free eyeball radiusr1 in (2.25) assigns the new geometryC(r1)[v] and the new
pressureC(r1)[ p] after the band is applied. Since a band-free eyeball radiusr1 and pressurep1 are
related by (2.4), it follows that the mapping fromp1 to the solution(v, p) to (2.25) and (2.26) is also
given byC(r1).

For the postoperative state, it is assumed that the volume of the eyeball is reduced by physiological
autoregulation toV0 at which the pressure is reduced fromC(r1)[ p] to a target pressurept, which is
typically equal to the original pressurept = p1. It is also assumed for the reduced volume state that if
the band was removed from the eye, the eyeball would have the pressurep0 < pt and, if returned to
spherical shape, the radiusr0 satisfying (2.4) andC(r0)[ p] = pt. Thus, the mathematical problem to
be solved for the postoperative state is to seek a radial functionv and a reduced volumeV0 = 4πr 3

0/3
which satisfyC(r0) = (v, pt).

3. Solution procedures

Equations (2.26) and (2.25) are solved by the following approximate Newton iteration:
[

A(v) K (v)

K ∗(v) 0

][
u

λ

]

=

[
B(v, p)

E(v)

]

, (3.1)

v = v + αu, p = p + αλ, α ∈ (0, 1], (3.2)

in which only the derivatives of the left sides of (2.26) and (2.25) are used in the Jacobian of (3.1). The
updatesu andλ on v and p continue until (3.1) is solved byu ≈ 0 andλ ≈ 0. As explained in detail
below,B andE represent the equation residuals for (2.26) and (2.25), respectively. Existence of a weak
solution(u, λ) to (3.1) can be established as shown in Appendix A.

Equation (2.26) is represented in the first component of (3.1), which includes the following
operators:

A(v)u = −





T(v)v sinφ
√
v2 + v2

φ

uφ





φ

+
T(v)v sinφ
√
v2 + v2

φ

u, (3.3)

K (v)λ = −λv2 sinφ (3.4)

and forv ∈ D(A) = {u ∈ H2([0, π ]): uφ = 0, φ = 0, π},

B(v, p) = −A(v)v − T(v) sinφ
√
v2 + v2

φ +



 f (v sinφ, v cosφ)
(v cosφ)φ√
v2 + v2

φ

+ p



 v2 sinφ. (3.5)
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Equation (2.25) is represented in the second component of (3.1), which includes the operators:

K ∗(v)u = −
∫ π

0
uv2 sinφ dφ (3.6)

and

E(v) =
∫ π

0
v3 sinφ dφ − 2r 3

1 . (3.7)

Thus, for the intraoperative state, the desiredv and p are found by the iteration in (3.1) using the
starting valuesv = r1 and p = p1. Given this procedure, the equationC(r0) = (v, pt) is solved for the
postoperative state as follows:

1. Setpb = pt and compute the associated band-free radiusrb from (2.4). Then, determineC(rb) by
iteration of (3.1) and (3.2) using starting conditionsv = rb and p = pb.

2. Setra = R̂, whereR̂ is the given rest radius of the cerclage, and compute the associated band-free
pressurepa from (2.4). Since the band exerts no force at this radius,C(ra) = (v = ra, p = pa)
holds.

3. SinceC(ra)[ p] < pt < C(rb)[ p] holds, use the interval [ra, rb] to start a bisection method to solve
C(r0)[ p] = pt for r0 by iteration of (3.1) and (3.2). The associated pressurep0 is determined from
(2.4).

4. The desired radial function is given byC(r0)[v].

4. Numerical formulation

Equation (3.1) is discretized by finite differences as follows. Let the interval [0, π ] be divided intoN
cells with cell centresφi =

(
i − 1

2

)
h, h = π/N, 16 i 6 N, and cell boundariesφi + 1

2
= ih, 06 i 6 N.

Also, let v̄ andū denote the vectors ofv- andu-values, respectively, at the cell centres. Then,A(v)u is
approximated at the cell centreφi by

h2[ Ah(v̄)ū]i = ai + 1
2
(v̄, p)[ui +1 − ui ] − ai − 1

2
(v̄, p)[ui − ui −1] + h2ai ui , 16 i 6 N, (4.1)

where

ai =
T(v̄)vi sinφi√
v2

i + Dv2
i

, 16 i 6 N, ai + 1
2

=
ai +1 + ai

2
, 0< i < N, (4.2)

and

Dvi =
vi +1 − vi −1

2h
, wherev0 = 2v1 − v2, vN+1 = 2vN − vN−1. (4.3)

Note that sinφ in ai is never evaluated on the boundary and thusai > 0. On the other hand, because of
boundary conditions,a1

2
= 0 = aN+ 1

2
holds. Next,K (v)λ is approximated at the cell centreφi by

[Kh(v̄)λ]i = [Kh(v̄)]i λ = −λv2
i sinφi , 16 i 6 N, (4.4)

andK ∗(v)u by

K ∗
h(v̄)ū = −h

N∑

i =1

ui v
2
i sinφi = hK>

h (v̄)ū. (4.5)
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For the right side of (3.1), B(v, p) is approximated at the cell centreφi by

[Bh(v̄, p)]i = −[ Ah(v̄)v̄]i − T(v̄) sinφi

√
v2

i + Dv2
i

+



 f (vi sinφi , vi cosφi )
Dvi cosφi − vi sinφi√

v2
i + Dv2

i



 v2
i sinφi (4.6)

andE(v) by

Eh(v̄) = h
N∑

i =1

v3
i sinφi − 2r 3

1 . (4.7)

So (3.1) is discretized with a symmetric coefficient matrix according to
[

Ah(v̄) Kh(v̄)

K >
h (v̄) 0

][
ū

λ

]

=

[
Bh(v̄, p)

h−1Eh(v̄)

]

. (4.8)

The update

v̄ = v̄ + αū, p = p + αλ (4.9)

is performed first withα = 1, and in case of divergence, the iteration is restarted andα is reduced until
convergence is achieved.

5. Model validation

In order to test the predictive capability of our model, we first determine the material properties of the
eyeball and the band by means that are independent from our simulations. The results of this parameter
determination are shown in Table1. Then, we describe an experiment with an enucleated eye which was
deformed by the application of a cerclage. The results of this experiment are summarized in Table2.
Finally, these experimental results are simulated with our model, using the parameters shown in Table3,
and measured values are compared with computed values in Table2. The simulation results are specified
in greater detail in Table4 and they are also shown graphically in Fig.3.

5.1 Determination of material properties

The cerclage used was rectangular with widthωb = 2 mm and thicknessδb = 0.75 mm. By measuring
the ratio of stress to strain in straight-line bands of this type of cerclage, the Young’s modulus was
determined to beEb = 24453 mmHg. These measurements are a courtesy of the Austrian company
‘Messphysik Materials Testing GmbH’. The rest radius of the cerclage,R̂ = 10.35, was determined
by measuring the length of the unstretched restraightened band after the experiment as described in
Section5.2.

Aside from the cornea and the lens as well as all other inhomogeneities of the eyeball, the outer
layers of the eyeball are the sclera and the choroid. Data for the elastic properties of these two layers of
the surface of enucleated human eyeballs are reported inFriberg & Lace(1988). The measurements were
conducted on rectangular strips that were cut out of the two layers at several locations and orientations.
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TABLE 1 Measured eyeball and cerclage parameters

Measured eyeball parameters Measured cerclageparameters
Young’s modulusEm 16232 mmHg Young’s modulusEb 24453 mmHg
Thicknessδm 1 mm Thicknessδb 0.75 mm
Ocular rigidityσ 1/80 Widthωb 2 mm

Rest radiusR̂ 10.35mm

TABLE 2 Measured and computed preoperative, intraoperative and
postoperativestates

Measured Computed
Preoperative p1 (mmHg) 23.00

r1 (mm) 12.25

Intraoperative C(r1)[ p] (mmHg) 76.00 59.82
minC(r1)[v] (mm) 11.94 10.89

Postoperative C(r0)[ p] (mmHg) 20.00 20.00
minC(r0)[v] (mm) 11.22 10.44

TABLE 3 Input parameters for the simulation shown in Fig.3

r1 12.25 mm Eb 24453 mmHg Em 16232 mmHg σ 1/80
p1 23 mmHg δb 0.75 mm δm 1 mm α 0.5
pt 20 mmHg −z1, z2 1 mm R̂ 10.35 mm N 101

TABLE 4 Quantitative results for the simulation shown in Fig.3

Preoperative Intraoperative
p1 23.00 mmHg C(r1)[ p] 59.82 mmHg
r1 12.25 mm minC(r1)[v] 10.89 mm

maxC(r1)[v] 13.69 mm
T1 140.90 mm mmHg T(v) 331.90 mmmmHg

Postoperative band free Postoperative

p0 5 × 10−8 mmHg C(r0)[ p] 20.00 mmHg
r0 11.34 mm minC(r0)[v] 10.44 mm

maxC(r0)[v] 12.35 mm
T0 3 × 10−7 mm mmHg T(v) 104.9 mmmmHg
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FIG. 3. Shown on the left are the (dashed) preoperative and (solid) intraoperative computed geometries of the eye. Shown on the
right are the (dashed) preoperative, (solid) postoperative and the (dotted) postoperative band-free computed geometries of the eye.
All curves are understood to be rotated about the central vertical axis consistent with the orientation of the eye shown in Fig.2.
The horizontal lines touch the eyeball geometries at opposite edges of the band. The vertical lines demonstrate the depth at which
the band is at rest.

The average Young’s moduli given inFriberg & Lace(1988) areEs = 2.3 × 106 Nm−2 for the sclera
andEc = 6.0× 105 Nm−2 for the choroid. Searching inFriberg & Lace(1988) for a uniform thickness
of the two layers, we find 0.08 mm for the choroid and, somewhat indirectly on p. 434, 1 mm for the
sclera. InCollins & van der Werff(1980, p. 2), it is stated that the thickness of the eye’s covering,
including the thinner cornea, varies between 0.3 and 1.3 mm. This leads us to the choiceδm = 1 mm
for use in (2.5). The Young’s modulus for the composite membrane is taken as the weighted average
Em = (δsEs + δcEc)/(δs + δc) with δs = 0.92 mm andδc = 0.08 mm, so thatEm = 16232 mmHg.

In our experiments with an enucleated human eyeball, we first determined the coefficient of ocular
rigidity σ . Stepwise injection of fluid into the eyeball and measurement of the corresponding intraocular
pressure generated data points for the pressure/volume dependence. A fit to these data in the range
196 p 6 80 mmHg leads toσ = 1/80 mm−3. This value is small compared to the standard value
σ = 1/20 given for instance in (2.66) ofCollins & van der Werff(1980), but since our experiment was
carried out on just this particular eyeball, we decided to use the smaller value for (2.4).

The measurements described above are listed in Table1. Thus, with the exception ofr1, p1 and
R̂, all model parameters have been set independently of the following experiment with an equatorial
cerclage/eyeball configuration.

5.2 Experiment with enucleated eyeball

The experimental task was to determine the pre-, intra- and postoperative states as follows. First, the
circumference of the undistorted eyeball was measured by twining a thin, inelastic thread around its
equator. The corresponding radius is denoted byr1 shown in the column of measured values in Table2.
Then, on top of the thread, the band was wound around the equator. The band is longer than the circum-
ference of the equator and can be stretched by pulling its ends in opposite directions. Then, a closed
stretched annular cerclage was made out of the middle third of the band by tying a special seam about
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both arms of the band where they touch each other. This resulted in an annular stretched middle part
of the band that has a fixed rest radiusR̂ which is smaller thanr1. The circumference of the slightly
indented eyeball was determined by making a mark on the meanwhile tightened equatorial thread. The
corresponding radius is shown next to minC(r1)[v] in the column of measured values in the intraop-
erative section of Table2. Also, the two arms of the cerclage were marked at the closing seam. Then,
the intraocular pressure was reduced by withdrawing aqueous humour through a needle that was in-
serted across the sclera beforehand. In living eyes, the reduction of interior pressure is a slow autoreg-
ulated process. In the experiment, the target was to go back to approximately nominal pressure within
about a minute. Once this was achieved, the circumference of the new indentation was determined by
making another mark on the re-tightened equatorial thread. The corresponding radius is shown next to
minC(r0)[v] in the column of measured values in the postoperative section of Table2. In all three sta-
tionary configurations, the intraocular pressure was measured, and these pressures are shown in Table2
in the column of measured values next top1, C(r1)[ p] and C(r0)[ p] for the preoperative, intraopera-
tive and postoperative states, respectively. Finally, the closing seam was opened, the cerclage removed
and R̂ determined by the distance of the two marks on the arms of the then unstretched restraightened
band. Deviating from the typical case thatpt = p1 holds, the postoperative pressure in the experiment
(pt = 20) is not the same as the preoperative pressure (p1 = 23).

The thickness of the marks on the encircling band and on the thread turned out to be the main
factor limiting the accuracy of the experiment. The thickness of the mark was about 1 mm, which is
approximately 1.5% of the circumference of the eye. As the length of the encircling band and the thread
was determined by measuring the distance between two marks, we suggest 3% of the measured length
as an estimate for the accuracy limit. The eye pressure was measured using a commercially available
device for intraocular measurements of eye pressure (Mod. Duesseldorf, Geuder, Heidelberg, Germany).
As we did not have a sufficient number of experiments, no estimation of accuracy and error could be
made and the measured intraocular pressure was considered to be accurate. The intraocular volume was
reduced in steps of 0.05–0.1 ml. The scale on the syringe was in steps of 0.01 ml which therefore is
the smallest measurable change of intraocular volume. As we increased the intraocular volume in steps
of at least 0.05 ml, we expect the measurement error for change of intraocular volume to be less than
20%. Compared to the reported data, we had a relatively lower increase of intraocular pressure for a
given volume, which needs further evaluation (Pallikariset al., 2005). As we did not evaluate the eyes
used for concurrent pathology, the age of the donor and the postmortem time to experiment, i.e. those
factors which have been discussed in literature as contributing to scleral rigidity, might have influenced
our results (Silver & Geyer, 2000; Elsheikhet al., 2008a).

5.3 Simulation of experiment

The measured values shown in Table2 are compared with values computed from our model as follows.
The material properties in Table1 and the experimental values in Table2 were used for the model input
values shown in Table3. In particular, for equatorial application of the cerclage,z1, z2 are set to∓ωb/2.
Although the nominal starting pressure isp1 = 23 mmHg, the target pressure in the postoperative
state ispt = 20 mmHg, as explained in Section5.2. Note also that the membrane was discretized with
N = 101 cells and the relaxation level used wasα = 0.5. Using the parameters shown in Table3, (2.25)
and (2.26) are solved by the iterations (4.8) and (4.9), and the results are shown graphically in Fig.3.
Also, some additional results are summarized quantitatively in Table4.

Shown on the left in Fig.3 are the intraoperative and postoperative computed geometries of the
eye. Shown on the right are the preoperative, postoperative and the postoperative band-free computed
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geometries of the eye. All curves are understood to be rotated about the central vertical axis consistent
with the orientation of the eye shown in Fig.2. The horizontal lines are plotted at heightsz1 andz2 and
thus they touch the eyeball geometries at opposite edges of the band. The vertical lines demonstrate the
depth at which the band is at rest. Note that the band may depart from a cylindrical shape as discussed
in relation to (2.1), but the band assumes a roughly cylindrical shape when its widthωb and the equato-
rial indentationr1 − v(π/2) are small in relation to the radiusr1. Shown in Fig.4 is the history of the
converging pressure plotted as a function of total iterations of (3.1) and (3.2) embedded in the bisection
scheme of the algorithm shown in Section3. Just before each jump in this graphic, the iteration (4.8)
and (4.9) has just converged using the current estimate of postoperative band-free quantities(r0, p0).
According to the algorithm, these estimations continue iteratively untilC(r0) = (v, pt) holds. Specif-
ically, in Fig. 4, the pressure begins and ends at 20 mmHg. So in the presence of the band load, the
pressure returns to the target valuept after the volume is reduced as demonstrated by the reduced radius
r0 < r1 shown in Table4. Note also in Table4 that the postoperative band-free pressure and tension are
essentially zero since the volume is so low that the pressureC(r0)[ p] = 20 mmHg in the band-loaded
state is essentially driven entirely by the band forces.

Recall that the band-free stater0, p0, T0 is never attained in medical practice nor was it measured
in the experiments with enucleated eyes; it is a hypothetical state determined by the algorithm such that
the model predictspt when the band is applied to it. More precisely,r0 is determined by bisection and
p0 andT0 follow by (2.4) and (2.3).

The computed values in Table2 do not differ greatly from the measured values shown in Table2,
but the predictions of the model do not precisely coincide with the measured data. More specifically,
the predicted intraoperative pressure (59.82 mmHg) is about 21% smaller than the measured value
(76.00 mmHg) and the predicted radius at the indentation (10.89 mm) is 9% smaller than the measured
radius (11.94 mm). While the predicted postoperative pressure (20.00 mmHg) is required to match
exactly the measured value (20.00 mmHg), the predicted radius at the indentation (10.43 mm) is 7%
smaller than the measured radius (11.22 mm), which happens to match the band-free radius (r0 = 11.20)

FIG. 4. For the calculation of the postoperative state shown on the right in Fig.3, the history of the converging pressure is plotted
as a function of total iterations of (3.1) and (3.2) embedded in the bisection scheme of the algorithm given in Section3.
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shown in Table4 nearly exactly. Considering the simple methods of acquiring the data and the model
parameters, we regard these deviations as tolerable. We want to stress that we did not fit the model pa-
rameters to the data in order to get minimal deviations. A more detailed validation of the model requires
more systematic (still model independent) determination of the parameters and more elaborate experi-
mental procedures. Here, we have reported a first test that confirms the applicability of our approach.

Our model differs from the real situation in that the sclera was modelled to be elastic with a Young’s
modulus that is assumed to remain constant. In reality, the sclera will not contract infinitely, below some
minimum surface area. This non-linear behaviour has only little influence on intraocular pressure and
the shape of the eye during and immediately after surgery, when the intraocular pressure is increased
and the sclera is stretched, but it might be important for the final shape of the eye, when intraocular
pressure has returned to normal and the sclera is contracting but stops when it has reached a particular
minimum surface area. In fact, with the material properties listed in Table1, our simulation predicts only
a small change in the axial length of the eye between the preoperative and the postoperative states. This
is in contrast to clinical results, which show elongation of the axial length in most cases (Malukiewicz-
Winiewska & Stafiej, 1999). Nevertheless, this elongation can be obtained with our model whenEmδm
in Table1 is reduced moderately. Thus, the presented model gives a good estimate of intraocular pres-
sure and shape for the intra- and immediate postoperative period with the reported material properties.
Further improvements in modelling or in parameter determination need to be carried out to increase the
accuracy of the final shape of the eye in the late postoperative period.

6. Conclusion

A simple model for the deformation of an eyeball caused by the application of an elastic band was de-
rived. The model is a two-point boundary-value problem with a constraint for a non-linear second-order
ordinary differential equation. The simplicity of the model stems from idealizing modelling approxima-
tions: the eyeball is treated as if it were a uniform spherical membrane filled with fluid. The two-point
boundary-value problem is solved numerically by finite differences. Based on the model, an algorithm
was presented that predicts the eye’s indentation due to the application of the band. Such a prediction,
that depends on the material properties of the band and its stretching, is of interest for planning the
surgery and its effect. In particular, the algorithm was used to predict the maximal intraocular pressure
immediately after surgery, as well as the final indentation of the eyeball, when the intraocular pressure
is back to normal. By comparison with measurements on an enucleated human eye, it was found that
the model’s predictions are in reasonable agreement with the experimental data.
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Appendix A. Existence of a solution(((u,λλλ)))

Existence of a weak solution(u, λ) to (3.1) is established as follows. Define the(v, p)-dependent bilin-
ear form

B(u, ū; v, p) =
∫ π

0





T(v)v

√
v2 + v2

φ





[uφ ūφ + uū] sinφ dφ (A.1)
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which satisfies

B(u, ū; v, p) = (A(v)u, ū)L2([0,π ]), ∀ u, ū ∈ D(A). (A.2)

For this, it is assumed thatv ∈ W1,∞([0, π ]) satisfies

v > ε > 0 (A.3)

and

‖v‖W1,∞([0,π ]) 6 β. (A.4)

To obtain the positivity of the coefficient in (A.1), it is assumed that the following holds:

Emδm 6 T0 ≡ 1
2r0 p1 exp

[
4πσ

3
(r 3

0 − r 3
1)

]
, (A.5)

whereV0 = 4πr 3
0/3 is the constant volume to whichv is constrained,

∫ π

0
v3 sinφdφ = 2r 3

0 (A.6)

and thusr0(v) in (2.6) is the constantr0 in (A.6). Then, it follows from (2.7) thatT0(v) = T0 in (A.5).
Since the surface area of a given volume is always minimized with a spherical geometry, it follows that
S(v) > S(r0(v)) = S(r0). Thus,T(v) in (2.5) satisfies

T(v) = [T0 − Emδm] + Emδm
S(v)

S(r0(v))
> Emδm (A.7)

when (A.5) holds. Combining the estimates above gives the following lower bound on the coefficient in
(A.1):

T(v)v
√
v2 + v2

φ

>
Emδmv√
v2 + v2

φ

>
Emδmε√

2β
≡ c1. (A.8)

From (2.8), (A.3) and (A.4), S(v) satisfies

S(v) = 2π
∫ π

0
v sinφ

√
v2 + v2

φ dφ 6 4π
√

2β2, (A.9)

while S(r0) = 4πr 2
0 holds, and thus, the following upper bound on the coefficient in (A.1) is obtained:

T(v)v
√
v2 + v2

φ

=
v

√
v2 + v2

φ

{
T0 + Emδm

[
S(v)

S(r0)
− 1

]}
6 T0 + Emδm

[
√

2
β2

r 2
0

− 1

]

≡ c2. (A.10)

Thus, it follows thatB is bounded and coercive onH1([0, π ]):

c1‖u‖2
H1([0,π ]) 6 |B(u, u; v, p)|, |B(u, ū; v, p)| 6 c2‖u‖H1([0,π ])‖ū‖H1([0,π ]). (A.11)
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By the Lax–Milgram Theorem (Ciarlet, 1978), there is a linear operator̂A(v, p) which is bounded on
H1([0, π ]) and satisfies

B(u, ū; v, p) = (Â(v, p)u, ū)H1([0,π ]), ∀ u, ū ∈ H1([0, π ]). (A.12)

For a givenv satisfying (A.4), define the operator̂K (v): RRR → H0([0, π ]) by

K̂ (v)λ = −λv2. (A.13)

Then, by (3.4) and (A.13), K̂ satisfies

(K̂ (v)λ, u)H0([0,π ]) = (K (v)λ, u)L2([0,π ]), ∀ u ∈ H0([0, π ]). (A.14)

For a givenv satisfying (A.4), define the function

B̂(v, p) = − Â(v, p)v − T(v)
√
v2 + v2

φ + [ f (v sinφ, v cosφ)(v cosφ)φ/
√
v2 + v2

φ + p]v2. (A.15)

Then, using (3.5), (A.2) and (A.12), B̂ satisfies the following forv ∈ D(A):

(B̂(v, p), u)H0([0,π ]) = (B(v, p), u)L2([0,π ]), ∀ u ∈ H0([0, π ]). (A.16)

According to (3.6), the adjoint ofK̂ (v) is given by

K̂ ∗(v)u = K ∗(v)u. (A.17)

To complete the transformation of (3.1), define

Ê(v) = E(v) (A.18)

to obtain that
[

Â(v, p) K̂ (v)

K̂ ∗(v) 0

][
u

λ

]

=

[
B̂(v, p)

Ê(v)

]

. (A.19)

Solving foru andλ leads to the relations

[ K̂ ∗(v) Â−1(v, p)K̂ (v)]λ= K̂ ∗(v) Â−1(v, p)B̂(v, p)− Ê(v),

u = Â−1(v, p)[ B̂(v, p)− K̂ (v)λ]. (A.20)

Thus,u is given in terms ofλ, which is determined by the first equation provided it can be shown that
the constant [̂K ∗(v) Â−1(v, p)K̂ (v)]1 does not vanish. For this, the constant is written as

[ K̂ ∗(v) Â−1(v, p)K̂ (v)]1 = K̂ ∗(v)w, (A.21)

wherew is the solution to

Â(v, p)w = K̂ (v)1 = −v2. (A.22)
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Then, the desired result is obtained once it is shown thatw ∈ C0(0, π) and 0> w 6≡ 0 hold, since forv
satisfying (A.3), it follows from (3.6) that the constant in (A.21) satisfiesK̂ ∗(v)w < 0. Sincew satisfies
(A.22), which is given explicitly in (A.12), it follows that

∫ π

0





T(v)v

√
v2 + v2

φ





[wφ ūφ + wū] sinφ dφ = −

∫ π

0
v2ū sinφ dφ, ∀ ū ∈ H1([0, π ]). (A.23)

Because of the estimate

sinε
∫ π−ε

ε
[w2 + w2

φ ]dφ 6
∫ π−ε

ε
[w2 + w2

φ ] sinφ dφ

6
∫ π−ε

ε
[w2 + w2

φ ]dφ, ∀ ε > 0, (A.24)

it follows for w ∈ H1([0, π ]) thatw ∈ H1([ε, π − ε]) for everyε > 0. It follows from the Sobolev
embedding theorem (Adams, 1975) thatw ∈ C0(0, π). Thus, for the sake of contradiction, suppose that

w(φ) > 0, φ ∈ (a, b) ⊂ (0, π). (A.25)

Then, letψ ∈ W1,∞([0, π ]) be the non-negative function supported precisely on(a, b) and satisfying
ψ = 1

2|ψφ |. Finally, setū = ψw in (A.23) to obtain that

−
∫ b

a
v2wψ sinφ dφ =

∫ b

a





T(v)v

√
v2 + v2

φ





[(w2

φ + w2)ψ + wφwψφ ] sinφ dφ

>
∫ b

a





T(v)v

√
v2 + v2

φ






[
(w2

φ + w2)ψ − 1
2(w

2
φ + w2)|ψφ |

]
sinφ dφ

= 0. (A.26)

Then, it follows with (A.3) and (A.25) that the left side of (A.26) is strictly negative. The contradiction
of (A.26) implies thatw 6 0 holds on [0, π ]. Because of (A.3), it follows from (A.22), (A.12) and
(A.11) that w 6≡ 0 holds. From (A.17), (A.3) and (3.6), it follows that K̂ ∗(v)w in (A.21) satisfies
K̂ ∗(v)w = K ∗(v)w 6= 0. Thus,λ andu are well defined by (A.20).
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