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Abstract

Based on the theory developed and described in “Tone rows and tropes” we developed a database
containing complete information on the 836 017 D12 × D12-orbits of tone rows. It can be accessed via
http://www.uni-graz.at/~fripert/db/. We give some short hints on what can be done with this
database and how to use it.

The Database on tone rows and tropes is publicly available1 via the address

http://www.uni-graz.at/~fripert/db/.

It consists of the following components:

• Several Perl-programs can be used for different search routines.

• Different algorithms concerning group actions are implemented in one executable program writ-
ten in “SYMMETRICA”.2

• For some graphics the JavaScript VectorGraphics library “wz jsgraphics.js” by Walter Zorn3

is used. In order to print the graphics-output printing of the background must be enabled in the
browser.

• Using pop-up windows further information can be derived, whence pop-up windows should
also be enabled.

• The JavaScript library “SoundManager 2”4 is used to obtain a simple acoustic representation of
the tone rows.

1 Tone rows

The main objects in this database are the D12 × D12-orbits of tone rows. A tone row is a bijective
mapping from {1, . . . , 12} into the set Z12 of twelve pitch classes. The orbit (D12 ×D12)( f ) of the tone
row f can be described

• by the complete list of all elements (φ, π) f = φ ◦ f ◦ π−1 for (φ, π) ∈ D12 × D12, i. e. by all
tone rows which can be obtained from f by applying any combination of transposing, inversion,
cyclic shift and retrograde to f ,

• by the normal form of f which is the lexicographically smallest element in the orbit of f ,

1accessed July 5, 2014
2http://www.algorithm.uni-bayreuth.de/en/research/SYMMETRICA/ accessed August 19, 2014.
3http://www.walterzorn.de/en/jsgraphics/jsgraphics_e.htm acessed August 19, 2014
4http://www.schillmania.com/projects/soundmanager2/ accessed August 19, 2014
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• by its number in the complete listing of all D12 × D12-orbits of tone rows, which belongs to the
set {1, 2, . . . , 836 017}.

For more details see Sections 3 and 3.1 of [Fripertinger and Lackner(2015)].
There are three different alphabets representing the set of pitch classes, therefore, it is possible

to handle tone rows in three different numerical representations. As alphabet we use either A1 =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} or A2 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} or A3 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B}.
A tone row is a vector or array of length 12 over Ai, 1 ≤ i ≤ 3, so that each element of the alphabet is
listed exactly once. Using A1 or A2 the numbers in this vector must be separated by a comma, whereas
no commas are used when writing a tone row as a vector over A3. E. g., the chromatic scale could be
expressed as 1,2,3,4,5,6,7,8,9,10,11,12 over A1, as 0,1,2,3,4,5,6,7,8,9,10,11 over A2, and
as 0123456789AB over A3. By using radio buttons, the alphabet must be chosen in order to fit to the
input tone row. The user must take care to consider the right alphabet, to separate or not to separate
with commas and to input a list of exactly twelve different pitch classes.

In some places there are additional display options which allow to write or display a tone row with
German, English or Italian note names or in musical notation. Using the “Play”-button you can listen
to this tone row, the “Stop”-button interrupts the playback.

1.1 D12 × D12-orbit of a tone row

In order to compute all elements of the D12 × D12-orbit of the tone row f it must be input either in
numeric form or by choosing note names.

For each tone row h in the orbit of f an element (φ, π) of the acting group D12×D12 is presented so
that h = (φ, π) f = φ ◦ f ◦π−1. If you press the button “S” the stabilizer of the corresponding tone row
in D12 × D12 is computed. The tone rows are ordered by the lexicographic order. There are at most
576 = 242 tone rows in one orbit.

For more details see Sections 3.1, 3.2 and Remark 3.1 of [Fripertinger and Lackner(2015)].

1.2 D12 × D12-normal form of a tone row

The normal form h of the tone row f is the lexicographic smallest element in the orbit of f . Thus it is
the tone row which occurs in first position in the listing of all elements of the D12×D12-orbit. Knowing
h we can search the database for all information on the orbit of f . For more details see Section 3.2 and
Remark 3.2 of [Fripertinger and Lackner(2015)].

In order to compute the normal form of f it must be input either in numeric form or by choosing
note names. Not only the normal form h is computed, but also an element (φ, π) of the acting group
D12 × D12 so that h = (φ, π) f = φ ◦ f ◦ π−1 or, equivalently, f = (φ−1, π−1)h = φ−1 ◦ h ◦ π. The
position of the input tone row f in the orbit of h with respect to the lexicographic order is indicated.
Moreover we present the orbit of h in the chromatic circular representation and indicate the particular
position of f in this polygon or, if necessary, in its mirror which is the polygon of I ◦ h. Since f is an
individual tone row we indicate its first note (or pitch class) by a circle around the vertex corresponding
to this note (or pitch class), and the connection between the last note and the first note of f is not drawn
in the polygon. Moreover we indicate how the pitch classes are labeled. Finally, we draw the trope
structure of f according to this labeling of the pitch classes.

There are further buttons which allow to search the database for this tone row, to obtain all infor-
mation about this tone row, or to show the orbit of this tone row.

1.3 All information about a tone row

It is possible to obtain all information about a particular tone row f which can be input either in
numeric form or by choosing its number in the list of the 836 017 D12 × D12-orbits of tone rows. For
the second method the first input field must be empty! The user will obtain the normal form of f , the

2



orbit of f , all data like stabilizer type, trope structure, interval structure, diameter distance structure,
chord diagram etc. in connection with this orbit, the tone row in musical notation, the row matrix of
f , simultaneous information on bigger orbits of the form (Aff1(Z12)×D12)( f ), (D12×Aff1(Z12))( f ),
(Aff1(Z12) × Aff1(Z12))( f ), A12( f ) and D12( f ). (For more details see sections 1.3, 2.3, 3.1, and 4.1
of [Fripertinger and Lackner(2015)].) Finally musical information on the orbits (D12 × D12)( f ) and
A12( f ) is provided. The second one, is the biggest orbit containing f which is studied in our database.
It collects the information on tone rows of up to eight different D12 × D12-orbits.

1.4 Search the database of D12 × D12-orbits of tone rows

This is the main part of the database. It is possible to search for or to retrieve information on

• tone rows with given normal form,

• tone rows with given interval structure,

• tone rows with prescribed number of different intervals in their interval structure,

• tone rows with given trope structure,

• tone rows with trope numbers from a prescribed subset of {1, . . . , 35},
• tone rows with prescribed number of different trope numbers in their trope structure,

• tone rows with prescribed diameter distance,

• tone rows with prescribed number of different distances in their diameter distance,

• tone rows with prescribed stabilizer type,

• tone rows with given number in the list of all 836 017 orbits,

• all-interval rows,

• orbits of tone rows invariant under the quart-circle,

• orbits of tone rows invariant under the 5-step,

• orbits of tone rows invariant under the parameter exchange,

• orbits of derived tone rows,

• tone rows with given chord diagram.

If different search criteria are entered it is important to choose whether they should be connected with
AND or OR.

By using radio-buttons the alphabet is chosen for representing the tone rows. There are some
additional display options: If “Graphical” is chosen, then for each D12 × D12-orbit of tone rows the
chromatic circular representation is shown. In this situation at most 100 search results are displayed
on a single page. If “Normal” is chosen, then the chromatic circular representation is not shown, but
up to 6000 search results can be displayed. If “Simple” is chosen, then the information on a single tone
row is contained in a single line. This is the fastest display option. Again it is possible to display at most
6000 search entries. Each line in the output is separated by | in 14 columns. The first column contains
the number of the orbit from {1, . . . , 836 017}, the second column the normal form of the tone row
represented over the alphabet A3, the third column the trope structure, the fourth column the number
of different trope numbers, the fifth column the stabilizer type given by a number from {1, . . . , 17}, the
sixth column the interval structure represented over the alphabet A3, the seventh column the number
of different intervals, the eighth column the diameter distance structure, the ninth column the number
of different diameter distances, the next three columns indicate whether the orbit is invariant under
the quart circle, the five step, or the parameter exchange (where 0 means “no” and 1 means “yes” in
the corresponding column). Finally, the last but one column indicates whether the row is a derived
row or not. If it is derived, then it indicates the lengths of the subsequences from which it can be
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derived, otherwise it shows 0. The last column contains the number of the chord diagram from the set
{1, . . . , 554}.

Using the “Normal” or “Graphical” display option for each search result it will be possible to open
pop-up windows showing

• the chord diagram,

• the decomposition of the orbit into D12 × 〈R〉-orbits,

• musical information on the D12 × D12-orbit and on the A12-orbit containing this orbit,

• all elements of the orbit,

• the stabilizer of the normal form of the orbit,

• the trope structure of the normal form of the orbit,

• the chromatic circular representation of the orbit.

If there are more search results than could be displayed (more than 100 or 6000 respectively), then
it is possible to continue the search pressing a button at the end of the page with the search results.

It is also possible to pass all the search results to other parts of the database:

• Get further information on bigger orbits

• Add further search criteria

• Search for musical information

• Simultaneous information on bigger orbits

• Chord diagrams and Gauss numbers

• Decomposition into D12 × 〈R〉-orbits

Now we explain the more advanced input options:

1.4.1 The normal form

In order to input the normal form, first the alphabet must be chosen. According to this choice

1. either a complete normal form of a tone row must be input in numeric version (where each
symbol of the chosen alphabet must appear exactly once).

If a tone row is input which is not the normal form of its orbit it will not be found in the database.
E.g. the sequence 2,3,4,5,6,7,8,9,10,11,12,1 also describes the chromatic scale, but is not
contained in the database.

2. or a part (a subsequence) of the normal form of a tone row must be input, e.g. 10,11 or 1,3,4
(for the alphabet A1) or 9,10 or 0,2,3 (for the alphabet A2) or 9A or 023 (for the alphabet A3),

3. or a blank-separated list of parts of tone rows must be input, e.g. 4,5 2,7 (for the alphabet A1)
or 3,4 1,6 (for the alphabet A2) or 34 16 (for the alphabet A3). Using AND demands that all the
different parts must simultaneously occur in one tone row, whereas using OR at least one of these
parts must occur in one tone row.

The software will find a tone row if and only if the input pattern occurs in a normal form of a tone row.
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1.4.2 The interval structure

In order to input the interval structure of a tone row

1. either a comma-separated list of 11 intervals from the set {1, 2, . . . , 11} must be input, if the
alphabets A1 or A2 are chosen, or a sequence (without commas) of 11 intervals from the set
{1, 2, . . . , 9, A, B} if the alphabet A3 is considered. E.g. 1,1,2,7,9,7,2,2,11,4,11,3 or 11279722B4B3

2. or a part of the interval-structure of a tone row must be input, e.g. 1,1,2,7 or 1127 which is an
interval-structure of length 4,

3. or a blank-separated list of parts of an interval-structures must be input. E.g. 1,2,7 7,2,2

9,7,2 or 127 722 972 which consists in this case of three structures all of length three. Using
AND demands that all the different parts must simultaneously occur in the interval structure of a
tone row, whereas using OR at least one of these parts must occur in in the interval structure of a
tone row.

4. It is also possible to replace the occurrence of an arbitrary interval by a dot ., of arbitrary many
intervals by .* which includes also the situation of no intervals, of at least one interval by .+,
or of at most one interval by .?. E.g., in order to search for an interval structure where there is
exactly one digit between two intervals 6 enter 6,.,6 or 6.6.

Searching for an interval-structure finds

• the occurrence of the input structure in the interval-structure of a tone row in normal form,

• but also in its retrograde,

• or in its inversion,

• or in its cyclic shifts. E.g. the interval-structure 11,3,1,1 is found in a tone row with interval
structure 1,1,2,7,9,7,2,2,11,4,11,3 even though the four intervals occur at the end and the
beginning of this sequence.

1.4.3 The trope structure

In order to prescribe the trope structure,

1. either a comma-separated list of 6 trope numbers from the set{1, 2, . . . , 35} must be input de-
scribing the complete trope structure of a tone row, e.g. 1,2,7,13,11,2

2. or a part of the trope structure of a tone row must be input, e.g. 2,7 which is a trope structure of
length 2.

3. or a blank-separated list of trope structures as in 2. must be input. E.g. 1,2 7 13 which consists
of three structures of length 2, 1 and 1. Using AND demands that all the different parts must
simultaneously occur in the trope structure of a tone row, whereas using OR at least one of these
parts must occur in the trope structure of a tone row.

4. It is also possible to replace the occurrence of a single (numerical) digit by a dot . or by \d, of
exactly two (numerical) digits by two dots .. or by \d\d, of arbitrary many digits by .*? or by
\d*?.

Searching for a trope structure finds

• the occurrence of the input structure in the trope structure of a tone row in normal form,

• but also in its retrograde,

• or in its cyclic shifts. E.g. the sequence 1,2,11 is found in a tone row with trope structure
1,2,7,13,11,2 even though the three trope numbers occur at the end and the beginning of this
sequence in retrograde order.)
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1.4.4 Trope numbers from a given set

A comma-separated list of trope numbers from 1 to 35 must be input. Only those tone rows are found
the trope structure of which contains only numbers from this list.

1.4.5 The diameter distance structure

Let f : {1, . . . , 12} → Z12 be a tone row, then its diameter distances are the distances of f (7) and f (1),
of f (8) and f (2), . . . , and of f (12) and f (6).

Let a, b ∈ Z12 be two distinct elements, then the distance of a and b is 1 if and only if the interval
b− a is 1 or 11. The distance is 2 if the interval b− a is 2 or 10. The distance is 3 if the interval b− a is
3 or 9. The distance is 4 if the interval b− a is 4 or 8. The distance is 5 if the interval b− a is 5 or 7. The
distance is 6 if the interval b− a is 6.

Let vi be the distance of f (i) and f (i + 6), 1 ≤ i ≤ 6. They all belong to the set {1, . . . , 6}. The
diameter distance structure is the D6-orbit of the vector (v1, . . . , v6) where the dihedral group acts on
the set of indices in the natural way.

In order to input the diameter distance structure

1. either a comma-separated list of 6 diameter distances describing the complete diameter distance
structure of a tone row must be input, e.g. 1,2,4,4,5,4,

2. or a part of the diameter distance structure of a tone row must be input, e.g. 2,4, which is a
diameter distance structure of length 2,

3. or a blank-separated list of distance structures as in 2. must be input. E.g. 1,2 4,5,4, which
consists of two structures of length 2 and 3. Using AND demands that all the different parts must
simultaneously occur in the diameter distance structure of a tone row, whereas using OR at least
one of these parts must occur in in the diameter distance structure of a tone row.

4. It is also possible to replace the occurrence of a single (numerical) digit by a dot . or by \d, of
exactly two (numerical) digits by two dots .. or by \d\d, of arbitrary many digits by .*? or by
\d*?.

Searching for a diameter distance structure finds

• the occurrence of the input structure in the diameter distance structure of a tone row in normal
form,

• but also in its retrograde,

• or in its cyclic shifts. E.g. the sequence 4,1,2 is found in a tone row with diameter distance
structure 1,2,4,4,5,4 even though the three numbers occur at the end and the beginning of this
sequence in retrograde order.)

1.4.6 Stabilizer type

Let f be a tone row, then its stabilizer U is the set of all (φ, π) ∈ D12 × D12 so that (φ, π) f = f . It
is a subgroup of D12 × D12. The stabilizer of any element of the D12 × D12-orbit of f belongs to the
conjugacy class of U. Hence, the conjugacy class of U is called the stabilizer type of this orbit.

There are 17 different conjugacy classes of subgroups of D12 × D12 which occur as stabilizers of
tone rows. For each class Ũi we present the generator of one representative of this class, the order of
this representative, the size of the class, i.e. the number of different groups in this conjugacy class, and
the number of D12 × D12-orbits of tone rows with stabilizer type Ũi.

In order to search for tone rows with given stabilizer type, determine the conjugacy class of the
stabilizer by choosing a number from {1, . . . , 17}. The different stabilizer types are described in
[Fripertinger and Lackner(2015)] or in the online documentation.
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1.4.7 Derived tone rows

Let d be a number from {2, 3, 4, 6}. These are the nontrivial divisors of 12. Partition a tone row
f : {1, . . . , 12} → Z12 into q = 12/d segments of the form

( f (1), . . . , f (d)), ( f (d + 1), . . . , f (2d)), . . . , ( f ((q− 1)d + 1), . . . , f (12)).

The tone row f can be constructed from its first segment, if all the q segments of f can be constructed
from the first segment by applying suitable combinations of transposition, inversion and retrograde
(of the segment).

The tone row f is called a derived row if it can be partitioned into 12/d segments, where d ∈
{2, 3, 4, 6}, so that f can be constructed from its first segment.

If f is a derived row, then all elements in the orbit (D12 × 〈R〉)( f ) are derived rows. We want to
generalize this notion for D12 × D12-orbits.

The D12 × D12-orbit of f is called derived, if there exist representatives which are derived rows.
Thus, the segment from which the row f can be constructed need not be the segment ( f (1), . . . , f (d)).
It can be any segment of the form ( f (1 + j), . . . , f (d + j)) for 0 ≤ j < d.

In order to search for derived rows decide which values of d are interesting. It is possible to choose
any combination of the four possible values of d and to indicate by choosing AND/OR/EXACT whether
the tone rows must be derived from each of these d’s, at least one of these d’s, or exactly from all these
d’s and no other d’s.

1.5 Chord diagrams and Gauss words

Let f : {1, . . . , 12} → Z12 be a tone row. The preimages of the six tritone pairs {0, 6} , {1, 7} , . . . , {5, 11}
partition the domain {1, . . . , 12} into six 2-sets. There are 554 D12-orbits of these partitions which
correspond to Gauss words. Gauss words can be represented as functions of restricted growth from
{1, . . . , 12} to {1, . . . , 6} where each element of the range occurs exactly twice. Franck Jedrzejewski
computed the serial groups of tone rows. All tone rows of the orbit (D12×D12)( f ) determine the same
Gauss word and the same serial group as f . Hence, these are properties of the orbit of f . According to
F. Jedrzejewski there are 26 non-isomorphic serial groups and their orders lie between 24 and 12!.

Using the database it is possible to

• to determine the chord diagrams of all tone rows given by the number of their (D12 × D12-orbit,

• display all D12 × D12-orbits of tone rows which yield a given chord diagram,

• display all D12×D12-orbits of tone rows with given serial group. The serial groups are identified
by their orders. There are three non-isomorphic serial groups of order 384, which are indicated
as 384a, 384b, and 384c, and three non-isomorphic groups of order 768, indicated as 768a, 768b,
and 768c.

• The different input blocks are connected with AND.

1.6 Multiplicities of intervals

The multiplicity of an interval indicates how often this interval occurs in the interval structure. For
each interval i from 1 to 11 its multiplicity ai ∈ {0, . . . , 12} can be prescribed. If

11

∑
i=1

ai = 12,

then the program determines all tone rows the interval structures of which have multiplicities ai for
each i ∈ {1, . . . , 12}. If

11

∑
i=1

ai > 12,
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then there are no tone rows with these multiplicities. If

11

∑
i=1

ai < 12,

then the program determines all tone rows the interval structures of which have multiplicities at least
ai for each i ∈ {1, . . . , 12}.

The interval structures of all-distances-twice rows are collected in a table.

2 The trope structure

Consider a tone row f : {1, . . . , 12} → Z12, then the tropes of f are the six “pairs” of hexachords

τ1 =
{
{ f (1), f (2), f (3), f (4), f (5), f (6)} , { f (7), f (8), f (9), f (10), f (11), f (12)}

}
,

τ2 =
{
{ f (2), f (3), f (4), f (5), f (6), f (7)} , { f (8), f (9), f (10), f (11), f (12), f (1)}

}
,

τ3 =
{
{ f (3), f (4), f (5), f (6), f (7), f (8)} , { f (9), f (10), f (11), f (12), f (1), f (2)}

}
,

τ4 =
{
{ f (4), f (5), f (6), f (7), f (8), f (9)} , { f (10), f (11), f (12), f (1), f (2), f (3)}

}
,

τ5 =
{
{ f (5), f (6), f (7), f (8), f (9), f (10)} , { f (11), f (12), f (1), f (2), f (3), f (4)}

}
,

τ6 =
{
{ f (6), f (7), f (8), f (9), f (10), f (11)} , { f (12), f (1), f (2), f (3), f (4), f (5)}

}
.

Therefore, a tone row f induces the trope sequence t f : {1, . . . , 6} → T , t f (i) = τi, 1 ≤ i ≤ 6, where T is
the set of all tropes in Z12. If we replace in the trope sequence of f the tropes by the numbers of their
D12-orbits, we obtain a function s f : {1, . . . , 6} → {1, . . . , 35}, the trope number sequence of f , where s f (i)
is the number of the orbit D12(τi−1), 1 ≤ i ≤ 6.

The trope structure of the D12×D12-orbit of f is the D6-orbit of s f under the natural action of the di-
hedral group on the domain of s f . For more details see Section 3.5 of [Fripertinger and Lackner(2015)].

In order to construct tone rows from their trope structure or to explore the set of all trope structures
it is possible

• to find all tone rows with prescribed multiplicities of trope numbers in their trope structure,

• or to determine all tone rows the trope structures of which can be constructed from six given
sets.

2.1 Multiplicities of trope numbers

The multiplicity of a trope number indicates how often this trope number occurs in the trope structure.
For each trope number i from 1 to 35 its multiplicity ai ∈ {0, . . . , 6} can be prescribed. If

35

∑
i=1

ai = 6,

then the program determines all tone rows the trope structures of which have multiplicities ai for each
i ∈ {1, . . . , 35}. If

35

∑
i=1

ai > 6,

then there are no tone rows with these multiplicities. If

35

∑
i=1

ai < 6,

then the program determines all tone rows the trope structures of which have multiplicities at least ai
for each i ∈ {1, . . . , 35}.
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2.2 Construction of trope structures

After inputting Xi, the set of trope numbers which may occur in i-th position of a trope structure
for i ∈ {1, . . . , 6}, all orbits of tone rows are constructed the trope structures of which satisfy these
constraints. The sets Xi are written as comma-separated lists of numbers from {1, . . . , 35}.

For each sequence (t1, . . . , t6) ∈ X1 × . . .× X6 which contains connectable trope numbers only we
search the database in order to decide whether its D6-orbit is the trope structure of a tone row.

2.3 The trope structure of a tone row

In order to display the trope {H1, H2} consisting of the two hexachords H1 and H2 graphically, we
draw the six vertices of the circular representation of Z12 belonging to H1 in one color (say black) and
the remaining six vertices in another color (say white). The number of its D12-orbit is written in the
center of the circular representation.

When displaying the trope structure of a tone row f graphically, we draw the six tropes τi, i ∈
{1, . . . , 6}, defined by f , in a circle. The line between the τ1 and τ6 indicates, that the tropes corre-
sponding to the remaining six shifts of f can be obtained by exchanging the colors in the first six
diagrams.

2.4 Number of tropes in an n-scale

It is possible to enumerate orbits of tropes in an n-scale with respect to certain group actions (cf. Sec-
tion 3.5.3 of [Fripertinger and Lackner(2015)]). Choose the action of a suitable group from dihedral
group Dn, cyclic group Cn, linear affine group Aff1(Zn), identity group which contains only the iden-
tity id on Zn, or an arbitrary group, which can be determined by a set of generators.

2.5 List of all tropes in an n-scale

For small values of n it is possible to compute a complete list of all tropes in Zn. Choose the action
of a suitable group from dihedral group Dn, cyclic group Cn, linear affine group Aff1(Zn), and decide
whether the tropes should also be graphically displayed or not.

3 General orbits of tone rows

Instead of D12 × D12 we study the action of other groups on the set of all tone rows. Among these
there are the following five groups which contain D12 × D12 as a proper subgroup.

• Aff1(Z12)× D12 which contains the quart-circle Q.

• D12 ×Aff1(Z12) which contains the 5-step F.

• Aff1(Z12)×Aff1(Z12) which contains the 5-step F and the quart-circle Q.

• A12 which contains the 5-step F, the quart-circle Q, and the exchange of parameters P.

• D12 which contains the exchange of parameters P.

Furthermore also the following group actions onR can be studied.

• C12 × 〈R〉 which is generated by (T, 1) and (1, R).

• D12× 〈R〉which is generated by (T, 1), (I, 1), and (1, R). These orbits correspond to Schönberg’s
notion of equivalent tone rows.

• C12 × C12 which is generated by (T, 1) and (1, R).

• 〈I〉 × 〈1〉 which is generated by (I, 1).
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• 〈Q〉 × 〈1〉 which is generated by (Q, 1).

• 〈1〉 × 〈R〉 which is generated by (1, R).

• 〈1〉 × 〈F〉 which is generated by (1, F).

• C12 × 〈1〉 which is generated by (T, 1).

• D12 × 〈1〉 which is generated by (T, 1) and (I, 1).

• Aff1(Z12)× 〈1〉 which is generated by (T, 1), (I, 1) and (Q, 1).

• 〈1〉 × C12 which is generated by (1, S).

• 〈1〉 × D12 which is generated by (1, S) and (1, R).

• 〈1〉 ×Aff1(Z12) which is generated by (1, S), (1, R) and (1, F).

• 〈P〉 which is generated by the parameter exchange P.

It is possible to compute the orbit, the normal form or the stabilizer of a prescribed tone row which
must be input in numeric form. For more details see Sections 3.1–3.3 of [Fripertinger and Lackner(2015)].

3.1 Decomposition into D12 × 〈R〉-orbits (Schönberg-situation)

Since each D12 × D12-orbit of tone rows is a union of D12 × 〈R〉-orbits it is possible to determine the
decomposition of the D12 × D12-orbit of f into these D12 × 〈R〉-orbits. Then the normal form of each
D12 × 〈R〉-orbit is tested whether it is an all-interval row, a combinatorial row, or a derived row. For
more details see Section 3.7 of [Fripertinger and Lackner(2015)].

3.2 The row matrix of a tone row

In order to compute the row matrix of a tone row f , the tone row must be input in numeric form. The
rows and columns of this matrix contain all elements of the D12× 〈R〉-orbit of f (Schönberg situation).
E.g. the normal form of this orbit stands in the first row of this matrix.

3.3 Operation on a tone row

An arbitrary element of A12 is of the form (Ti I jQk, SmRnFr) ◦ Ps with i, m ∈ {0, 1, . . . , 11}, j, k, n, r, s ∈
{0, 1}. In order to compute

(Ti I jQk, SmRnFr) ◦ Ps ∗ f = Ti ◦ I j ◦Qk ◦ (Ps ◦ f ) ◦ Fr ◦ Rn ◦ S−m

of a tone row, input f in numeric form and the values of the exponents i, j, k, m, n, r, s. According to
the definition of this group action the sequence of SmRnFr acting on the domain of f must be reversed
and the exponent m must be replaced by −m. Since r, n ∈ {0, 1} the minus can be omitted in front of r
or n.

3.4 Number of tone rows in an n-scale

It is possible to enumerate orbits of tone rows in an n-scale with respect to certain group actions. Both
for the domain and the range of tone rows choose the action of a suitable group from dihedral group
Dn, cyclic group Cn, linear affine group Aff1(Zn), identity group which contains only the identity id
on Zn, or an arbitrary group, which can be determined by a set of generators. As a matter of fact the
degrees of both permutation groups must be the same!
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4 Bigger orbits

We collect information and describe relations between the D12×D12-, Aff1(Z12)×D12-, D12×Aff1(Z12)-
, Aff1(Z12)×Aff1(Z12)-, D12-, and A12-orbits of tone rows. For more details see Section 4 of [Fripertinger and Lackner(2015)].

4.1 Information on bigger orbits

Here we describe how the orbits of tone rows under bigger groups decompose into D12 × D12-orbits.
First the acting group G must be chosen. The tone rows we are interested in must be input by

the numbers of their D12 × D12-orbits from {1, . . . , 836 017}. It is also possible to search for all tone
rows with prescribed stabilizer type (with respect to the chosen group action). The stabilizer types are
described in the online document.

These bigger groups collect 1, 2, 4, or 8 different D12 × D12-orbits to one bigger orbit. It is also
possible to restrict the search to tone rows which belong to bigger orbits collecting a prescribed number
of smaller orbits. The different input blocks are connected with AND.

For each search result it will be possible to open pop-up windows showing

• the decomposition of the G-orbit into D12 × 〈R〉-orbits,

• musical information on the G-orbit

• all elements of the G-orbit,

• the stabilizer of the normal form of the G-orbit,

• the chromatic circular representation of all D12 × D12-orbits contained in the G-orbit.

4.2 Simultaneous information on bigger orbits

This program displays simultaneously information on the D12×D12-, Aff1(Z12)× D12-, D12×Aff1(Z12)-
, Aff1(Z12)×Aff1(Z12)-, D12-, and A12-orbits of tone rows. It allows to search for D12 × D12-orbits of
tone rows given by their number from {1, . . . , 836 017}, or to prescribe or exclude the stabilizer types
with respect to the five group actions above.

If different D12 × D12-orbits are collected under the action of a bigger group to a bigger orbit, then
it is possible to determine permuting elements between the D12 ×D12-normal forms of these orbits by
opening a pop-up window.

If the D12 × D12-orbit of a tone row f coincides with its orbit under a bigger group, then for all
additional generators h of the bigger group it is possible to determine elements g ∈ D12 × D12 so that
g ∗ f = h ∗ f by opening a pop-up window.

The output consists of a big table. The first column contains the number of the D12 × D12-orbit,
the second column the stabilizer type of this orbit. The third column displays the Aff1(Z12) × D12-
orbit. Usually it consists of two D12 × D12-orbits, the one from the first column and an additional
orbit whose number is written in the third column. If this number is smaller than the number in
the first column, then this new orbit contains the normal form of the Aff1(Z12) × D12-orbit. In this
case its number will be printed in bold face. If the first column contains the normal form of the
Aff1(Z12) × D12-orbit, then in the fourth column the stabilizer type of this orbit is indicated. The
next two columns describe the D12 × Aff1(Z12)-orbit in a similar way. The following two columns
describe the Aff1(Z12)×Aff1(Z12)-orbit which consists of the D12 × D12-orbit from the first column
and up to three further D12 ×D12-orbits. The following four columns describe the A12- and D12-orbits
in a similar way.

11



4.3 Find a permuting element

Input a vector containing at least two tone rows. For each of the input tone rows with exception of the
first one the program tries to find an element of the chosen acting group which applied to the first tone
row yields the corresponding tone row.

4.4 Bigger orbits with high symmetry

For a tone row f given in numeric form it is checked whether the quart circle, the five-step, or the
exchange of parameters of f already belongs to the D12 × D12-orbit of f or not.

5 Chords

Let n be a positive integer. For 0 ≤ k ≤ n a k-chord is a k-set of the the n-scale Zn. If G is a group
acting on Zn, then G acts in a natural way on the set of all k-chords of Zn.

5.1 Number of k-chords in an n-scale

It is possible to enumerate orbits of k-chords in an n-scale with respect to certain group actions. Choose
the action of a suitable group from dihedral group Dn, cyclic group Cn, linear affine group Aff1(Zn),
identity group which contains only the identity id on Zn, or an arbitrary group, which can be deter-
mined by a set of generators.

The result is a polynomial in x with integer coefficients. The coefficient of xk is the number of orbits
of k-chords, 0 ≤ k ≤ n.

5.2 List of all k-chords in an n-scale

For small values of n it is possible to compute a complete list of all k-chords in Zn, 0 ≤ k ≤ n. Choose
the action of a suitable group from dihedral group Dn, cyclic group Cn, linear affine group Aff1(Zn),
and decide whether the k-chords should also be graphically displayed or not.

5.3 Normal form of a k-chord

Please input n, the number of tones in the scale, k, the number of tones in the chord, the chord consist-
ing of k pitch classes, and the acting group. For the labeling of the pitch classes use either the symbols
1, . . . , n, or the symbols 0, . . . , n− 1. A k-chord is a comma-separated list of k distinct pitch classes.

6 Musical information

We were collecting data on tone rows appearing in works of various composers. Therefore it is possible
to check

• whether the tone rows appearing in the search results were used by other composers and were
already collected to our database.

• whether there are properties of tone rows common to different tone rows of one composer.

• whether different composers used similar orbits of tone rows, where similarity means, that the
tone rows belong to the same orbit. In order to study different degrees of similarity we consider
the D12 × D12-orbits as similarity of highest degree, and the A12-orbits, which are the biggest
orbits, as the weakest degree of similarity.
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The following facts are stored in our database:

• The individual tone row, the number of its D12 × D12-orbit, and its position in this orbit.

• The name of the composer, and sometimes also a web-link to further information on the com-
poser.

• The title of the composition, and sometimes also a web-link to further information on the com-
position.

• The date when the piece was composed.

• Some further information if available.

As a matter of fact, at the moment we have more than 1200 entries of musical information in our
database. Of course this is not enough for doing some statistical analysis or to suggest trends in the
usage of certain types of tone rows. However, we try to collect further tone rows and data. Therefore
it is possible to input new musical information by the different users of the database.

There are more than 500 entries with tone rows by J.M. Hauer. All tone rows from the Second
Viennese School and a selection of compositions until today are input.

6.1 Search the database for musical information

It is possible to search

• for a tone row given by the number of its orbit from {1, . . . , 836 017}.

• for a tone row input in numeric form. In this case a composition is found when exactly this tone
row (and not another member of its D12 × D12-orbit) is stored in the database.

• for a composer by his/her surname and first name.

• for the title of a composition. If several words are input, then all words must occur in the title of
the composition.

• for the compositions from a particular year.

• for entries in the field “further information”. If several words are input, then all words must
occur in the field “further information”.

Different search criteria are connected with AND.
It is not necessary to use capital letters. Special symbols like “ä”, “ö”, “ü”, or “ß” can be written

as “ae”, “oe”, “ue” or “ss”. An arbitrary single letter can be replaced by “.”, several arbitrary letters
by “.*” or “.+”. It is not necessary to write the complete word. E.g. searching for composers with
Schoe yields results for Schönberg, just searching for Sch yields results for Schönberg but also other
composers like Schnittke. If the input part of the word does not necessarily stand at the beginning of
the word use .* in front of it. E.g. searching for composers with .*berg gives results for Schönberg
and Berg, whereas searching for composers with .+berg does not show Berg.

If no search criteria are inserted, then all musical information will be displayed.

6.2 Input musical information into the database

In order to input new data, as many fields as possible should be filled. It is necessary to input a tone
row in numeric form which in general should not be given in a normal form, but in this form in which
it appears in the composition. For the different input alphabets the translation
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c c] d d] e f f] g g] a a] b
A1 1 2 3 4 5 6 7 8 9 10 11 12
A2 0 1 2 3 4 5 6 7 8 9 10 11
A3 0 1 2 3 4 5 6 7 8 9 A B

should be used. Furthermore the name of the composer, his/her first name, the title of the composition,
and the date when the piece was written must be input. Some additional information can be input,
e.g. concerning the scoring of the piece, the name of the tone row, or the part where the tone row
occurs. Optionally a link to the composer and/or to the composition can be added. If all the data are
input correctly, then the software will determine the number of the D12 × D12-orbit of the tone row,
and its position in the orbit. The new entry will not immediately be open to the public. First it must
be checked by the second author. Obviously, often it is necessary to analyze a composition thoroughly
until the tone row it is based on can be detected. Therefore it would be helpful to obtain a scan of the
composition per e-mail showing the occurrence of the tone row.

References

[Fripertinger and Lackner(2015)] Fripertinger, Harald, and Peter Lackner. 2015. “Tone rows and
tropes.” To appear in the Journal of Mathematics and Music.

14


