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Formulation of PCA/ICA
I Rows of Z are unknown samples of sources which are

independent and not Gauß distributed.

Z =

 z1(t1) z1(t2) · · · z1(tn)
...

...
...

zm(t1) zm(t2) · · · zm(tn)



I Rows of Y are measured samples of unknown mixtures of
the sources

Y = AZ

no longer independent and now more Gauß distributed.

I Goal is to undo the trend toward Gaußianity to recover the
sources

X = WY

with W = UΛ−
1
2 V T ≈ A−1 but unavoidable ambiguity

xi(t) ≈ ±zk (t).
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Formulation of PCA/ICA
Steps:

I Centering:
Yc = Y − Y

I Sphering:
K = 1

n YcY T
c , KV = V Λ, Ys = Λ−

1
2 V TYc

I Rotation:
Xc = UYc, UT = {u1, . . . ,um}

where each uk minimizes Gaußianity.

For example, Kurtosis
W(x) = M4(x)− 3M2

2 (x)
satisfiesW(n) = 3σ4 − 3σ4 = 0 for n ∼ N(µ, σ2).

So J(u) = −W2(Y T
s u) may be minimizied with uT

k ul = δkl .
I Shift:

X = Xc + UΛ−
1
2 V TY = UΛ−

1
2 V TY = WY
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Formulation of PCA/ICA

(PCA) Let the data be so decomposed,

Yc = Y − Y , K = 1
n YcY T

c , KV = V Λ, Ys = Λ−
1
2 V TYc

Let Λ = diag{λ1, . . . , λm} with λ1 ≥ · · · ≥ λm. With P ∈ Rr×m,
r < m, Pi,j = δi,j , the data Y are so projected to its r strongest
principal components,

Y ≈ YP = Y + V Λ
1
2 PTPYs = Y + 1

n (PYs)
T(PYs)

(ICA) Let the data be further so decomposed,

Xc = UYs

With Q ∈ Rr×m, r < m, Qi,j = δqi ,j , the data Y are so projected
to the r independent components {q1, . . . ,qr},

Y ≈ YQ = Y + V Λ
1
2 UTQTQXc = Y + 1

n (QXc)T(QXc)
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Benefits of `1 Formulations

Centering. Given data x = 〈a,b, . . . ,b〉 ∈ Rm, a < b,

µ2(x) = arg min
µ

m∑
i=1

(µ− xi)
2

= arg min
µ

[
(µ− a)2 + (m − 1)(µ− b)2

]
= 1

m [a + (m − 1)b]

µ1(x) = arg min
µ

m∑
i=1

|µ− xi |

= arg min
a≤µ≤b

[(µ− a) + (m − 1)(b − µ)] = b (robust!)

Best generalization for higher dimensional data,
Y = {y1, . . . ,ym}T ∈ Rm×n,

µ1(Y ) = arg min
µ∈Rn

m∑
i=1

‖µ− y i‖`2
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Benefits of `1 Formulations

Sphering. The `2 approach is obtained by minimizing

Rk (v) =
1
n 〈YkY T

k v ,v〉
〈v ,v〉

=

[
‖Y T

k v‖`2√
n‖v‖`2

]2

where
Yk = (I − Vk−1V T

k−1)Yc, k = 2, . . . ,m − 1, Y1 = Yc
and setting
vk = argminvRk (v), λk = Rk (vk ), Vk = {v1, . . . ,vk}, V = Vm.

Best generalization for `1 is obtained by minimizing

Fk (v) =
‖Y T

k v‖`1√
n‖v‖`2

where
Yk = (I − Vk−1V T

k−1)Yc, k = 2, . . . ,m − 1, Y1 = Yc
and setting
vk = argminvFk (v), λk = Fk (vk ), Vk = {v1, . . . ,vk}, V = Vm.
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Benefits of `1 Formulations

Outliers accumulated at (0,1), then at (0, 1
2) and (1, 1

2),

Blue is for `2, Red is for `1(`2).
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Robust Objective Function for ICA
Test data Y = {y1,y2}T ∈ R2×n, each pair in {(±1,0), (0,±1)}
except for outliers

(y1)1 = α, (y2)1 = 0
(y1)2 = −α, (y2)2 = 0

Then Y = (0,0) and V = I.

The Kurtosis objective function J(u) = −W2(Y T
s u) has the

following landscape for the test data:

u = {cos(θ), sin(θ)} with
θ = π

4 is the robust solution.

This solution is obtained for
α ≈ 0, but not for α moder-
ately larger.
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Robust Objective Function for ICA

An alternative objection function is based on the `1 moment,

M(x) = M1(x)−
√

M2(x)
√

2
π

whereM(n) = σ
√

2/π − σ
√

2/π = 0 for n ∼ N(µ, σ2).

The new objective function

J(u) = −M2(Y T
s u)

has the following landscape for the test data:

u = {cos(θ), sin(θ)} with
θ = π

4 is the robust solution.

This solution is obtained for a
large range of α > 0.
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Minimizing the Robust Objective Function for ICA
The robust objective function

J(u) = −M2(Y T
s u) = −[M1(Ysu)−

√
2/π]2

(M2(Y T
s u) = 1) is minimized under the condition uTu = 1.

The solution is obtained from a stationary point of

L(u, λ) = −[M1(Y T
s u)−

√
2/π]2 + λ(uTu − 1)/2

We have DuJ(u) = −φ(u)G(u)u with

φ(u) = 2[M1(Y T
s u)−

√
2/π] and G(u) =

1
n

n∑
i=1

YseieT
i Y T

s

|eT
i Y T

s u|
A stationary point (u?, λ?) satisfies −DuJ(u?) = λ?u? or with
λ? = µ?(u?)φ(u?) the nonlinear eigenspace problem,

G(u?)u? = µ?(u?)u?, u?Tu? = 1
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Minimizing the Robust Objective Function for ICA
The nonlinear eigenspace problem is solved by a vector
iteration.

Let ul ≈ u? with ‖ul‖ = 1 and an update ul+1 is determined by,

u = G(ul)ul , ul+1 = u/‖u‖, l = 1,2, . . .

After convergence
u? = liml→∞ ul

is the first column of UT.

The next column of UT is determined by a modified vector
iteration.

For this, the projected data

Yp = (I − u?u?T)Ys

have columns which are linearly independent from u?.
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Minimizing the Robust Objective Function for ICA
With the modified matrix,

G̃(u) =
1
n

n∑
i=1

YpeieT
i Y T

p

|eT
i Y T

p u|

the modified vector iteration is,

u = (I − u?u?T)G̃(ul)ul , ul+1 = u/‖u‖, l = 1,2, . . .

The remaining columns of UT are determined similarly, where
u? above is replaced with the matrix [u?1, . . . ,u

?
k ], when k

columns {u?1, . . . ,u?k} of UT have already been calculated.

Observation: The vector iterations converge very robustly to
the global constrained minimum.

Claim: At least convergence to a local constrained minimum
can be proved with adequate step size control.
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Application to DCE-MRI sequences
For each time t = 1, . . . ,T , the matrix of pixel values,

B(t) = {Bi,j(t)}1≤i,j≤N
is an image in the [Video].

With m = T = 134 and n = N2 = 4002 the images are
represented as long vectors:

yT
t = { B1,1(t), . . . , BN,1(t), B1,2(t), . . . , BN,2(t), . . . , B1,N (t), . . . , BN,N (t) }

and PCA/ICA is carried out with Y T = {y1, . . . ,ym}.
(Y ← Y T is equivalent but expensive.)

To the left is the first row of Ys (displayed as image),

To the right is the first column of V .
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Application to DCE-MRI sequences
Top 6 independent components:

Eliminate motion, keep anatomy and contrast agent: [Video]



Application to DCE-MRI sequences
Virtual Gating, through segmentation of correlations:

Three groups [Video], stabilized further by PCA/ICA [Video].



Formulation in Function Space

Based upon the imaging examples:
I Sampling occurs continuously in time . . . ?
I Same number of sources as pixels,

which refine to a continuum . . . ?

Claim: That the sources be statistically independent requires
that that they be countable.

Consequence: The function space setting resembles the finite
dimensional setting but with infinite matrices operating between
bases in separable spaces.
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