ℓ_{1} Approaches to PCA and ICA

S. Keeling and K. Kunisch

Fifth MOBIS SFB Status Seminar

November 14-16, 2012

Steierische Modellierungswoche 2012

Projekt: Signalverarbeitung

Tutorium: Trennung von Datenquellen in unkorrelierte und unabhängige Komponenten

a.o.Univ.Prof. Mag.Dr. Stephen Keeling
http://math.uni-graz.at/keeling/

Literatur:
http://cis.legacy.ics.tkk.fi/aapo/papers/ IJCNN99_tutorialweb/
Dokumentation:
http://math.uni-graz.at/keeling/skripten/ Tutorium.pdf

Dank an Herrn Dipl.-Ing. Dr. Gernot Reishofer für seine Unterstützung für diese Arbeit!

Inhaltsverzeichnis

Matrixalgebra
Lineare Gleichungen
Lösung von Systemen Linearer Gleichungen
Effekt der Matrix-Multiplikation
Eigenräume
Eigenwerte und Eigenvektoren
Eigenraum-Zerlegung
Statistik

Optimierung
Mittelwert und Varianz einer Abtastung
Zentraler Grenzwertsatz
Kovarianz zweier Abtastungen
Zentrierte und Gesphärte Daten
Korrelation
Unabhängigkeit
Mischungen von Abtastungen
Gaußianität
Hauptkomponentenanalyse (PCA) und Unabhängigkeitsanalyse (ICA)

Opier

Nelder-Mead Verfahren
fminsearch
Optimierung der Wölbung mit Nelder-Mead
Abstiegsverfahren
Abstiegsverfahren fur Systeme
Optimierung der Wölbung mit Roher Gewalt
Optimierung der Wölbung mit Abstiegsverfahren
Newton Verfahren
Newton Verfahren fur Systeme
Optimierung der Wölbung mit Newton Verfahren
Fortgeschrittene Themen
Robuste Zielfunktion
Optimierung der Robusten Zielfunktion
Formulierung im Funktionenraum

Graphical Demonstration of PCA/ICA

Sources Z, Measurements Y, sphered Y_{s}, separated X_{c}

Time

Scatter

Histograms

Formulation of PCA/ICA

- Rows of Z are unknown samples of sources which are independent and not Gauß distributed.

$$
Z=\left[\begin{array}{cccc}
z_{1}\left(t_{1}\right) & z_{1}\left(t_{2}\right) & \cdots & z_{1}\left(t_{n}\right) \\
\vdots & \vdots & & \vdots \\
z_{m}\left(t_{1}\right) & z_{m}\left(t_{2}\right) & \cdots & z_{m}\left(t_{n}\right)
\end{array}\right]
$$

Formulation of PCA/ICA

- Rows of Z are unknown samples of sources which are independent and not Gauß distributed.

$$
Z=\left[\begin{array}{cccc}
z_{1}\left(t_{1}\right) & z_{1}\left(t_{2}\right) & \cdots & z_{1}\left(t_{n}\right) \\
\vdots & \vdots & & \vdots \\
z_{m}\left(t_{1}\right) & z_{m}\left(t_{2}\right) & \cdots & z_{m}\left(t_{n}\right)
\end{array}\right]
$$

- Rows of Y are measured samples of unknown mixtures of the sources

$$
Y=A Z
$$

no longer independent and now more Gauß distributed.

Formulation of PCA/ICA

- Rows of Z are unknown samples of sources which are independent and not Gauß distributed.

$$
Z=\left[\begin{array}{cccc}
z_{1}\left(t_{1}\right) & z_{1}\left(t_{2}\right) & \cdots & z_{1}\left(t_{n}\right) \\
\vdots & \vdots & & \vdots \\
z_{m}\left(t_{1}\right) & z_{m}\left(t_{2}\right) & \cdots & z_{m}\left(t_{n}\right)
\end{array}\right]
$$

- Rows of Y are measured samples of unknown mixtures of the sources

$$
Y=A Z
$$

no longer independent and now more Gauß distributed.

- Goal is to undo the trend toward Gaußianity to recover the sources

$$
X=W Y
$$

with $W=U \wedge^{-\frac{1}{2}} V^{\mathrm{T}} \approx A^{-1}$ but unavoidable ambiguity $x_{i}(t) \approx \pm z_{k}(t)$.

Formulation of PCA/ICA

Steps:

- Centering:

$$
Y_{c}=Y-\bar{Y}
$$

Formulation of PCA/ICA

Steps:

- Centering:

$$
Y_{c}=Y-\bar{Y}
$$

- Sphering:

$$
K=\frac{1}{n} Y_{\mathrm{c}} Y_{\mathrm{c}}^{\mathrm{T}}, \quad K V=V \Lambda, \quad Y_{\mathrm{s}}=\Lambda^{-\frac{1}{2}} V^{\mathrm{T}} Y_{\mathrm{c}}
$$

Formulation of PCA/ICA

Steps:

- Centering:

$$
Y_{c}=Y-\bar{Y}
$$

- Sphering:

$$
K=\frac{1}{n} Y_{\mathrm{c}} Y_{\mathrm{c}}^{\mathrm{T}}, \quad K V=V \Lambda, \quad Y_{\mathrm{s}}=\Lambda^{-\frac{1}{2}} V^{\mathrm{T}} Y_{\mathrm{c}}
$$

- Rotation:

$$
X_{\mathrm{c}}=U Y_{\mathrm{c}}, \quad U^{\mathrm{T}}=\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}\right\}
$$

where each \boldsymbol{u}_{k} minimizes Gaußianity.

Formulation of PCA/ICA

Steps:

- Centering:

$$
Y_{c}=Y-\bar{Y}
$$

- Sphering:

$$
K=\frac{1}{n} Y_{\mathrm{c}} Y_{\mathrm{c}}^{\mathrm{T}}, \quad K V=V \Lambda, \quad Y_{\mathrm{s}}=\Lambda^{-\frac{1}{2}} V^{\mathrm{T}} Y_{\mathrm{c}}
$$

- Rotation:

$$
X_{\mathrm{c}}=U Y_{\mathrm{c}}, \quad U^{\mathrm{T}}=\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}\right\}
$$

where each \boldsymbol{u}_{k} minimizes Gaußianity.
For example, Kurtosis

$$
\begin{gathered}
\mathcal{W}(\boldsymbol{x})=M_{4}(\boldsymbol{x})-3 M_{2}^{2}(\boldsymbol{x}) \\
\text { satisfies } \mathcal{W}(\boldsymbol{n})=3 \sigma^{4}-3 \sigma^{4}=0 \text { for } \boldsymbol{n} \sim N\left(\mu, \sigma^{2}\right)
\end{gathered}
$$

Formulation of PCA/ICA

Steps:

- Centering:

$$
Y_{c}=Y-\bar{Y}
$$

- Sphering:

$$
K=\frac{1}{n} Y_{\mathrm{c}} Y_{\mathrm{c}}^{\mathrm{T}}, \quad K V=V \Lambda, \quad Y_{\mathrm{s}}=\Lambda^{-\frac{1}{2}} V^{\mathrm{T}} Y_{\mathrm{c}}
$$

- Rotation:

$$
X_{\mathrm{c}}=U Y_{\mathrm{c}}, \quad U^{\mathrm{T}}=\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}\right\}
$$

where each \boldsymbol{u}_{k} minimizes Gaußianity.
For example, Kurtosis

$$
\begin{gathered}
\mathcal{W}(\boldsymbol{x})=M_{4}(\boldsymbol{x})-3 M_{2}^{2}(\boldsymbol{x}) \\
\text { satisfies } \mathcal{W}(\boldsymbol{n})=3 \sigma^{4}-3 \sigma^{4}=0 \text { for } \boldsymbol{n} \sim N\left(\mu, \sigma^{2}\right)
\end{gathered}
$$

So $J(\boldsymbol{u})=-\mathcal{W}^{2}\left(Y_{\mathrm{s}}^{\mathrm{T}} \boldsymbol{u}\right)$ may be minimizied with $\boldsymbol{u}_{k}^{\mathrm{T}} \boldsymbol{u}_{I}=\delta_{k l}$.

Formulation of PCA/ICA

Steps:

- Centering:

$$
Y_{c}=Y-\bar{Y}
$$

- Sphering:

$$
K=\frac{1}{n} Y_{\mathrm{c}} Y_{\mathrm{c}}^{\mathrm{T}}, \quad K V=V \Lambda, \quad Y_{\mathrm{s}}=\Lambda^{-\frac{1}{2}} V^{\mathrm{T}} Y_{\mathrm{c}}
$$

- Rotation:

$$
X_{\mathrm{c}}=U Y_{\mathrm{c}}, \quad U^{\mathrm{T}}=\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}\right\}
$$

where each \boldsymbol{u}_{k} minimizes Gaußianity.
For example, Kurtosis

$$
\mathcal{W}(\boldsymbol{x})=M_{4}(\boldsymbol{x})-3 M_{2}^{2}(\boldsymbol{x})
$$

satisfies $\mathcal{W}(\boldsymbol{n})=3 \sigma^{4}-3 \sigma^{4}=0$ for $\boldsymbol{n} \sim N\left(\mu, \sigma^{2}\right)$.
So $J(\boldsymbol{u})=-\mathcal{W}^{2}\left(Y_{\mathrm{s}}^{\mathrm{T}} \boldsymbol{u}\right)$ may be minimizied with $\boldsymbol{u}_{k}^{\mathrm{T}} \boldsymbol{u}_{I}=\delta_{k l}$.

- Shift:

$$
X=X_{c}+U \Lambda^{-\frac{1}{2}} V^{\mathrm{T}} \bar{Y}=U \Lambda^{-\frac{1}{2}} V^{\mathrm{T}} Y=W Y
$$

Formulation of PCA/ICA

(PCA) Let the data be so decomposed,

$$
Y_{\mathrm{c}}=Y-\bar{Y}, \quad K=\frac{1}{n} Y_{\mathrm{c}} Y_{\mathrm{c}}^{\mathrm{T}}, \quad K V=V \Lambda, \quad Y_{\mathrm{s}}=\Lambda^{-\frac{1}{2}} V^{\mathrm{T}} Y_{\mathrm{c}}
$$

Let $\Lambda=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$ with $\lambda_{1} \geq \cdots \geq \lambda_{m}$. With $P \in \mathbb{R}^{r \times m}$, $r<m, P_{i, j}=\delta_{i, j}$, the data Y are so projected to its r strongest principal components,

$$
Y \approx Y_{P}=\bar{Y}+V \wedge^{\frac{1}{2}} P^{\mathrm{T}} P Y_{\mathrm{s}}=\bar{Y}+\frac{1}{n}\left(P Y_{\mathrm{s}}\right)^{\mathrm{T}}\left(P Y_{\mathrm{s}}\right)
$$

Formulation of PCA/ICA

(PCA) Let the data be so decomposed,

$$
Y_{\mathrm{c}}=Y-\bar{Y}, \quad K=\frac{1}{n} Y_{\mathrm{c}} Y_{\mathrm{c}}^{\mathrm{T}}, \quad K V=V \Lambda, \quad Y_{\mathrm{s}}=\Lambda^{-\frac{1}{2}} V^{\mathrm{T}} Y_{\mathrm{c}}
$$

Let $\Lambda=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$ with $\lambda_{1} \geq \cdots \geq \lambda_{m}$. With $P \in \mathbb{R}^{r \times m}$, $r<m, P_{i, j}=\delta_{i, j}$, the data Y are so projected to its r strongest principal components,

$$
Y \approx Y_{P}=\bar{Y}+V \wedge^{\frac{1}{2}} P^{\mathrm{T}} P Y_{\mathrm{s}}=\bar{Y}+\frac{1}{n}\left(P Y_{\mathrm{s}}\right)^{\mathrm{T}}\left(P Y_{\mathrm{s}}\right)
$$

(ICA) Let the data be further so decomposed,

$$
X_{\mathrm{c}}=U Y_{\mathrm{s}}
$$

With $Q \in \mathbb{R}^{r \times m}, r<m, Q_{i, j}=\delta_{q_{i}, j}$, the data Y are so projected to the r independent components $\left\{q_{1}, \ldots, q_{r}\right\}$,

$$
Y \approx Y_{Q}=\bar{Y}+V \wedge^{\frac{1}{2}} U^{\mathrm{T}} Q^{\mathrm{T}} Q X_{\mathrm{c}}=\bar{Y}+\frac{1}{n}\left(Q X_{\mathrm{c}}\right)^{\mathrm{T}}\left(Q X_{\mathrm{c}}\right)
$$

Benefits of ℓ_{1} Formulations

Centering. Given data $\boldsymbol{x}=\langle a, b, \ldots, b\rangle \in \mathbb{R}^{m}, a<b$,

Benefits of ℓ_{1} Formulations

Centering. Given data $\boldsymbol{x}=\langle a, b, \ldots, b\rangle \in \mathbb{R}^{m}, a<b$,

$$
\begin{aligned}
\mu_{2}(\boldsymbol{x}) & =\arg \min _{\mu} \sum_{i=1}^{m}\left(\mu-x_{i}\right)^{2} \\
& =\arg \min _{\mu}\left[(\mu-a)^{2}+(m-1)(\mu-b)^{2}\right]=\frac{1}{m}[a+(m-1) b]
\end{aligned}
$$

Benefits of ℓ_{1} Formulations

Centering. Given data $\boldsymbol{x}=\langle a, b, \ldots, b\rangle \in \mathbb{R}^{m}, a<b$,

$$
\begin{aligned}
\mu_{2}(\boldsymbol{x}) & =\arg \min _{\mu} \sum_{i=1}^{m}\left(\mu-x_{i}\right)^{2} \\
& =\arg \min _{\mu}\left[(\mu-a)^{2}+(m-1)(\mu-b)^{2}\right]=\frac{1}{m}[a+(m-1) b] \\
\mu_{1}(\boldsymbol{x}) & =\arg \min _{\mu} \sum_{i=1}^{m}\left|\mu-x_{i}\right| \\
& =\arg \min _{a \leq \mu \leq b}[(\mu-a)+(m-1)(b-\mu)]=b \quad \text { (robust!) }
\end{aligned}
$$

Benefits of ℓ_{1} Formulations

Centering. Given data $\boldsymbol{x}=\langle a, b, \ldots, b\rangle \in \mathbb{R}^{m}, a<b$,

$$
\begin{aligned}
\mu_{2}(\boldsymbol{x}) & =\arg \min _{\mu} \sum_{i=1}^{m}\left(\mu-x_{i}\right)^{2} \\
& =\arg \min _{\mu}\left[(\mu-a)^{2}+(m-1)(\mu-b)^{2}\right]=\frac{1}{m}[a+(m-1) b] \\
\mu_{1}(\boldsymbol{x}) & =\arg \min _{\mu} \sum_{i=1}^{m}\left|\mu-x_{i}\right| \\
& =\arg \min _{a \leq \mu \leq b}[(\mu-a)+(m-1)(b-\mu)]=b \quad \text { (robust!) }
\end{aligned}
$$

Best generalization for higher dimensional data, $Y=\left\{\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{m}\right\}^{\mathrm{T}} \in \mathbb{R}^{m \times n}$,

$$
\boldsymbol{\mu}_{1}(Y)=\arg \min _{\boldsymbol{\mu} \in \mathbb{R}^{n}} \sum_{i=1}^{m}\left\|\boldsymbol{\mu}-\boldsymbol{y}_{i}\right\|_{\ell_{2}}
$$

Benefits of ℓ_{1} Formulations

Sphering. The ℓ_{2} approach is obtained by minimizing

$$
R_{k}(\boldsymbol{v})=\frac{\frac{1}{n}\left\langle Y_{k} Y_{k}^{\mathrm{T}} \boldsymbol{v}, \boldsymbol{v}\right\rangle}{\langle\boldsymbol{v}, \boldsymbol{v}\rangle}=\left[\frac{\left\|Y_{k}^{\mathrm{T}} \boldsymbol{v}\right\|_{\ell_{2}}}{\sqrt{n}\|\boldsymbol{v}\|_{\ell_{2}}}\right]^{2}
$$

where

$$
Y_{k}=\left(I-V_{k-1} V_{k-1}^{\mathrm{T}}\right) Y_{\mathrm{c}}, \quad k=2, \ldots, m-1, \quad Y_{1}=Y_{\mathrm{c}}
$$

and setting

$$
\boldsymbol{v}_{k}=\operatorname{argmin}_{\boldsymbol{v}} R_{k}(\boldsymbol{v}), \lambda_{k}=R_{k}\left(\boldsymbol{v}_{k}\right), V_{k}=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right\}, V=V_{m}
$$

Benefits of ℓ_{1} Formulations

Sphering. The ℓ_{2} approach is obtained by minimizing

$$
R_{k}(\boldsymbol{v})=\frac{\frac{1}{n}\left\langle Y_{k} Y_{k}^{\mathrm{T}} \boldsymbol{v}, \boldsymbol{v}\right\rangle}{\langle\boldsymbol{v}, \boldsymbol{v}\rangle}=\left[\frac{\left\|Y_{k}^{\mathrm{T}} \boldsymbol{v}\right\|_{\ell_{2}}}{\sqrt{n}\|\boldsymbol{v}\|_{\ell_{2}}}\right]^{2}
$$

where

$$
Y_{k}=\left(I-V_{k-1} V_{k-1}^{\mathrm{T}}\right) Y_{\mathrm{c}}, \quad k=2, \ldots, m-1, \quad Y_{1}=Y_{\mathrm{c}}
$$

and setting

$$
\boldsymbol{v}_{k}=\operatorname{argmin}_{\mathbf{v}} R_{k}(\boldsymbol{v}), \lambda_{k}=R_{k}\left(\boldsymbol{v}_{k}\right), V_{k}=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right\}, V=V_{m}
$$

Best generalization for ℓ_{1} is obtained by minimizing

$$
F_{k}(\boldsymbol{v})=\frac{\left\|Y_{k}^{\mathrm{T}} \boldsymbol{v}\right\|_{\ell_{1}}}{\sqrt{n}\|\boldsymbol{v}\|_{\ell_{2}}}
$$

where

$$
Y_{k}=\left(I-V_{k-1} V_{k-1}^{\mathrm{T}}\right) Y_{\mathrm{c}}, \quad k=2, \ldots, m-1, \quad Y_{1}=Y_{\mathrm{c}}
$$

and setting

$$
\boldsymbol{v}_{k}=\operatorname{argmin}_{\boldsymbol{v}} F_{k}(\boldsymbol{v}), \lambda_{k}=F_{k}\left(\boldsymbol{v}_{k}\right), V_{k}=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right\}, V=V_{m}
$$

Benefits of ℓ_{1} Formulations

Outliers accumulated at $(0,1)$, then at $\left(0, \frac{1}{2}\right)$ and $\left(1, \frac{1}{2}\right)$,

Data and Their L1 and L2 Axes

Blue is for ℓ_{2}, Red is for $\ell_{1}\left(\ell_{2}\right)$.

Benefits of ℓ_{1} Formulations

Outliers accumulated at $(0,1)$, then at $\left(0, \frac{1}{2}\right)$ and $\left(1, \frac{1}{2}\right)$,

Data and Their L1 and L2 Axes

Blue is for ℓ_{2}, Red is for $\ell_{1}\left(\ell_{1}\right)$.

Robust Objective Function for ICA

Test data $Y=\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right\}^{\mathrm{T}} \in \mathbb{R}^{2 \times n}$, each pair in $\{(\pm 1,0),(0, \pm 1)\}$ except for outliers

$$
\begin{gathered}
\left(\boldsymbol{y}_{1}\right)_{1}=\alpha, \quad\left(\boldsymbol{y}_{2}\right)_{1}=0 \\
\left(\boldsymbol{y}_{1}\right)_{2}=-\alpha, \quad\left(\boldsymbol{y}_{2}\right)_{2}=0
\end{gathered}
$$

Then $\bar{Y}=(0,0)$ and $V=I$.

Robust Objective Function for ICA

Test data $Y=\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right\}^{\mathrm{T}} \in \mathbb{R}^{2 \times n}$, each pair in $\{(\pm 1,0),(0, \pm 1)\}$ except for outliers

$$
\begin{array}{cc}
\left(\boldsymbol{y}_{1}\right)_{1}=\alpha, & \left(\boldsymbol{y}_{2}\right)_{1}=0 \\
\left(\boldsymbol{y}_{1}\right)_{2}=-\alpha, & \left(\boldsymbol{y}_{2}\right)_{2}=0
\end{array}
$$

Then $\bar{Y}=(0,0)$ and $V=I$.
The Kurtosis objective function $J(\boldsymbol{u})=-\mathcal{W}^{2}\left(Y_{\mathrm{s}}^{\mathrm{T}} \boldsymbol{u}\right)$ has the following landscape for the test data:

$\boldsymbol{u}=\{\cos (\theta), \sin (\theta)\}$ with $\theta=\frac{\pi}{4}$ is the robust solution.

This solution is obtained for $\alpha \approx 0$, but not for α moderately larger.

Robust Objective Function for ICA

An alternative objection function is based on the ℓ_{1} moment,

$$
\mathcal{M}(\boldsymbol{x})=M_{1}(\boldsymbol{x})-\sqrt{M_{2}(\boldsymbol{x})} \sqrt{\frac{2}{\pi}}
$$

where $\mathcal{M}(\boldsymbol{n})=\sigma \sqrt{2 / \pi}-\sigma \sqrt{2 / \pi}=0$ for $\boldsymbol{n} \sim N\left(\mu, \sigma^{2}\right)$.

Robust Objective Function for ICA

An alternative objection function is based on the ℓ_{1} moment,

$$
\mathcal{M}(\boldsymbol{x})=M_{1}(\boldsymbol{x})-\sqrt{M_{2}(\boldsymbol{x})} \sqrt{\frac{2}{\pi}}
$$

where $\mathcal{M}(\boldsymbol{n})=\sigma \sqrt{2 / \pi}-\sigma \sqrt{2 / \pi}=0$ for $\boldsymbol{n} \sim N\left(\mu, \sigma^{2}\right)$.
The new objective function

$$
J(\boldsymbol{u})=-\mathcal{M}^{2}\left(Y_{\mathrm{s}}^{\mathrm{T}} \boldsymbol{u}\right)
$$

has the following landscape for the test data:

$$
\begin{aligned}
& \boldsymbol{u}=\{\cos (\theta), \sin (\theta)\} \text { with } \\
& \theta=\frac{\pi}{4} \text { is the robust solution. }
\end{aligned}
$$

This solution is obtained for a large range of $\alpha>0$.

Minimizing the Robust Objective Function for ICA

The robust objective function

$$
J(\boldsymbol{u})=-\mathcal{M}^{2}\left(Y_{\mathrm{s}}^{\mathrm{T}} \boldsymbol{u}\right)=-\left[M_{1}\left(Y_{\mathrm{s}} \boldsymbol{u}\right)-\sqrt{2 / \pi}\right]^{2}
$$

$\left(M_{2}\left(Y_{\mathrm{s}}^{\mathrm{T}} \boldsymbol{u}\right)=1\right)$ is minimized under the condition $\boldsymbol{u}^{\mathrm{T}} \boldsymbol{u}=1$.

Minimizing the Robust Objective Function for ICA

The robust objective function

$$
J(\boldsymbol{u})=-\mathcal{M}^{2}\left(Y_{\mathrm{s}}^{\mathrm{T}} \boldsymbol{u}\right)=-\left[M_{1}\left(Y_{\mathrm{s}} \boldsymbol{u}\right)-\sqrt{2 / \pi}\right]^{2}
$$

$\left(M_{2}\left(Y_{\mathrm{s}}^{\mathrm{T}} \boldsymbol{u}\right)=1\right)$ is minimized under the condition $\boldsymbol{u}^{\mathrm{T}} \boldsymbol{u}=1$.
The solution is obtained from a stationary point of

$$
L(\boldsymbol{u}, \lambda)=-\left[M_{1}\left(Y_{\mathrm{s}}^{\mathrm{T}} \boldsymbol{u}\right)-\sqrt{2 / \pi}\right]^{2}+\lambda\left(\boldsymbol{u}^{\mathrm{T}} \boldsymbol{u}-1\right) / 2
$$

Minimizing the Robust Objective Function for ICA

The robust objective function

$$
J(\boldsymbol{u})=-\mathcal{M}^{2}\left(Y_{\mathrm{s}}^{\mathrm{T}} \boldsymbol{u}\right)=-\left[M_{1}\left(Y_{\mathrm{s}} \boldsymbol{u}\right)-\sqrt{2 / \pi}\right]^{2}
$$

$\left(M_{2}\left(Y_{\mathrm{s}}^{\mathrm{T}} \boldsymbol{u}\right)=1\right)$ is minimized under the condition $\boldsymbol{u}^{\mathrm{T}} \boldsymbol{u}=1$.
The solution is obtained from a stationary point of

$$
L(\boldsymbol{u}, \lambda)=-\left[M_{1}\left(Y_{\mathrm{s}}^{\mathrm{T}} \boldsymbol{u}\right)-\sqrt{2 / \pi}\right]^{2}+\lambda\left(\boldsymbol{u}^{\mathrm{T}} \boldsymbol{u}-1\right) / 2
$$

We have $D_{u} J(\boldsymbol{u})=-\phi(\boldsymbol{u}) G(\boldsymbol{u}) \boldsymbol{u}$ with

$$
\phi(\boldsymbol{u})=2\left[M_{1}\left(Y_{\mathrm{s}}^{\mathrm{T}} \boldsymbol{u}\right)-\sqrt{2 / \pi}\right] \quad \text { and } \quad G(\boldsymbol{u})=\frac{1}{n} \sum_{i=1}^{n} \frac{Y_{\mathrm{s}} \boldsymbol{e}_{i} \boldsymbol{e}_{i}^{\mathrm{T}} Y_{\mathrm{s}}^{\mathrm{T}}}{\left|\boldsymbol{e}_{i}^{\mathrm{T}} Y_{\mathrm{s}}^{\mathrm{T}} \boldsymbol{u}\right|}
$$

Minimizing the Robust Objective Function for ICA

 The robust objective function$$
J(\boldsymbol{u})=-\mathcal{M}^{2}\left(Y_{\mathrm{s}}^{\mathrm{T}} \boldsymbol{u}\right)=-\left[M_{1}\left(Y_{\mathrm{s}} \boldsymbol{u}\right)-\sqrt{2 / \pi}\right]^{2}
$$

$\left(M_{2}\left(Y_{\mathrm{s}}^{\mathrm{T}} \boldsymbol{u}\right)=1\right)$ is minimized under the condition $\boldsymbol{u}^{\mathrm{T}} \boldsymbol{u}=1$.
The solution is obtained from a stationary point of

$$
L(\boldsymbol{u}, \lambda)=-\left[M_{1}\left(Y_{\mathrm{s}}^{\mathrm{T}} \boldsymbol{u}\right)-\sqrt{2 / \pi}\right]^{2}+\lambda\left(\boldsymbol{u}^{\mathrm{T}} \boldsymbol{u}-1\right) / 2
$$

We have $D_{u} J(\boldsymbol{u})=-\phi(\boldsymbol{u}) G(\boldsymbol{u}) \boldsymbol{u}$ with

$$
\phi(\boldsymbol{u})=2\left[M_{1}\left(Y_{\mathrm{s}}^{\mathrm{T}} \boldsymbol{u}\right)-\sqrt{2 / \pi}\right] \quad \text { and } \quad G(\boldsymbol{u})=\frac{1}{n} \sum_{i=1}^{n} \frac{Y_{\mathrm{s}} \mathbf{e}_{i} \boldsymbol{e}_{i}^{\mathrm{T}} Y_{\mathrm{s}}^{\mathrm{T}}}{\left|\boldsymbol{e}_{i}^{\mathrm{T}} Y_{\mathrm{s}}^{\mathrm{T}} \boldsymbol{u}\right|}
$$

A stationary point ($\boldsymbol{u}^{\star}, \lambda^{\star}$) satisfies $-D_{\boldsymbol{u}} J\left(\boldsymbol{u}^{\star}\right)=\lambda^{\star} \boldsymbol{u}^{\star}$ or with $\lambda^{\star}=\mu^{\star}\left(\boldsymbol{u}^{\star}\right) \phi\left(\boldsymbol{u}^{\star}\right)$ the nonlinear eigenspace problem,

$$
\boldsymbol{G}\left(\boldsymbol{u}^{\star}\right) \boldsymbol{u}^{\star}=\mu^{\star}\left(\boldsymbol{u}^{\star}\right) \boldsymbol{u}^{\star}, \quad \boldsymbol{u}^{\star \mathrm{T}} \boldsymbol{u}^{\star}=1
$$

Minimizing the Robust Objective Function for ICA

The nonlinear eigenspace problem is solved by a vector iteration.

Let $\boldsymbol{u}_{I} \approx \boldsymbol{u}^{\star}$ with $\left\|\boldsymbol{u}_{l}\right\|=1$ and an update \boldsymbol{u}_{l+1} is determined by,

$$
\boldsymbol{u}=G\left(\boldsymbol{u}_{l}\right) \boldsymbol{u}_{l}, \quad \boldsymbol{u}_{l+1}=\boldsymbol{u} /\|\boldsymbol{u}\|, \quad l=1,2, \ldots
$$

After convergence

$$
\boldsymbol{u}^{\star}=\lim _{l \rightarrow \infty} \boldsymbol{u}_{I}
$$

is the first column of U^{T}.

Minimizing the Robust Objective Function for ICA

The nonlinear eigenspace problem is solved by a vector iteration.

Let $\boldsymbol{u}_{I} \approx \boldsymbol{u}^{\star}$ with $\left\|\boldsymbol{u}_{I}\right\|=1$ and an update \boldsymbol{u}_{l+1} is determined by,

$$
\boldsymbol{u}=G\left(\boldsymbol{u}_{l}\right) \boldsymbol{u}_{l}, \quad \boldsymbol{u}_{l+1}=\boldsymbol{u} /\|\boldsymbol{u}\|, \quad l=1,2, \ldots
$$

After convergence

$$
\boldsymbol{u}^{\star}=\lim _{l \rightarrow \infty} \boldsymbol{u}_{I}
$$

is the first column of U^{T}.
The next column of U^{T} is determined by a modified vector iteration.

For this, the projected data

$$
Y_{\mathrm{p}}=\left(I-\boldsymbol{u}^{\star} \boldsymbol{u}^{\star \mathrm{T}}\right) Y_{\mathrm{s}}
$$

have columns which are linearly independent from \boldsymbol{u}^{\star}.

Minimizing the Robust Objective Function for ICA

 With the modified matrix,$$
\tilde{\boldsymbol{G}}(\boldsymbol{u})=\frac{1}{n} \sum_{i=1}^{n} \frac{Y_{\mathrm{p}} \mathbf{e}_{i} \boldsymbol{e}_{i}^{\mathrm{T}} Y_{\mathrm{p}}^{\mathrm{T}}}{\left|\boldsymbol{e}_{i}^{\mathrm{T}} Y_{\mathrm{p}}^{\mathrm{T}} \boldsymbol{u}\right|}
$$

the modified vector iteration is,

$$
\boldsymbol{u}=\left(I-\boldsymbol{u}^{\star} \boldsymbol{u}^{\star \mathrm{T}}\right) \tilde{G}\left(\boldsymbol{u}_{l}\right) \boldsymbol{u}_{l}, \quad \boldsymbol{u}_{l+1}=\boldsymbol{u} /\|\boldsymbol{u}\|, \quad I=1,2, \ldots
$$

Minimizing the Robust Objective Function for ICA

 With the modified matrix,$$
\tilde{G}(\boldsymbol{u})=\frac{1}{n} \sum_{i=1}^{n} \frac{Y_{\mathrm{p}} \boldsymbol{e}_{i} \boldsymbol{e}_{i}^{\mathrm{T}} Y_{\mathrm{p}}^{\mathrm{T}}}{\left|\boldsymbol{e}_{i}^{\mathrm{T}} Y_{\mathrm{p}}^{\mathrm{T}} \boldsymbol{u}\right|}
$$

the modified vector iteration is,

$$
\boldsymbol{u}=\left(I-\boldsymbol{u}^{\star} \boldsymbol{u}^{\star \mathrm{T}}\right) \tilde{G}\left(\boldsymbol{u}_{l}\right) \boldsymbol{u}_{l}, \quad \boldsymbol{u}_{I+1}=\boldsymbol{u} /\|\boldsymbol{u}\|, \quad I=1,2, \ldots
$$

The remaining columns of U^{T} are determined similarly, where \boldsymbol{u}^{\star} above is replaced with the matrix $\left[\boldsymbol{u}_{1}^{\star}, \ldots, \boldsymbol{u}_{k}^{\star}\right]$, when k columns $\left\{\boldsymbol{u}_{1}^{\star}, \ldots, \boldsymbol{u}_{k}^{\star}\right\}$ of U^{T} have already been calculated.

Minimizing the Robust Objective Function for ICA

 With the modified matrix,$$
\tilde{G}(\boldsymbol{u})=\frac{1}{n} \sum_{i=1}^{n} \frac{Y_{\mathrm{p}} \boldsymbol{e}_{i} \boldsymbol{e}_{i}^{\mathrm{T}} Y_{\mathrm{p}}^{\mathrm{T}}}{\left|\boldsymbol{e}_{i}^{\mathrm{T}} Y_{\mathrm{p}}^{\mathrm{T}} \boldsymbol{u}\right|}
$$

the modified vector iteration is,

$$
\boldsymbol{u}=\left(I-\boldsymbol{u}^{\star} \boldsymbol{u}^{\star \mathrm{T}}\right) \tilde{G}\left(\boldsymbol{u}_{l}\right) \boldsymbol{u}_{l}, \quad \boldsymbol{u}_{I+1}=\boldsymbol{u} /\|\boldsymbol{u}\|, \quad I=1,2, \ldots
$$

The remaining columns of U^{T} are determined similarly, where \boldsymbol{u}^{\star} above is replaced with the matrix $\left[\boldsymbol{u}_{1}^{\star}, \ldots, \boldsymbol{u}_{k}^{\star}\right]$, when k columns $\left\{\boldsymbol{u}_{1}^{\star}, \ldots, \boldsymbol{u}_{k}^{\star}\right\}$ of U^{T} have already been calculated.

Observation: The vector iterations converge very robustly to the global constrained minimum.

Minimizing the Robust Objective Function for ICA

 With the modified matrix,$$
\tilde{G}(\boldsymbol{u})=\frac{1}{n} \sum_{i=1}^{n} \frac{Y_{\mathrm{p}} \boldsymbol{e}_{i} \boldsymbol{e}_{i}^{\mathrm{T}} \boldsymbol{Y}_{\mathrm{p}}^{\mathrm{T}}}{\left|\boldsymbol{e}_{i}^{\mathrm{T}} Y_{\mathrm{p}}^{\mathrm{T}} \boldsymbol{u}\right|}
$$

the modified vector iteration is,

$$
\boldsymbol{u}=\left(I-\boldsymbol{u}^{\star} \boldsymbol{u}^{\star \mathrm{T}}\right) \tilde{G}\left(\boldsymbol{u}_{l}\right) \boldsymbol{u}_{l}, \quad \boldsymbol{u}_{l+1}=\boldsymbol{u} /\|\boldsymbol{u}\|, \quad I=1,2, \ldots
$$

The remaining columns of U^{T} are determined similarly, where \boldsymbol{u}^{\star} above is replaced with the matrix $\left[\boldsymbol{u}_{1}^{\star}, \ldots, \boldsymbol{u}_{k}^{\star}\right.$], when k columns $\left\{\boldsymbol{u}_{1}^{\star}, \ldots, \boldsymbol{u}_{k}^{\star}\right\}$ of U^{T} have already been calculated.

Observation: The vector iterations converge very robustly to the global constrained minimum.

Claim: At least convergence to a local constrained minimum can be proved with adequate step size control.

Application to DCE-MRI sequences

For each time $t=1, \ldots, T$, the matrix of pixel values,

$$
B(t)=\left\{B_{i, j}(t)\right\}_{1 \leq i, j \leq N}
$$

is an image in the [Video].

Application to DCE-MRI sequences

For each time $t=1, \ldots, T$, the matrix of pixel values,

$$
B(t)=\left\{B_{i, j}(t)\right\}_{1 \leq i, j \leq N}
$$

is an image in the [Video].
With $m=T=134$ and $n=N^{2}=400^{2}$ the images are represented as long vectors:

$$
\boldsymbol{y}_{t}^{\mathrm{T}}=\left\{B_{1,1}(t), \ldots, B_{N, 1}(t), B_{1,2}(t), \ldots, B_{N, 2}(t), \ldots, B_{1, N}(t), \ldots, B_{N, N}(t)\right\}
$$

and PCA/ICA is carried out with $Y^{\mathrm{T}}=\left\{\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{m}\right\}$.
$\left(Y \leftarrow Y^{\mathrm{T}}\right.$ is equivalent but expensive.)

Application to DCE-MRI sequences

For each time $t=1, \ldots, T$, the matrix of pixel values,

$$
B(t)=\left\{B_{i, j}(t)\right\}_{1 \leq i, j \leq N}
$$

is an image in the [Video].
With $m=T=134$ and $n=N^{2}=400^{2}$ the images are represented as long vectors:

$$
\boldsymbol{y}_{t}^{\mathrm{T}}=\left\{B_{1,1}(t), \ldots, B_{N, 1}(t), B_{1,2}(t), \ldots, B_{N, 2}(t), \ldots, B_{1, N}(t), \ldots, B_{N, N}(t)\right\}
$$

and PCA/ICA is carried out with $Y^{\mathrm{T}}=\left\{\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{m}\right\}$.
($Y \leftarrow Y^{\mathrm{T}}$ is equivalent but expensive.)
To the left is the first row of Y_{s} (displayed as image),

To the right is the first column of V.

Application to DCE-MRI sequences

Top 6 independent components:

Eliminate motion, keep anatomy and contrast agent: [Video]

Application to DCE-MRI sequences

Virtual Gating, through segmentation of correlations:

Three groups [Video], stabilized further by PCA/ICA [Video].

Formulation in Function Space

Based upon the imaging examples:

- Sampling occurs continuously in time ... ?
- Same number of sources as pixels, which refine to a continuum ... ?

Formulation in Function Space

Based upon the imaging examples:

- Sampling occurs continuously in time ... ?
- Same number of sources as pixels, which refine to a continuum ... ?

Claim: That the sources be statistically independent requires that that they be countable.

Formulation in Function Space

Based upon the imaging examples:

- Sampling occurs continuously in time ... ?
- Same number of sources as pixels, which refine to a continuum ... ?

Claim: That the sources be statistically independent requires that that they be countable.

Consequence: The function space setting resembles the finite dimensional setting but with infinite matrices operating between bases in separable spaces.

