ℓ_1 Approaches to PCA and ICA

S. Keeling and K. Kunisch

Fifth MOBIS SFB Status Seminar

November 14-16, 2012

Steierische Modellierungswoche 2012

Projekt: Signalverarbeitung

Tutorium: Trennung von Datenquellen in unkorrelierte und unabhängige Komponenten

a.o.Univ.Prof. Mag.Dr. Stephen Keeling http://math.uni-graz.at/keeling/

Literatur:

http://cis.legacy.ics.tkk.fi/aapo/papers/ IJCNN99_tutorialweb/

Dokumentation:

http://math.uni-graz.at/keeling/skripten/ Tutorium.pdf

> Dank an Herrn Dipl.-Ing. Dr. Gernot Reishofer für seine Unterstützung für diese Arbeit!

Inhaltsverzeichnis

Matrixalgebra Lineare Gleichungen Lösung von Systemen Linearer Gleichungen Effekt der Matrix-Multiplikation Eigenräume Eigenwerte und Eigenvektoren Eigenraum-Zerlegung Statistik Mittelwert und Varianz einer Abtastung Zentraler Grenzwertsatz Kovarianz zweier Abtastungen Zentrierte und Gesphärte Daten Korrelation Unabhängigkeit Mischungen von Abtastungen Gaußianität Hauptkomponentenanalyse (PCA) und Unabhängigkeitsanalyse (ICA) Optimieruna Nelder-Mead Verfahren fminsearch Optimierung der Wölbung mit Nelder-Mead Abstiegsverfahren Abstiegsverfahren fur Systeme Optimierung der Wölbung mit Roher Gewalt Optimierung der Wölbung mit Abstiegsverfahren Newton Verfahren Newton Verfahren fur Systeme Optimierung der Wölbung mit Newton Verfahren

Fortgeschrittene Themen

Robuste Zielfunktion Optimierung der Robusten Zielfunktion Formulierung im Funktionenraum

Graphical Demonstration of PCA/ICA

Sources Z, Measurements Y, sphered Y_s , separated X_c

Rows of Z are unknown samples of sources which are independent and not Gauß distributed.

$$Z = \begin{bmatrix} z_1(t_1) & z_1(t_2) & \cdots & z_1(t_n) \\ \vdots & \vdots & & \vdots \\ z_m(t_1) & z_m(t_2) & \cdots & z_m(t_n) \end{bmatrix}$$

Rows of Z are unknown samples of sources which are independent and not Gauß distributed.

$$Z = \begin{bmatrix} z_1(t_1) & z_1(t_2) & \cdots & z_1(t_n) \\ \vdots & \vdots & & \vdots \\ z_m(t_1) & z_m(t_2) & \cdots & z_m(t_n) \end{bmatrix}$$

 Rows of Y are measured samples of unknown mixtures of the sources

$$Y = AZ$$

no longer independent and now more Gauß distributed.

Rows of Z are unknown samples of sources which are independent and not Gauß distributed.

$$Z = \begin{bmatrix} z_1(t_1) & z_1(t_2) & \cdots & z_1(t_n) \\ \vdots & \vdots & & \vdots \\ z_m(t_1) & z_m(t_2) & \cdots & z_m(t_n) \end{bmatrix}$$

 Rows of Y are measured samples of unknown mixtures of the sources

$$Y = AZ$$

no longer independent and now more Gauß distributed.

 Goal is to undo the trend toward Gaußianity to recover the sources

$$X = WY$$

with $W = U \Lambda^{-\frac{1}{2}} V^{\mathrm{T}} \approx A^{-1}$ but unavoidable ambiguity $x_i(t) \approx \pm z_k(t)$.

Steps:

► Centering:

$$Y_{\rm c} = Y - \overline{Y}$$

Steps:

Centering:

$$Y_{\rm c} = Y - \overline{Y}$$

► Sphering:

$$K = \frac{1}{n} Y_c Y_c^T, \quad KV = V\Lambda, \quad Y_s = \Lambda^{-\frac{1}{2}} V^T Y_c$$

Steps:

Centering:

$$Y_{\rm c} = Y - \overline{Y}$$

► Sphering:

$$K = \frac{1}{n} Y_{\rm c} Y_{\rm c}^{\rm T}, \quad KV = V\Lambda, \quad Y_{\rm s} = \Lambda^{-\frac{1}{2}} V^{\rm T} Y_{\rm c}$$

Rotation:

$$X_{\mathrm{c}} = UY_{\mathrm{c}}, \quad U^{\mathrm{T}} = \{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}\}$$

where each \boldsymbol{u}_k minimizes Gaußianity.

Steps:

Centering:

$$Y_{\rm c} = Y - \overline{Y}$$

► Sphering:

$$K = \frac{1}{n} Y_{\rm c} Y_{\rm c}^{\rm T}, \quad KV = V\Lambda, \quad Y_{\rm s} = \Lambda^{-\frac{1}{2}} V^{\rm T} Y_{\rm c}$$

Rotation:

$$X_{\mathrm{c}} = UY_{\mathrm{c}}, \quad U^{\mathrm{T}} = \{\boldsymbol{u}_{1}, \dots, \boldsymbol{u}_{m}\}$$

where each \boldsymbol{u}_k minimizes Gaußianity.

For example, Kurtosis

$$\mathcal{W}(\boldsymbol{x}) = \boldsymbol{M}_4(\boldsymbol{x}) - 3\boldsymbol{M}_2^2(\boldsymbol{x})$$
satisfies $\mathcal{W}(\boldsymbol{n}) = 3\sigma^4 - 3\sigma^4 = 0$ for $\boldsymbol{n} \sim N(\mu, \sigma^2)$.

Steps:

Centering:

$$Y_{\rm c} = Y - \overline{Y}$$

► Sphering:

$$K = \frac{1}{n} Y_c Y_c^T, \quad KV = V\Lambda, \quad Y_s = \Lambda^{-\frac{1}{2}} V^T Y_c$$

Rotation:

$$X_{\mathrm{c}} = UY_{\mathrm{c}}, \quad U^{\mathrm{T}} = \{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}\}$$

where each \boldsymbol{u}_k minimizes Gaußianity.

For example, Kurtosis $\mathcal{W}(\boldsymbol{x}) = M_4(\boldsymbol{x}) - 3M_2^2(\boldsymbol{x})$ satisfies $\mathcal{W}(\boldsymbol{n}) = 3\sigma^4 - 3\sigma^4 = 0$ for $\boldsymbol{n} \sim N(\mu, \sigma^2)$.

So $J(\boldsymbol{u}) = -\mathcal{W}^2(\boldsymbol{Y}_s^{\mathrm{T}}\boldsymbol{u})$ may be minimized with $\boldsymbol{u}_k^{\mathrm{T}}\boldsymbol{u}_l = \delta_{kl}$.

Steps:

Centering:

$$Y_{\rm c} = Y - \overline{Y}$$

► Sphering:

$$K = \frac{1}{n} Y_c Y_c^T, \quad KV = V\Lambda, \quad Y_s = \Lambda^{-\frac{1}{2}} V^T Y_c$$

Rotation:

$$X_{\mathrm{c}} = UY_{\mathrm{c}}, \quad U^{\mathrm{T}} = \{\boldsymbol{u}_{1}, \dots, \boldsymbol{u}_{m}\}$$

where each \boldsymbol{u}_k minimizes Gaußianity.

For example, Kurtosis

$$\mathcal{W}(\boldsymbol{x}) = M_4(\boldsymbol{x}) - 3M_2^2(\boldsymbol{x})$$

satisfies $\mathcal{W}(\boldsymbol{n}) = 3\sigma^4 - 3\sigma^4 = 0$ for $\boldsymbol{n} \sim N(\mu, \sigma^2)$.

So $J(\boldsymbol{u}) = -\mathcal{W}^2(\boldsymbol{Y}_s^{\mathrm{T}}\boldsymbol{u})$ may be minimized with $\boldsymbol{u}_k^{\mathrm{T}}\boldsymbol{u}_l = \delta_{kl}$. Shift:

$$X = X_{c} + U \Lambda^{-\frac{1}{2}} V^{T} \overline{Y} = U \Lambda^{-\frac{1}{2}} V^{T} Y = W Y$$

(PCA) Let the data be so decomposed,

$$Y_{\rm c} = Y - \overline{Y}, \quad K = \frac{1}{n} Y_{\rm c} Y_{\rm c}^{\rm T}, \quad KV = V\Lambda, \quad Y_{\rm s} = \Lambda^{-\frac{1}{2}} V^{\rm T} Y_{\rm c}$$

Let $\Lambda = \text{diag}\{\lambda_1, \ldots, \lambda_m\}$ with $\lambda_1 \ge \cdots \ge \lambda_m$. With $P \in \mathbb{R}^{r \times m}$, r < m, $P_{i,j} = \delta_{i,j}$, the data *Y* are so projected to its *r* strongest principal components,

$$Y \approx Y_P = \overline{Y} + V\Lambda^{\frac{1}{2}}P^TPY_s = \overline{Y} + \frac{1}{n}(PY_s)^T(PY_s)$$

(PCA) Let the data be so decomposed,

$$Y_{\rm c} = Y - \overline{Y}, \quad K = \frac{1}{n} Y_{\rm c} Y_{\rm c}^{\rm T}, \quad KV = V\Lambda, \quad Y_{\rm s} = \Lambda^{-\frac{1}{2}} V^{\rm T} Y_{\rm c}$$

Let $\Lambda = \text{diag}\{\lambda_1, \ldots, \lambda_m\}$ with $\lambda_1 \ge \cdots \ge \lambda_m$. With $P \in \mathbb{R}^{r \times m}$, r < m, $P_{i,j} = \delta_{i,j}$, the data *Y* are so projected to its *r* strongest principal components,

$$Y \approx Y_P = \overline{Y} + V\Lambda^{\frac{1}{2}}P^{\mathrm{T}}PY_{\mathrm{s}} = \overline{Y} + \frac{1}{n}(PY_{\mathrm{s}})^{\mathrm{T}}(PY_{\mathrm{s}})$$

(ICA) Let the data be further so decomposed,

$$X_{\rm c} = UY_{\rm s}$$

With $Q \in \mathbb{R}^{r \times m}$, r < m, $Q_{i,j} = \delta_{q_i,j}$, the data Y are so projected to the *r* independent components $\{q_1, \ldots, q_r\}$,

$$Y \approx Y_Q = \overline{Y} + V \Lambda^{\frac{1}{2}} U^{\mathrm{T}} Q^{\mathrm{T}} Q X_{\mathrm{c}} = \overline{Y} + \frac{1}{n} (Q X_{\mathrm{c}})^{\mathrm{T}} (Q X_{C$$

Centering. Given data $\mathbf{x} = \langle \mathbf{a}, \mathbf{b}, \dots, \mathbf{b} \rangle \in \mathbb{R}^m$, $\mathbf{a} < \mathbf{b}$,

Centering. Given data $\mathbf{x} = \langle \mathbf{a}, \mathbf{b}, \dots, \mathbf{b} \rangle \in \mathbb{R}^m$, $\mathbf{a} < \mathbf{b}$,

$$\mu_{2}(\mathbf{x}) = \arg \min_{\mu} \sum_{i=1}^{m} (\mu - x_{i})^{2}$$

=
$$\arg \min_{\mu} \left[(\mu - a)^{2} + (m - 1)(\mu - b)^{2} \right] = \frac{1}{m} [a + (m - 1)b]$$

Centering. Given data $\mathbf{x} = \langle \mathbf{a}, \mathbf{b}, \dots, \mathbf{b} \rangle \in \mathbb{R}^m$, $\mathbf{a} < \mathbf{b}$,

$$\mu_{2}(\mathbf{x}) = \arg \min_{\mu} \sum_{i=1}^{m} (\mu - x_{i})^{2}$$

= $\arg \min_{\mu} \left[(\mu - a)^{2} + (m - 1)(\mu - b)^{2} \right] = \frac{1}{m} [a + (m - 1)b]$
$$\mu_{1}(\mathbf{x}) = \arg \min_{\mu} \sum_{i=1}^{m} |\mu - x_{i}|$$

= $\arg \min_{a \le \mu \le b} [(\mu - a) + (m - 1)(b - \mu)] = b$ (robust!)

Centering. Given data $\mathbf{x} = \langle \mathbf{a}, \mathbf{b}, \dots, \mathbf{b} \rangle \in \mathbb{R}^m$, $\mathbf{a} < \mathbf{b}$,

$$\mu_{2}(\mathbf{x}) = \arg \min_{\mu} \sum_{i=1}^{m} (\mu - x_{i})^{2}$$

= $\arg \min_{\mu} \left[(\mu - a)^{2} + (m - 1)(\mu - b)^{2} \right] = \frac{1}{m} [a + (m - 1)b]$
$$\mu_{1}(\mathbf{x}) = \arg \min_{\mu} \sum_{i=1}^{m} |\mu - x_{i}|$$

= $\arg \min_{a \le \mu \le b} [(\mu - a) + (m - 1)(b - \mu)] = b$ (robust!)

Best generalization for higher dimensional data, $Y = \{y_1, \dots, y_m\}^T \in \mathbb{R}^{m \times n},$

$$\mu_1(Y) = \arg\min_{\mu \in \mathbb{R}^n} \sum_{i=1}^m \|\mu - \mathbf{y}_i\|_{\ell_2}$$

Sphering. The ℓ_2 approach is obtained by minimizing

$$R_k(\boldsymbol{v}) = \frac{\frac{1}{n} \langle Y_k Y_k^T \boldsymbol{v}, \boldsymbol{v} \rangle}{\langle \boldsymbol{v}, \boldsymbol{v} \rangle} = \left[\frac{\|Y_k^T \boldsymbol{v}\|_{\ell_2}}{\sqrt{n} \|\boldsymbol{v}\|_{\ell_2}} \right]^{-1}$$

where

 $Y_k = (I - V_{k-1} V_{k-1}^{T}) Y_c, \quad k = 2, \dots, m-1, \quad Y_1 = Y_c$ and setting

$$\mathbf{v}_k = \operatorname{argmin}_{\mathbf{v}} \mathbf{R}_k(\mathbf{v}), \ \lambda_k = \mathbf{R}_k(\mathbf{v}_k), \ \mathbf{V}_k = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}, \ \mathbf{V} = \mathbf{V}_m.$$

Sphering. The ℓ_2 approach is obtained by minimizing

$$R_k(\boldsymbol{v}) = \frac{\frac{1}{n} \langle Y_k Y_k^{\mathrm{T}} \boldsymbol{v}, \boldsymbol{v} \rangle}{\langle \boldsymbol{v}, \boldsymbol{v} \rangle} = \left[\frac{\|Y_k^{\mathrm{T}} \boldsymbol{v}\|_{\ell_2}}{\sqrt{n} \|\boldsymbol{v}\|_{\ell_2}} \right]^2$$

where

$$Y_k = (I - V_{k-1} V_{k-1}^{T}) Y_c, \quad k = 2, \dots, m-1, \quad Y_1 = Y_c$$
 and setting

$$\mathbf{v}_k = \operatorname{argmin}_{\mathbf{v}} \mathbf{R}_k(\mathbf{v}), \ \lambda_k = \mathbf{R}_k(\mathbf{v}_k), \ \mathbf{V}_k = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}, \ \mathbf{V} = \mathbf{V}_m.$$

Best generalization for ℓ_1 is obtained by minimizing

$$F_k(\boldsymbol{v}) = \frac{\|\boldsymbol{Y}_k^{\mathrm{T}}\boldsymbol{v}\|_{\ell_1}}{\sqrt{n}\|\boldsymbol{v}\|_{\ell_2}}$$

where

$$Y_k = (I - V_{k-1} V_{k-1}^{T}) Y_c, \quad k = 2, \dots, m-1, \quad Y_1 = Y_c$$

and setting

$$\mathbf{v}_k = \operatorname{argmin}_{\mathbf{v}} F_k(\mathbf{v}), \ \lambda_k = F_k(\mathbf{v}_k), \ V_k = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}, \ V = V_m.$$

Outliers accumulated at (0, 1), then at $(0, \frac{1}{2})$ and $(1, \frac{1}{2})$,

Blue is for ℓ_2 , Red is for $\ell_1(\ell_2)$.

Outliers accumulated at (0, 1), then at $(0, \frac{1}{2})$ and $(1, \frac{1}{2})$,

Blue is for ℓ_2 , Red is for $\ell_1(\ell_1)$.

Test data $Y = \{y_1, y_2\}^T \in \mathbb{R}^{2 \times n}$, each pair in $\{(\pm 1, 0), (0, \pm 1)\}$ except for outliers

$$(y_1)_1 = \alpha, \quad (y_2)_1 = 0$$

 $(y_1)_2 = -\alpha, \quad (y_2)_2 = 0$

Then $\overline{Y} = (0,0)$ and V = I.

Test data $Y = \{y_1, y_2\}^T \in \mathbb{R}^{2 \times n}$, each pair in $\{(\pm 1, 0), (0, \pm 1)\}$ except for outliers

$$(\mathbf{y}_1)_1 = \alpha, \quad (\mathbf{y}_2)_1 = 0$$

 $(\mathbf{y}_1)_2 = -\alpha, \quad (\mathbf{y}_2)_2 = 0$

Then $\overline{Y} = (0,0)$ and V = I.

The Kurtosis objective function $J(\boldsymbol{u}) = -\mathcal{W}^2(\boldsymbol{Y}_s^T\boldsymbol{u})$ has the following landscape for the test data:

 $\boldsymbol{u} = \{\cos(\theta), \sin(\theta)\}$ with $\theta = \frac{\pi}{4}$ is the robust solution.

This solution is obtained for $\alpha \approx 0$, but not for α moderately larger.

An alternative objection function is based on the ℓ_1 moment,

$$\mathcal{M}(\boldsymbol{x}) = M_1(\boldsymbol{x}) - \sqrt{M_2(\boldsymbol{x})}\sqrt{\frac{2}{\pi}}$$

where $\mathcal{M}(\mathbf{n}) = \sigma \sqrt{2/\pi} - \sigma \sqrt{2/\pi} = 0$ for $\mathbf{n} \sim N(\mu, \sigma^2)$.

An alternative objection function is based on the ℓ_1 moment,

$$\mathcal{M}(\boldsymbol{x}) = M_1(\boldsymbol{x}) - \sqrt{M_2(\boldsymbol{x})}\sqrt{\frac{2}{\pi}}$$

where $\mathcal{M}(\mathbf{n}) = \sigma \sqrt{2/\pi} - \sigma \sqrt{2/\pi} = 0$ for $\mathbf{n} \sim N(\mu, \sigma^2)$.

The new objective function

$$J(\boldsymbol{u}) = -\mathcal{M}^2(\boldsymbol{Y}_{s}^{\mathrm{T}}\boldsymbol{u})$$

has the following landscape for the test data:

 $\boldsymbol{u} = \{\cos(\theta), \sin(\theta)\}$ with $\theta = \frac{\pi}{4}$ is the robust solution.

This solution is obtained for a large range of $\alpha > 0$.

Minimizing the Robust Objective Function for ICA

The robust objective function

$$J(\boldsymbol{u}) = -\mathcal{M}^2(\boldsymbol{Y}_{\mathrm{s}}^{\mathrm{T}}\boldsymbol{u}) = -[M_1(\boldsymbol{Y}_{\mathrm{s}}\boldsymbol{u}) - \sqrt{2/\pi}]^2$$

 $(M_2(Y_s^T \boldsymbol{u}) = 1)$ is minimized under the condition $\boldsymbol{u}^T \boldsymbol{u} = 1$.

Minimizing the Robust Objective Function for ICA The robust objective function

$$J(\boldsymbol{u}) = -\mathcal{M}^2(\boldsymbol{Y}_{\mathrm{s}}^{\mathrm{T}}\boldsymbol{u}) = -[M_1(\boldsymbol{Y}_{\mathrm{s}}\boldsymbol{u}) - \sqrt{2/\pi}]^2$$

 $(M_2(Y_s^T \boldsymbol{u}) = 1)$ is minimized under the condition $\boldsymbol{u}^T \boldsymbol{u} = 1$.

The solution is obtained from a stationary point of

$$L(\boldsymbol{u},\lambda) = -[\boldsymbol{M}_{1}(\boldsymbol{Y}_{s}^{T}\boldsymbol{u}) - \sqrt{2/\pi}]^{2} + \lambda(\boldsymbol{u}^{T}\boldsymbol{u} - 1)/2$$

Minimizing the Robust Objective Function for ICA The robust objective function

$$J(\boldsymbol{u}) = -\mathcal{M}^2(\boldsymbol{Y}_{\mathrm{s}}^{\mathrm{T}}\boldsymbol{u}) = -[M_1(\boldsymbol{Y}_{\mathrm{s}}\boldsymbol{u}) - \sqrt{2/\pi}]^2$$

 $(M_2(Y_s^T \boldsymbol{u}) = 1)$ is minimized under the condition $\boldsymbol{u}^T \boldsymbol{u} = 1$.

The solution is obtained from a stationary point of

 $L(\boldsymbol{u}, \lambda) = -[\boldsymbol{M}_{1}(\boldsymbol{Y}_{s}^{T}\boldsymbol{u}) - \sqrt{2/\pi}]^{2} + \lambda(\boldsymbol{u}^{T}\boldsymbol{u} - 1)/2$

We have $D_{\boldsymbol{u}}J(\boldsymbol{u}) = -\phi(\boldsymbol{u})G(\boldsymbol{u})\boldsymbol{u}$ with $\phi(\boldsymbol{u}) = 2[M_1(Y_s^{\mathrm{T}}\boldsymbol{u}) - \sqrt{2/\pi}]$ and $G(\boldsymbol{u}) = \frac{1}{n}\sum_{i=1}^n \frac{Y_s \boldsymbol{e}_i \boldsymbol{e}_i^{\mathrm{T}} Y_s^{\mathrm{T}}}{|\boldsymbol{e}_i^{\mathrm{T}} Y_s^{\mathrm{T}} \boldsymbol{u}|}$ Minimizing the Robust Objective Function for ICA The robust objective function

$$J(\boldsymbol{u}) = -\mathcal{M}^2(\boldsymbol{Y}_{\mathrm{s}}^{\mathrm{T}}\boldsymbol{u}) = -[M_1(\boldsymbol{Y}_{\mathrm{s}}\boldsymbol{u}) - \sqrt{2/\pi}]^2$$

 $(M_2(Y_s^T \boldsymbol{u}) = 1)$ is minimized under the condition $\boldsymbol{u}^T \boldsymbol{u} = 1$.

The solution is obtained from a stationary point of

 $L(\boldsymbol{u}, \lambda) = -[M_1(\boldsymbol{Y}_{s}^{T}\boldsymbol{u}) - \sqrt{2/\pi}]^2 + \lambda(\boldsymbol{u}^{T}\boldsymbol{u} - 1)/2$

We have $D_{\boldsymbol{u}}J(\boldsymbol{u}) = -\phi(\boldsymbol{u})G(\boldsymbol{u})\boldsymbol{u}$ with $\phi(\boldsymbol{u}) = 2[M_1(Y_s^T\boldsymbol{u}) - \sqrt{2/\pi}]$ and $G(\boldsymbol{u}) = \frac{1}{n}\sum_{i=1}^n \frac{Y_s\boldsymbol{e}_i\boldsymbol{e}_i^TY_s^T}{|\boldsymbol{e}_i^TY_s^T\boldsymbol{u}|}$ A stationary point $(\boldsymbol{u}^*, \lambda^*)$ satisfies $-D_{\boldsymbol{u}}J(\boldsymbol{u}^*) = \lambda^*\boldsymbol{u}^*$ or with $\lambda^* = \mu^*(\boldsymbol{u}^*)\phi(\boldsymbol{u}^*)$ the nonlinear eigenspace problem,

$$G(\boldsymbol{u}^{\star})\boldsymbol{u}^{\star} = \mu^{\star}(\boldsymbol{u}^{\star})\boldsymbol{u}^{\star}, \quad \boldsymbol{u}^{\star \mathrm{T}}\boldsymbol{u}^{\star} = 1$$

Minimizing the Robust Objective Function for ICA The nonlinear eigenspace problem is solved by a vector iteration.

Let $\boldsymbol{u}_l \approx \boldsymbol{u}^*$ with $\|\boldsymbol{u}_l\| = 1$ and an update \boldsymbol{u}_{l+1} is determined by,

 $u = G(u_l)u_l, \quad u_{l+1} = u/||u||, \quad l = 1, 2, ...$

After convergence

$$\boldsymbol{u}^{\star} = \lim_{l \to \infty} \boldsymbol{u}_l$$

is the first column of U^{T} .

Minimizing the Robust Objective Function for ICA The nonlinear eigenspace problem is solved by a vector iteration.

Let $\boldsymbol{u}_l \approx \boldsymbol{u}^*$ with $\|\boldsymbol{u}_l\| = 1$ and an update \boldsymbol{u}_{l+1} is determined by,

 $u = G(u_l)u_l, \quad u_{l+1} = u/||u||, \quad l = 1, 2, \dots$

After convergence

$$oldsymbol{u}^{\star} = \lim_{I o \infty} oldsymbol{u}_I$$

is the first column of U^{T} .

The next column of U^{T} is determined by a modified vector iteration.

For this, the projected data

$$Y_{\rm p} = (I - \boldsymbol{u}^{\star} \boldsymbol{u}^{\star \rm T}) Y_{\rm s}$$

have columns which are linearly independent from u^* .

$$\tilde{G}(\boldsymbol{u}) = \frac{1}{n} \sum_{i=1}^{n} \frac{Y_{p} \boldsymbol{e}_{i} \boldsymbol{e}_{i}^{\mathrm{T}} Y_{p}^{\mathrm{T}}}{|\boldsymbol{e}_{i}^{\mathrm{T}} Y_{p}^{\mathrm{T}} \boldsymbol{u}|}$$

the modified vector iteration is,

 $\boldsymbol{u} = (\boldsymbol{I} - \boldsymbol{u}^{\star} \boldsymbol{u}^{\star \mathrm{T}}) \tilde{\boldsymbol{G}}(\boldsymbol{u}_{l}) \boldsymbol{u}_{l}, \qquad \boldsymbol{u}_{l+1} = \boldsymbol{u} / \|\boldsymbol{u}\|, \quad l = 1, 2, \dots$

$$\tilde{G}(\boldsymbol{u}) = \frac{1}{n} \sum_{i=1}^{n} \frac{Y_{p} \boldsymbol{e}_{i} \boldsymbol{e}_{i}^{\mathrm{T}} Y_{p}^{\mathrm{T}}}{|\boldsymbol{e}_{i}^{\mathrm{T}} Y_{p}^{\mathrm{T}} \boldsymbol{u}|}$$

the modified vector iteration is,

 $\boldsymbol{u} = (\boldsymbol{l} - \boldsymbol{u}^* \boldsymbol{u}^{*\mathrm{T}}) \tilde{\boldsymbol{G}}(\boldsymbol{u}_l) \boldsymbol{u}_l, \qquad \boldsymbol{u}_{l+1} = \boldsymbol{u} / \|\boldsymbol{u}\|, \quad l = 1, 2, \dots$

The remaining columns of U^{T} are determined similarly, where u^{*} above is replaced with the matrix $[u_{1}^{*}, \ldots, u_{k}^{*}]$, when k columns $\{u_{1}^{*}, \ldots, u_{k}^{*}\}$ of U^{T} have already been calculated.

$$\tilde{G}(\boldsymbol{u}) = \frac{1}{n} \sum_{i=1}^{n} \frac{Y_{p} \boldsymbol{e}_{i} \boldsymbol{e}_{i}^{T} Y_{p}^{T}}{|\boldsymbol{e}_{i}^{T} Y_{p}^{T} \boldsymbol{u}|}$$

the modified vector iteration is,

 $\boldsymbol{u} = (\boldsymbol{I} - \boldsymbol{u}^* \boldsymbol{u}^{*\mathrm{T}}) \tilde{\boldsymbol{G}}(\boldsymbol{u}_l) \boldsymbol{u}_l, \qquad \boldsymbol{u}_{l+1} = \boldsymbol{u} / \|\boldsymbol{u}\|, \quad l = 1, 2, \dots$

The remaining columns of U^{T} are determined similarly, where u^{*} above is replaced with the matrix $[u_{1}^{*}, \ldots, u_{k}^{*}]$, when k columns $\{u_{1}^{*}, \ldots, u_{k}^{*}\}$ of U^{T} have already been calculated.

Observation: The vector iterations converge very robustly to the global constrained minimum.

$$\tilde{G}(\boldsymbol{u}) = \frac{1}{n} \sum_{i=1}^{n} \frac{Y_{p} \boldsymbol{e}_{i} \boldsymbol{e}_{i}^{T} Y_{p}^{T}}{|\boldsymbol{e}_{i}^{T} Y_{p}^{T} \boldsymbol{u}|}$$

the modified vector iteration is,

 $\boldsymbol{u} = (\boldsymbol{l} - \boldsymbol{u}^* \boldsymbol{u}^{*\mathrm{T}}) \tilde{\boldsymbol{G}}(\boldsymbol{u}_l) \boldsymbol{u}_l, \qquad \boldsymbol{u}_{l+1} = \boldsymbol{u} / \|\boldsymbol{u}\|, \quad l = 1, 2, \dots$

The remaining columns of U^{T} are determined similarly, where u^{*} above is replaced with the matrix $[u_{1}^{*}, \ldots, u_{k}^{*}]$, when k columns $\{u_{1}^{*}, \ldots, u_{k}^{*}\}$ of U^{T} have already been calculated.

Observation: The vector iterations converge very robustly to the global constrained minimum.

Claim: At least convergence to a local constrained minimum can be proved with adequate step size control.

For each time t = 1, ..., T, the matrix of pixel values, $B(t) = \{B_{i,j}(t)\}_{1 \le i,j \le N}$

is an image in the [Video].

For each time t = 1, ..., T, the matrix of pixel values, $B(t) = \{B_{i,j}(t)\}_{1 \le i,j \le N}$

is an image in the [Video].

With m = T = 134 and $n = N^2 = 400^2$ the images are represented as long vectors:

For each time t = 1, ..., T, the matrix of pixel values, $B(t) = \{B_{i,j}(t)\}_{1 \le i,j \le N}$

is an image in the [Video].

With m = T = 134 and $n = N^2 = 400^2$ the images are represented as long vectors:

To the left is the first row of Y_s (displayed as image),

To the right is the first column of V.

Top 6 independent components:

Eliminate motion, keep anatomy and contrast agent: [Video]

Virtual Gating, through segmentation of correlations:

Three groups [Video], stabilized further by PCA/ICA [Video].

Formulation in Function Space

Based upon the imaging examples:

- Sampling occurs continuously in time ... ?
- Same number of sources as pixels,

which refine to a continuum ... ?

Formulation in Function Space

Based upon the imaging examples:

- Sampling occurs continuously in time ... ?
- Same number of sources as pixels, which refine to a continuum ... ?

Claim: That the sources be statistically independent requires that that they be countable.

Formulation in Function Space

Based upon the imaging examples:

- Sampling occurs continuously in time ... ?
- Same number of sources as pixels, which refine to a continuum ... ?

Claim: That the sources be statistically independent requires that that they be countable.

Consequence: The function space setting resembles the finite dimensional setting but with infinite matrices operating between bases in separable spaces.