Motion Correction in MRI General Overview - Solutions

Matthias Schlögl

Institute for medical Engineering

13. Dezember 2012

Classification of Motion in MRI 0000 Motion Correction

State-of-the-Art 000000000

Inhalt

1 Classification of Motion in MRI

2 Motion Correction

3 State-of-the-Art

State-of-the-Art 000000000

intrashot-motion

Intrashot-Motion-Regime

- motion present during acquisition blocks
- effects: determined by presence of field gradients \rightarrow additional signal phase; corrupted excitation profile

Classification of Motion in MRI ••••• Motion Correction

State-of-the-Art 000000000

intrashot-motion

Intrashot-Motion-Regime

$$s(t) = \int \rho(x)e^{i\theta(t)}$$
$$\theta(t) = \gamma \int G(t)x(t)dt \quad (1)$$
$$x(t) = x_0 + v_0t + (a_0/2)t^2 + \dots$$

$$\theta(t) = \gamma \int G(t) x_0 dt + \gamma \int G(t) v_0 dt + \gamma \int G(t) t^2 a_0 / 2 dt + \dots$$

= $k_x x_0 + \gamma M_1 v_0 + \gamma M_2 (a_0 / 2) + \dots$ (2)

State-of-the-Art 000000000

intershot-motion

Intershot-Motion-Regime

- motion present between acquisition blocks
- approximation: motion state changes only with the phase encoding (Cartesian sampling)

Classification of Motion in MRI ○○●○ Motion Correction

State-of-the-Art 000000000

$rigid/non-rigid\ motion$

rigid-motion

• translation: fourier-shift-theorem

$$\mathcal{O}(x-x_0,y-y_0)\leftrightarrow \mathcal{F}(k_x,k_y)e^{-2\pi i(k_xx_0+k_yy_0)}$$

- rotation: fourier-rotation theorem $\rho(\hat{R}(x,y)) \leftrightarrow F(\hat{R}(k_x,k_y))$
- rigid motion manifests itself in blurring and ghosting
- head-motion, arm-motion, leg-motion

e non-rigid-motion

• hard to determine, cardiac-motion, respiration, gastrointesinal peristalsis, pulsatile brain-motion

Classification of Motion in MRI ○○○● Motion Correction

State-of-the-Art 000000000

2D / 3D excitation

• for sequences based on slice (2D) excitation it must be assured that motion is in-plane

Correction Approaches

1 Prospective Motion Correction:

e.g. PROMO, real-time gradient adjustment, gating, triggering

2 Retrospective Motion Correction:

mathematical approaches focusing on data consistency

3 Data Acquisition Strategies:

e.g. PROPELLER sequence, radial/spiral sampling, fast-imaging techniques

State-of-the-Art 000000000

Motion Detection

1 External Sensors

2 Internal Navigator Echoes

Motion Type

intershot/intrashot	rigid/non-rigid	2D/3D/4D
		(2D) inplane/troughplane

Motion Type

intershot/intrashot	rigid/non-rigid	2D/3D/4D
		(2D) inplane/troughplane

Correction Approach

prospective	retrospective	data-acquisition

М	otion	Туре

intershot/intrashot	rigid/non-rigid	2D/3D/4D
		(2D) inplane/troughplane

Correction	Approach
------------	----------

prospective	retrospective	data-acquisition

Motion Detection

internal / external

Classification	of	Motion	in	MRI
0000				

Motion Type						
intershot/intrashot	tershot/intrashot rigid/non-rigid 2D/3D/4D					
		(2D) inplane/troughplane				
	Correction App	roach				
prospective	retrospective	data-acquisition				
	Motion Detec	tion				
internal / external						
Body Part						
neuro, cardiac, abdominal,						

Classification	of	Motion	in	MRI
0000				

State-of-the-Art 000000000

Summary

Motion Type						
intershot/intrashot rigid/non-rigid 2D/3D/4D						
	(2D) inplane/troughplane					
	Correction App	roach				
prospective	retrospective	data-acquisition				
	Motion Dotor	tion				
	MOLION Delec					
	internal / external					
	Body Part	:				
ne	neuro, cardiac, abdominal,					
Sequence						
SE,GE,FSE,EPI,SSFP,						

Classification	of	Motion	in	MRI
0000				

Summary

Motion Type		
intershot/intrashot	rigid/non-rigid	2D/3D/4D
		(2D) inplane/troughplane
Correction Approach		
prospective	retrospective	data-acquisition
Motion Detection		
internal / external		
Body Part		
neuro, cardiac, abdominal,		
Sequence		
SE,GE,FSE,EPI,SSFP,		
Spin Preparation		
DWI/DTI, PC-MRA, Elastography,		

1) General Matrix Description[1]

$$\rho = \left(\sum_{t=0}^{n_s-1} \mathbf{F}^{\mathsf{H}} \mathbf{A}_t \mathbf{F} \mathbf{U}_t\right) \rho_0 = \mathbf{E} \rho_0 \tag{3}$$

- linear inverse problem: assume motion-operator U_t at time t to be known; A_t: sampling operator; ρ: motion corrupted image; ρ₀: ideal object image
- Assumes intershot arbitrary motion
- Assessment of image quality with artifact metric (joint-entropy)
- In-vivo data: 16-echo TSE 256x256

State-of-the-Art

1) General Matrix Description

Motion Model

(f) Nonrigid example (simulation), which simulates a pulsation in 16 shots. (a) The motion-corrupted image;
(b) the correction by empirical inverse; (c) the correction by the LSQR algorithm; (d) the goldstandard image. (e) The deformation at each of the 16 shots on a square checkerboard image

State-of-the-Art

2) Generalized Reconstruction Framework[3]

$$s(\vec{k}) = \int_{\Omega} \mathcal{K}(\vec{k}, \vec{r_0}) \rho_0(\vec{r_0}) d\vec{r_0}$$

$$\mathcal{K}(\vec{k}, \vec{r_0}) = d(\vec{k}) \sigma(\vec{k}, \Phi(\vec{r_0})) e^{-i\vec{k}\Phi_k(\vec{r_0})} |J_{\Phi_k(\vec{r_0})}|$$

$$s = E\rho_0$$
(5)

- reconstruction problem is equivalent to solving a Fredholm equation of the first kind with a generalized kernel comprising Fourier and coil sensitivity encoding, modified by physiological motion information
- $d(\vec{k})$: sampling operator; $\sigma(\vec{k},\vec{r})$: static coil sensitivity; $\Phi_k: \vec{r_0} \mapsto \vec{r}$

State-of-the-Art

2) Generalized Reconstruction Framework

Numerical Resolution

$$A = E^{T}E$$

$$A = \sum_{t=0}^{n_{s}-1} U_{t}^{H} \left(\sum_{c=1}^{N_{c}} \sigma_{c}^{H} F^{H} A_{t}^{H} A_{t} F \sigma_{c} \right) U_{t}$$
(6)

- · Generalized Matrix Description for multiple coils
- Also assumes intershot motion

State-of-the-Art

2) Generalized Reconstruction Framework

Motion Model

$$\hat{u}(r,t) = \alpha(r)S(t) = \sum_{k=1}^{K} \alpha_k(r)S_k(t)$$
(7)

- Elastic motion is represented by **displacement values** at certain control points, defined by a Cartesian grid
- predictive motion model: simultaneous acquisition of image and sensor data (pneumatic belts, ECG data, ...) S(t) allows to construct - based on a regression method - a linear model described by the coefficients α_k(r).
- the model is able to estimate the displacement fields $\hat{u}(r,t)$ \rightarrow input to generalized reconstruction

3) Localized Linear Translations, Autofocusing[2]

Start movie

- sufficient small spatial and temporal scale \rightarrow elastic motion can be approximated as simple linear translations
- formulation of **autofocusing** algorithm that locally minimizes a given **motion metric** (gradient entropy)
- possible motion paths are limited to the motion measured from **multichannel navigator** data

3) Localized Linear Translations, Autofocusing

Motion Model

$$s_{n}[I] = C[n]s_{0}[I]e^{2\pi i\vec{k}[I]\vec{d}[n]}$$

$$C[n] = c_{r}[n]e^{2\pi ic_{\Phi}[n]}$$
(8)

- $l \in \{0, ..., L\}$: navigator consists of the first L samples in readout; $s_n[l]$: l-th navigator-signal of n-th shot for each coil; $\vec{d}[n]$: linear translation modeled as linear-phase modulation applied to reference navigator signal s_0
- *C*[*n*] accounts for bulk magnitude and phase fluctuations

 \rightarrow solved with weighted Gauss-Newton motion estimate $\min_{d_x,c_\Phi} \sum_{l} w^2[l] |s_0[l] - s[l] e^{-2\pi i k_x[l] d_x + c_\Phi}|^2$

State-of-the-Art ○○○○○○○●○

3) Localized Linear Translations, Autofocusing

Autofocusing

Atkinson D.a Irarrazaval P.b Hill D.L.G.a Hajnal J.c Larkman D.c Batchelor, P.G.a d.

Matrix description of general motion correction applied to multishot images. *Magnetic Resonance in Medicine*, 54(5):1273–1280, 2005. cited By (since 1996) 22.

Alley M.T.b Cunningham C.H.c d Vasanawala S.S.b Pauly J.M.a Lustig M.e Cheng, J.Y.a.

Nonrigid motion correction in 3d using autofocusing withlocalized linear translations.

Magnetic Resonance in Medicine, 2012. cited By (since 1996) 0; Article in Press.

Cindea N.a c Mandry D.a b Pasquier C.a b Vuissoz P.-A.a b Felblinger J.a b d Odille, F.a b.

Generalized mri reconstruction including elastic physiological motion and coil sensitivity encoding.

Magnetic Resonance in Medicine, 59(6):1401-1411, 2008. cited By (since 1996) 7.