DISKRETE MATHEMATIK Kapitel 4: Flementare Zahlentheorie

MAT.106UB Vorlesung im WS 2018/19

Günter LETTL

Institut für Mathematik und wissenschaftliches Rechnen an der Karl-Franzens-Universität Graz

4.1 Teilbarkeit [I-L] 4.1, [L-P-V] 6.1, [S-S] 5.3.30-5.3.60

Definition (1)

a) (Teilbarkeitsrelation auf \mathbb{Z}) [vgl. Übung Bsp. 9] Für $a, b \in \mathbb{Z}$ gilt "a teilt b" (in Zeichen: $a \mid b$) genau dann, wenn es ein $a' \in \mathbb{Z}$ mit $a \cdot a' = b$ gibt.

Gilt $a \mid b$, so sagt man auch: b ist durch a teilbar, a ist ein Teiler von b bzw. b ist ein Vielfaches von a, und – falls $a \neq 0$ – nennt $a' = \frac{b}{a}$ den Komplementärteiler zu a (bezüglich b).

Gilt $a \mid b$ nicht, so schreibt man: $a \nmid b$.

Definition (1) (Fortsetzung)

b) (Assoziiertheitsrelation auf \mathbb{Z})

Ganze Zahlen $a, b \in \mathbb{Z}$ heißen zueinander assoziiert (in Zeichen: $a \sim b$) genau dann, wenn $a \mid b$ und $b \mid a$ gilt.

c) Für $a \in \mathbb{Z}$ definieren wir:

$$T(a) = \{t \in \mathbb{N} \mid t \mid a\}$$
 die Menge aller positiven Teiler von a,

$$V(a) = \{v \in \mathbb{N} \mid a \mid v\}$$
 die Menge aller positiven Vielfachen von a

und die Teileranzahlfunktion au

$$\tau:\mathbb{N}\to\mathbb{N}$$

$$n \mapsto \tau(n) := \#T(n)$$

Lemma (1) (Eigenschaften der Teilerrelation)

Für beliebige $a,b,c\in\mathbb{Z}$ gilt:

- a) $1 \mid a, a \mid a, a \mid 0$ und $(0 \mid a \Leftrightarrow a = 0)$. Also: $T(0) = \mathbb{N}, 1 \in T(a)$.
- b) $(a \mid b \land b \mid c) \Rightarrow a \mid c$.
- c) $a \mid b \Leftrightarrow |a| \mid |b| \Leftrightarrow \pm a \mid \pm b$ $(a \mid b \land b \neq 0) \Rightarrow |a| \leq |b|.$ Also: für $a \neq 0$ ist $\{1, |a|\} \subset T(a) \subset \{1, 2, ..., |a|\},$ $\tau(1) = 1$, und für $|a| \geq 2$ gilt: $2 \leq \tau(a) \leq |a|.$
- **d)** $a \sim b \Leftrightarrow |a| = |b| \Leftrightarrow b = \pm a$
- e) $(a \mid b \land a \mid c) \Rightarrow a \mid (b \pm c)$ $a \mid b \Rightarrow (a \mid bc \land ac \mid bc).$

Definition (2)

Es seien $a, b \in \mathbb{Z}$

- a) Eine Zahl $d \in \mathbb{Z}$ heißt ein größter gemeinsamer Teiler von a und b, wenn gilt:
 - (GGT1) $d \mid a \text{ und } d \mid b$
 - **(GGT2)** $\forall t \in \mathbb{Z} \text{ mit } t \mid a \text{ und } t \mid b \text{ gilt: } t \mid d.$
- **b)** Ist $(a, b) \neq (0, 0)$, so heißt

$$ggT(a,b) := max\Big(T(a) \cap T(b)\Big) \in \mathbb{N}$$

der größte gemeinsame Teiler von a und b.

Satz (1)

Es seien $a, b \in \mathbb{Z}$. Dann gilt:

- a) $a \mid b \Leftrightarrow T(a) \subset T(b)$.
- **b)** $\forall k \in \mathbb{Z}$: $T(a) \cap T(b) = T(a) \cap T(b + ka)$.

Es sei nun zusätzlich $(a, b) \neq (0, 0)$ und d = ggT(a, b) (vgl. Definition 2.b)). Dann gilt:

- c) $T(d) = T(a) \cap T(b)$, und es existieren $x, y \in \mathbb{Z}$ mit $\frac{d}{d} = ax + by$.
- **d)** d ist ein größter gemeinsamer Teiler von a und b (nach Definition 2.a)).

Korollar (1)

Für $a, b, k \in \mathbb{Z}$ mit $(a, b) \neq (0, 0)$ gilt:

$$ggT(a, b) = ggT(a, b + ka)$$

Satz (1)

Es seien $a, b \in \mathbb{Z}$. Dann gilt:

- a) $a \mid b \Leftrightarrow T(a) \subset T(b)$.
- **b)** $\forall k \in \mathbb{Z}$: $T(a) \cap T(b) = T(a) \cap T(b + ka)$.

Es sei nun zusätzlich $(a, b) \neq (0, 0)$ und d = ggT(a, b) (vgl. Definition 2.b)). Dann gilt:

- c) $T(d) = T(a) \cap T(b)$, und es existieren $x, y \in \mathbb{Z}$ mit $\frac{d}{d} = ax + by$.
- **d)** d ist ein größter gemeinsamer Teiler von a und b (nach Definition 2.a)).

Korollar (1)

Für $a, b, k \in \mathbb{Z}$ mit $(a, b) \neq (0, 0)$ gilt:

$$ggT(a, b) = ggT(a, b + ka)$$
.

4.2 Primzahlen [I-L] 4.3, [L-P-V] 6.2-6.4, [S-S] 2.1, 5.3.45-5.3.51, [St] 3.1

Definition (3)

- a) Zahlen $a, b \in \mathbb{Z}$ heißen zueinander relativ prim (oder teilerfremd), wenn ggT(a, b) = 1 ist.
- **b)** Eine Zahl $q \in \mathbb{Z}$ heißt ein *Primelement* (von \mathbb{Z}), wenn $|q| \ge 2$ und für alle $a, b \in \mathbb{Z}$ gilt:

$$q \mid ab \Rightarrow (q \mid a \lor q \mid b)$$
.

c) Eine Zahl $p \in \mathbb{N}$ heißt eine Primzahl, wenn $\tau(p) = 2$ gilt $(\iff ((p \ge 2) \land (T(p) = \{1, p\})))$.

Die Menge aller Primzahlen wird mit $\mathbb{P} = \{2, 3, 5, 7, 11, 13, \dots\}$ bezeichnet.

d) Eine Zahl $a \in \mathbb{Z} \setminus \{0\}$ heißt *zusammengesetzte Zahl*, wenn $\tau(|a|) \geq 3$ gilt (\iff es gibt ein $t \in \mathbb{N}$ mit 1 < t < |a| und $t \mid n$).

Satz (2)

a) Ist $a \in \mathbb{Z}$ mit $|a| \ge 2$, so ist

$$p := \min(T(a) \setminus \{1\})$$

eine Primzahl mit p | a.

- **b)** Jede Primzahl $p \in \mathbb{P}$ ist ein Primelement von \mathbb{Z} .
- c) (Hauptsatz der elementaren Zahlentheorie)

Für jedes $0 \neq a \in \mathbb{Z}$ existieren eindeutig bestimmte $r \in \mathbb{N}_0$ und Primzahlen $p_1, p_2, \ldots, p_r \in \mathbb{P}$ mit

$$a = sgn(a) \cdot \prod_{i=1}^{r} p_i$$
 und $p_1 \leq p_2 \leq \cdots \leq p_r$.

d) Jedes Primelement $q \in \mathbb{Z}$ ist von der Form $q = \pm p$ mit $p \in \mathbb{P}$.

Varianten zu Satz 2.c):

Für jedes $0 \neq a \in \mathbb{Z}$ existieren eindeutig bestimmte

A) $k \in \mathbb{N}_0$, $p_1 < p_2 < \cdots < p_k \in \mathbb{P}$ und $e_1, \ldots, e_k \in \mathbb{N}$, sodass

$$a = \operatorname{sgn}(a) \cdot \prod_{i=1}^k p_i^{e_i}$$
 .

B) $e_1 \in \{0,1\}$ und für alle $p \in \mathbb{P}$ $e_p \in \mathbb{N}_0$, wobei $e_p \neq 0$ nur für endlich viele $p \in \mathbb{P}$ gilt, sodass

$$a=(-1)^{e_1}\cdot\prod_{p\in\mathbb{D}}p^{e_p}.$$

Satz (3) (Satz von Euklid)

$$\#\mathbb{P}=\infty$$
.

Definition (4)

Für $a, b \in \mathbb{Z} \setminus \{0\}$ heißt

$$\mathsf{kgV}(\mathsf{a},\mathsf{b}) := \mathsf{min}\Big(V(\mathsf{a}) \cap V(\mathsf{b})\Big) \in \mathbb{N}$$

das kleinste gemeinsame Vielfache von a und b

Satz (3) (Satz von Euklid)

$$\#\mathbb{P}=\infty$$
.

Definition (4)

Für $a, b \in \mathbb{Z} \setminus \{0\}$ heißt

$$\mathsf{kgV}(a,b) := \mathsf{min}\Big(V(a) \cap V(b)\Big) \in \mathbb{N}$$

das kleinste gemeinsame Vielfache von a und b.

Satz (4)

Sind $a, b \in \mathbb{Z} \setminus \{0\}$ mit $a = sgn(a) \cdot \prod_{p \in \mathbb{P}} p^{e_p}$, $b = sgn(b) \cdot \prod_{p \in \mathbb{P}} p^{f_p}$ (so wie in Variante B) zu Satz 2.c)), so gilt:

- a) a $\mid b \iff \text{für alle } p \in \mathbb{P} \text{ gilt: } e_p \leq f_p$.
- b) $T(a) = \Big\{\prod_{p\in\mathbb{P}} p^{h_p} \mid 0 \le h_p \le e_p\Big\}, \ \tau(|a|) = \prod_{p\in\mathbb{P}} (e_p + 1)$ und

$$V(a) = \Big\{ \prod_{p \in \mathbb{P}} p^{k_p} \mid k_p \in \mathbb{N}, e_p \leq k_p \text{ und } k_p = 0 \text{ für fast alle } p \in \mathbb{P} \Big\}.$$

c)
$$ggT(a,b) = \prod_{p \in \mathbb{P}} p^{\min\{e_p,f_p\}}$$
, $kgV(a,b) = \prod_{p \in \mathbb{P}} p^{\max\{e_p,f_p\}}$ und

$$ggT(a,b) \cdot kgV(a,b) = |ab|$$
.

4.3 Der Euklid'sche Algorithmus [I-L] 4.2, [L-P-V] 6.6, [St] 3.2.2

Satz (5) (Division mit Rest)

Es seien $a, b \in \mathbb{Z}$ und $b \neq 0$. Dann existieren eindeutig bestimmte $q, r \in \mathbb{Z}$ mit $0 \leq r < |b|$, sodass gilt:

$$a = bq + r$$
.

```
Beispiel zu Satz 6: ggT(94729, 93439) = ?

94729 = 1 \cdot 93439 + 1290 (= Rest r_1)

93439 = 72 \cdot 1290 + 559 (= Rest r_2)

1290 = 2 \cdot 559 + 172 (= Rest r_3)

559 = 3 \cdot 172 + 43 (= Rest r_4)

172 = 4 \cdot 43 + 0 (= Rest r_5)

ggT(94729, 93439) = ggT(93439, 1290) = ggT(1290, 559) =

= ggT(559, 172) = ggT(172, 43) = ggT(43, 0) = 43.
```


Satz (6) (Erweiterter Euklid'scher Algorithmus)

Es seien $a, b \in \mathbb{N}$.

Für $i \ge -1$ und $j \ge 0$ werden $q_j, r_i, x_i, y_i \in \mathbb{N}_0$ rekursiv definiert durch:

- •) $r_{-1} = a, r_0 = b, x_{-1} = 1, y_{-1} = 0, x_0 = 0, y_0 = 1$
- •) für $i \ge 0$: falls r_i (und $r_{i-1}, x_i, x_{i-1}, y_i, y_{i-1}$) bereits definiert sind und $r_i > 0$:

$$r_{i-1} = q_i r_i + r_{i+1}$$
 Division von r_{i-1} durch r_i mit Rest
$$x_{i+1} = x_{i-1} - q_i x_i$$

$$y_{i+1} = y_{i-1} - q_i y_i$$

Dann existiert ein $n \in \mathbb{N}_0$ mit $r_n > 0$ und $r_{n+1} = 0$, und es gilt: $r_n = ggT(a,b) = ax_n + by_n .$

4.4 Kongruenzen und Restklassen [A] 12.1, [I-L] 4.4, [L-P-V] 6.7, [St] 3.2.1

Definition (5)

Es sei $m \in \mathbb{Z}$.

Ganze Zahlen $a, b \in \mathbb{Z}$ heißen zueinander kongruent modulo (m) (Schreibweise: $a \equiv b \mod (m)$) genau dann, wenn folgende (zueinander äquivalente) Bedingungen erfüllt sind:

(K1)
$$m \mid (b - a)$$

$$(\mathsf{K2}) \; \exists \; k \in \mathbb{Z} : b = a + km$$

(K3) Falls $m \neq 0$: sind $q, q' \in \mathbb{Z}$ und $r, r' \in \{0, 1, 2, ..., m-1\}$ mit a = mq + r, b = mq' + r', so gilt r = r' (d.h.: a und b haben bei Division durch m denselben Rest.)

m heißt der Modul der Kongruenz $a \equiv b \mod (m)$.

"Zueinander kongruent sein modulo (m)" definiert eine Äquivalenz-relation auf \mathbb{Z} (vgl. Satz 7.a) unten).

Definition (5) (Fortsetzung)

Für $a \in \mathbb{Z}$ heißt

$$\overline{a} = \{b \in \mathbb{Z} \mid a \equiv b \mod(m)\} = \{a + km \mid k \in \mathbb{Z}\} = a + m\mathbb{Z}$$
 die Restklasse von a modulo (m) .

Jedes Element $c \in \overline{a}$ heißt ein *Repräsentant* der Restklasse $\overline{a} = \overline{c}$.

 $\mathbb{Z}/(m) = \{\overline{a} \mid a \in \mathbb{Z}\}$ heißt der *Restklassenring modulo* (m).

Bemerkung:

Für $m \neq 0$ hat der Restklassenring $\mathbb{Z}/(m)$ genau m Elemente:

$$\mathbb{Z}/(m) = \{\overline{r} = r + m\mathbb{Z} \mid 0 \le r < m\} = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{(m-1)}\}.$$

Satz (7)

Es sei $m \in \mathbb{Z}$.

- a) "Zueinander kongruent sein modulo (m)" ist eine Äquivalenz-relation auf \mathbb{Z} .
- **b)** Sind $a, b, a', b' \in \mathbb{Z}$ mit $a \equiv a' \mod (m)$ und $b \equiv b' \mod (m)$, so gilt:
 - (i) $a \pm b \equiv a' \pm b' \mod (m)$ und $ab \equiv a'b' \mod (m)$.
 - (ii) $\forall k \in \mathbb{N}: a^k \equiv (a')^k \mod (m).$
- (iii) Ist $(a, m) \neq (0, 0)$, so gilt ggT(a, m) = ggT(a', m).

Satz (8)

Es seien $m \in \mathbb{N}$ und $a, c \in \mathbb{Z}$.

Dann sind folgende Aussagen äquivalent:

- a) Die Kongruenz a $X \equiv c \mod (m)$ ist lösbar, d.h. $\exists x \in \mathbb{Z}$ mit $ax \equiv c \mod (m)$.
- **b)** Die (lineare) Diophantische Gleichung aX + mY = c ist lösbar, d.h. $\exists (x,y) \in \mathbb{Z}^2$ mit ax + my = c.
- c) $ggT(a, m) \mid c$.

Korollar (2)

Es seien $m \in \mathbb{N}$ und $a \in \mathbb{Z}$. Dann gilt:

- a) $\exists a' \in \mathbb{Z} \text{ mit } a \cdot a' \equiv 1 \mod(m) \iff ggT(a, m) = 1$ $\iff \text{die Restklasse } \overline{a} \text{ besitzt in } \mathbb{Z}/(m) \text{ ein Inverses bezüglich } \odot : \overline{a} \odot \overline{a'} = \overline{1}).$
- **Beispiel 1:** Bestimme alle $n \in \mathbb{Z}$, für welche $4n^2 + 3$ durch 7 teilbar ist!
- Beispiel 2: Bestimme die Einer- (und die Zehner-)-Ziffer der größten derzeit bekannten (Mersenne-)Primzahl

$$q = 2^{82589933} - 1$$
 (entdeckt am 7. 12. 2018).

