DURCH NORMEN DEFINIERTE IDEALKLASSENGRUPPEN

G. LETTL

1. Einleitung

Für einen algebraischen Zahlkörper K sei \mathscr{J}_K die Gruppe der gebrochenen Ideale des Ganzheitsringes von K, und für jede Untergruppe $\mathscr{H} \subset \mathscr{J}_K$ ist $\mathscr{J}_K/\mathscr{H}$ eine "Idealklassengruppe" von K. Ist \mathscr{H}_K die Gruppe der gebrochenen Hauptideale von K, so ist $\mathscr{C}_K = \mathscr{J}_K/\mathscr{H}_K$ die "gewöhnliche" Idealklassengruppe von K, eine der wichtigsten Invarianten der algebraischen Zahlentheorie. Ist \mathscr{H}_K^+ die Gruppe der von totalpositiven Körperelementen erzeugten Hauptideale, so ist $\mathcal{J}_{K}/\hat{\mathcal{H}}_{K}^{+}$ die "engere" Idealklassengruppe von K, die bereits in der Gauss-schen Theorie der Geschlechter eine zentrale Rolle spielt. Für einen quadratischen Zahlkörper K ist $\mathcal{H}_K^+ = \{(\alpha) | \alpha \gg 0\} = \{(\beta) | N\beta \in \mathbf{Q}^+\}, \text{ also } \mathcal{H}_K^+ \text{ mit Hilfe der Norm } N \text{ von } K/\mathbf{Q} \text{ be-}$ schreibbar. In der vorliegenden Arbeit werden nun ganz allgemein solche durch Normen definierte Idealklassengruppen untersucht. Ist L/K eine endliche Erweiterung algebraischer Zahlkörper und F eine (multiplikative) Untergruppe von K^{\times} , so sei $\mathcal{H}(F)$ die Gruppe aller Hauptideale (α) von L mit $N_{L/K}\alpha \in F$. Die Faktorgruppe nach $\mathcal{H}(F)$ ergibt dann eine Idealklassengruppe $\mathcal{C}(F)$ von L. Im Gegensatz zu den von Kuroda [3] definierten Klassengruppen enthalten die Gruppen $\mathscr{C}(F)$ im allgemeinen keine Information über das Zerlegungsverhalten von Primidealen in Oberkörpern, da die Primidealdichten in den einzelnen Klassen in Abhängigkeit von F beliebig variieren können (vgl. Satz 3). Auch die Struktur und die Ordnung von $\mathscr{C}(F)$ hängen im allgemeinen von F ab. Andererseits ermöglicht es diese Variabilität, durch geeignete Wahl von F die Gruppe $\mathscr{C}(F)$ mit vorgegebenen Eigenschaften zu versehen.

Von besonderem Interesse ist der Fall, wenn F direkter Kofaktor der Einheitengruppe ist, also $K^* = E_K \times F$. Dann liegen zwei Hauptideale mit gleicher relativer Idealnorm bezüglich K genau dann in derselben Klasse von $\mathscr{C}(F)$, wenn sie Erzeugende mit gleicher Relativnorm besitzen. Bumby [1] untersuchte, wann eine endliche, normale Erweiterung L/K von algebraischen Zahlkörpern die folgende Eigenschaft besitzt, die er (N) nannte: je zwei ganze Zahlen α , $\beta \in L$ mit $N_{L/K}\alpha = N_{L/K}\beta$ sind entweder beide irreduzibel oder beide nicht. Ein vollständige Charakterisierung aller Erweiterungen L/K mit der Eigenschaft (N) ist unbekannt. Ist G = Gal(L/K), $K^* = E_K \times F$ und enthält jede Klasse von $\mathscr{C}(F)$ Primideale, so zeigt sich, daß die Eigenschaft (N) nur von der Struktur von \mathscr{C}_L und $\mathscr{C}(F)$ als G-Moduln abhängt.

In dieser Arbeit wird auf den Zusammenhang von (N) mit den Gruppen $\mathscr{C}(F)$ nicht näher eingegangen, sondern es werden ausschließlich Resultate über die Klas-

¹⁹⁸⁰ Mathematics Subject Classification. Primary 12A75; Secondary 12A45. Key words and phrases. Ideal class group, prime ideal density.

sengruppen $\mathscr{C}(F)$ hergeleitet. Für L/\mathbb{Q} und $\mathbb{Q}^{\times} = \{1, -1\} \times F$ geben die Sätze 4 und 5 den genauen Zusammenhang zwischen den Klassengruppen $\mathscr{C}(F)$ und \mathscr{C}_L an. Im allgemeinen Fall bleibt die Frage offen, welche F als Kofaktoren von E_K gewählt werden sollen, damit $\mathscr{C}(F)$ minimale Ordnung hat bzw. wann $\mathscr{C}(F)$ mit \mathscr{C}_L übereinstimmt.

2. Die (F)-Idealklassengruppen

Für eine endliche Erweiterung algebraischer Zahlkörper L/K bezeichne $N: L^{\times} \to K^{\times}$ die Relativnorm, \mathscr{H}_L die Gruppe der Hauptideale von L und $\mathscr{C}_L = = \mathscr{J}_L/\mathscr{H}_L$.

DEFINITION. Es sei F eine Untergruppe von K^{\times} . Ein Hauptideal $(\alpha) \in \mathcal{J}_L$ heißt (F)-Hauptideal, wenn $N\alpha \in F$ ist. Bezeichnet $\mathcal{H}(F)$ die Gruppe aller (F)-Hauptideale von L, so heißt $\mathscr{C}(F) = \mathcal{J}_L/\mathcal{H}(F)$ die (F)-Idealklassengruppe von L.

Ist $\mathfrak{A} \in \mathscr{J}_L$, so bezeichnen wir mit $[\mathfrak{A}]$ bzw. $[\mathfrak{A}]_F$ die gewöhnliche Idealklasse bzw. die (F)-Idealklasse, welche \mathfrak{A} enthält. Für $\alpha \in L^{\times}$ gilt $(\alpha) \in \mathscr{H}(F)$ genau dann, wenn $N\alpha \in F \cdot NE_L$ ist. Setzen wir $\Phi_F := (F \cdot NL^{\times})/(F \cdot NE_L)$, so gilt $\mathscr{H}_L/\mathscr{H}(F) \cong \Phi_F \subseteq K^{\times}/(F \cdot NE_L)$.

Lemma 1. a) Ist $[K^{\times}:(F \cdot E_K)]$ endlich, so ist $\mathscr{C}(F)$ endlich. b) Ist $K^{\times}/(F \cdot E_K)$ keine Torsionsgruppe, so ist $\mathscr{C}(F)$ unendlich.

Beweis. a) Da $[(F \cdot E_K): (F \cdot NE_L)] \leq [E_K: NE_L] < \infty$ ist, erhält man

$$[K^{\times}:(F\cdot NE_L)]=[K^{\times}:(F\cdot E_K)]\cdot[(F\cdot E_K):(F\cdot NE_L)]<\infty.$$

Nun ist aber $K^{\times}/(F \cdot NE_L) \ge \Phi_F \cong \mathcal{H}_L/\mathcal{H}(F)$ und

$$(1) 0 \to \mathcal{H}_L/\mathcal{H}(F) \to \mathcal{C}(F) \to \mathcal{C}_L \to 0$$

eine exakte Sequenz, woraus sich die Endlichkeit von $\mathscr{C}(F)$ ergibt.

b) Nach Voraussetzung existiert ein $\lambda \in K^{\times}$ mit $\lambda^n \notin F \cdot E_K$ für alle $n \in \mathbb{Z} \setminus \{0\}$. Die Potenzen von λ erzeugen Hauptideale in L, deren (F)-Idealklassen $[(\lambda^n)]_F$ paarweise verschieden sind, also ist $\mathscr{C}(F)$ unendlich.

SATZ 1. Ist F direkter Kofaktor von E_K (d. h. $K^* = E_K \times F$) und h_L die Klassenzahl von L, so gilt

$$(2) [(E_K \cap NL^{\times}): NE_L] \cdot h_L \leq \#\mathscr{C}(F) \leq [E_K: NE_L] \cdot h_L.$$

BEWEIS. Wegen der exakten Sequenz (1) genügt es, $[(E_K \cap NL^{\times}): NE_L] \le \#(\mathcal{H}_L | \mathcal{H}(F)) \le [E_K: NE_L]$ zu zeigen. Nun ist aber

$$\mathcal{H}_{L}/\mathcal{H}(F) \cong \Phi_{F} = (F \cdot NL^{\times})/(F \cdot NE_{L}) \leq K^{\times}/(F \cdot NE_{L}) =$$
$$= (E_{K} \times F)/(NE_{L} \times F) \cong E_{K}/NE_{L},$$

andererseits gilt

$$\Phi_F \ge \big(F \cdot (E_K \cap NL^{\times})\big) / (F \cdot NE_L) = \big(F \times (E_K \cap NL^{\times})\big) / (F \times NE_L) \cong (E_K \cap NL^{\times}) / NE_L.$$

Wir setzen nun voraus, daß L/K normal mit Galoisgruppe G ist. Da G die Gruppe $\mathscr{H}(F)$ invariant läßt, operiert G auf $\mathscr{C}(F)$. Wie üblich, schreiben wir Klassengruppen additiv und daher die Operation von G auf \mathscr{C}_L bzw. $\mathscr{C}(F)$ in Präfixnotation, auf L bzw. \mathscr{J}_L jedoch in Exponentennotation. Der folgende Satz zeigt, daß der Stabilisator einer (F)-Idealklasse von F unabhängig ist.

SATZ 2. Es sei L/K eine endliche, normale Erweiterung algebraischer Zahlkörper mit Galoisgruppe G. Für $a \in \mathscr{C}_L$ sei $G_a \cong G$ der Stabilisator von a.

Dann existiert ein Homomorphismus γ_a : $G_a \rightarrow E_K/NE_L$, soda β für jedes $F \leq K^{\times}$ mit $E_K \cap F \subseteq NE_L$ gilt: $G'_a := \ker (\gamma_a)$ ist der Stabilisator für jede in a enthaltene (F)-Idealklasse.

Beweis. Wir wählen ein Ideal $\mathfrak{A} \in a$. Für $\sigma \in G_a$ sei $\alpha_{\sigma} \in L$ mit $\mathfrak{A}^{\sigma-1} = (\alpha_{\sigma})$. Dann definieren wir γ_a : $G_a \to E_K/NE_L$ durch $\gamma_a(\sigma) := N\alpha_{\sigma} \cdot NE_L$. Zunächst zeigen wir. daß diese Definition von der Wahl von \mathfrak{A} unabhängig ist. Ist $\mathfrak{B} \in a$, so gibt es zu jedem $\sigma \in G_a$ ein $\beta_{\sigma} \in L$ mit $\mathfrak{B}^{\sigma-1} = (\beta_{\sigma})$. Weiters gibt es ein $\delta \in L$ mit $\mathfrak{B} = \mathfrak{A} \cdot (\delta)$, womit wir $(\beta_{\sigma}) = (\alpha_{\sigma} \cdot \delta^{\sigma-1})$ und wegen $N\delta^{\sigma-1} = 1$ $N\beta_{\sigma} \in N\alpha_{\sigma} \cdot NE_L$ erhalten.

Nun beweisen wir, daß γ_a ein Homomorphismus ist. Für σ , $\tau \in G_a$ seien α_{σ} , $\alpha_{\tau} \in L$ mit $\mathfrak{A}^{\sigma-1} = (\alpha_{\sigma})$ und $\mathfrak{A}^{\tau-1} = (\alpha_{\tau})$. Wegen $\mathfrak{A}^{\sigma\tau-1} = (\mathfrak{A}^{\sigma-1})^{\tau} \cdot \mathfrak{A}^{\tau-1} = (\alpha_{\sigma}^{\tau} \cdot \alpha_{\tau})$ ergibt sich

 $\gamma_a(\sigma\tau) = N(\alpha_\sigma^\tau \cdot \alpha_\tau) \cdot NE_L = N\alpha_\sigma \cdot N\alpha_\tau \cdot NE_L = \gamma_a(\sigma) \cdot \gamma_a(\tau).$

Schließlich sei $F \subseteq K^{\times}$ mit $E_K \cap F \subseteq NE_L$, $a' \in \mathscr{C}(F)$ mit $a' \subseteq a$ und $\mathfrak{A} \in a'$. Für $\sigma \in G_a$ sei wieder $\mathfrak{A}^{\sigma-1} = (\alpha_{\sigma})$. Dann gilt $(\sigma a' = a') \Leftrightarrow ([\mathfrak{A}^{\sigma}]_F = [\mathfrak{A}]_F) \Leftrightarrow (N\alpha_{\sigma} \in F \cdot NE_L)$. Nun ist aber $N\alpha_{\sigma} \in E_K$, und die Voraussetzung über F ergibt $(F \cdot NE_L) \cap E_K = NE_L$, also gilt $(N\alpha_{\sigma} \in F \cdot NE_L) \Leftrightarrow (N\alpha_{\sigma} \in NE_L) \Leftrightarrow (\sigma \in G'_a)$.

3. Primidealdichten der (F)-Idealklassen

In diesem Abschnitt sei L/K eine endliche, normale Erweiterung algebraischer Zahlkörper mit Galoisgruppe G. Weiters sei F ein direkter Kofaktor der Einheitengruppe von K. Dann ist F eine freie abelsche Gruppe mit abzählbarer Basis (siehe z. B. Narkiewicz [4], S. 123). Wir werden zeigen, daß durch geeignete Wahl von F "beliebig" vorgegebene Primidealdichten der einzelnen (F)-Idealklassen erreicht werden können. Da (F)-Idealklassen, die unter G konjugiert sind, gleiche Primidealdichte haben, muß dies bei der "beliebigen" Vorgabe der Dichten ebenso berücksichtigt werden wie die Tatsache, daß die Dichte der Primideale in einer gewöhnlichen Idealklasse $1/h_L$ ist.

Nach Skolem [5] läßt sich ein direkter Kofaktor F_0 zu E_K folgendermaßen konstruieren. Die Menge aller Primideale¹ von K sei $\{\mathfrak{p}_i|i\in\mathbb{N}\}$, wobei die Reihenfolge so gewählt wird, daß für ein $n_0\in\mathbb{N}\cup\{0\}$ die Menge $\{[\mathfrak{p}_i]|1\leq i\leq n_0\}$ eine Basis für \mathscr{C}_K ist. Für $n\in\mathbb{N}$ und $1\leq i\leq n_0$ existieren eindeutig bestimmte Zahlen $h_{i,n}\in\mathbb{Z}$ mit $0\leq h_{i,n}<\mathrm{ord}\,[\mathfrak{p}_i]$, sodaß $\mathfrak{p}_n\prod_{i=1}^{n_0}\mathfrak{p}_i^{h_{i,n}}=(\pi_n)$ ein Hauptideal ist. Dann ist $F_0=\prod_{n\in\mathbb{N}}\langle\pi_n\rangle$ eine freie Gruppe und $E_K\times F_0=K^\times$. Ist v_n die zu \mathfrak{p}_n gehörige

¹ Primideale seien stets ungleich (0).

und auf 1 normierte Exponentenbewertung, so gilt für jedes $\lambda \in K^{\times}$

(3)
$$\lambda = \varepsilon \prod_{n=1}^{n_0} \pi_n^c \prod_{n=n_0+1}^{\infty} \pi_n^{v_n(\lambda)},$$

wobei $\varepsilon \in E_K$ und $c_n \in \mathbb{Z}$ durch λ eindeutig bestimmt sind. Das folgende Lemma zeigt, daß sich jeder direkte Kofaktor F zu E_K in der Form $F = \coprod_{n \in \mathbb{N}} \langle \varepsilon_n \pi_n \rangle$ mit eindeutig bestimmten $\varepsilon_n \in E_K$ schreiben läßt.

LEMMA 2. Es seien A eine multiplikative, abelsche Gruppe, B eine Untergruppe von A, F_0 und F freie Untergruppen von A mit $A=B\times F_0=B\times F$. Ist $\{f_i|i\in I\}$ eine Basis von F_0 , so existieren eindeutig bestimmte $b_i\in B$, soda β $\{b_if_i|i\in I\}$ eine Basis von F ist.

BEWEIS. Ist $\{g_j|j\in J\}$ eine Basis von F, so existieren für $i\in I$, $j\in J$ eindeutig bestimmte $b_i\in B$ und $\epsilon_{i,j}\in {\bf Z}$ mit $f_i=b_i^{-1}\prod_{\substack{j\in J\\j\in J}}g_j^{\epsilon_{i,j}}$. Für $F'=\coprod_{i\in I}\langle b_if_i\rangle$ gilt $F'\subseteq F$. Ist $a\in F$, so existieren $b\in B$ und $\gamma_i\in {\bf Z}$ mit

$$a = b \prod_{i \in I} f_i^{\gamma_i} = b \prod_{i \in I} (b_i^{-\gamma_i} \prod_{j \in J} g_j^{\varepsilon_{i,j}\gamma_i}).$$

Daraus ergibt sich $b = \prod_{i \in I} b_i^{\gamma_i}$ und $a = \prod_{i \in I} (b_i f_i)^{\gamma_i}$, womit wir $F \subseteq F'$ und somit F = F' bewiesen haben.

Es sei nun L/K normal mit Galoisgruppe G und $K^{\times} = E_K \times F$. Jede Ideal-klasse $a \in \mathscr{C}_L$ enthält wegen (2) höchstens $[E_K:NE_L]$ (F)-Idealklassen. G_a , γ_a und G'_a seien wie in Satz 2 definiert und $\Gamma_a := \operatorname{im}(\gamma_a) \leq E_K/NE_L$. Auf der Menge der in a enthaltenen (F)-Idealklassen operiert G_a , wodurch dies in höchstens $m(a) = [E_K:NE_L]/\sharp \Gamma_a$ Bahnen der Mächtigkeit $i(a) = [G_a:G'_a] = \sharp \Gamma_a$ zerfällt. Da G'_a und Γ_a nur von a, nicht aber von F abhängen, gilt dies auch für i(a) und m(a). Mit $\mathscr{N}: \mathscr{J}_L \to \mathscr{J}_K$ bzw. $\mathscr{N}_{L/Q}: \mathscr{J}_L \to \mathbb{Q}$ bezeichnen wir die relative bzw. absolute Idealnorm. Ist $M \subseteq \mathscr{J}_L$, so ist die Primidealdichte von M durch

$$\delta(M) = \lim_{n \to \infty} \frac{\# \{ \mathfrak{P} \in M \mid \mathfrak{P} \text{ Primideal und } \mathcal{N}_{L/Q}(\mathfrak{P}) \leq n \}}{\# \{ \mathfrak{P} \in \mathcal{J}_L \mid \mathfrak{P} \text{ Primideal und } \mathcal{N}_{L/Q}(\mathfrak{P}) \leq n \}}$$

definiert, falls dieser Grenzwert existiert. Bekanntlich hängt $\delta(M)$ nur von den Primidealen mit Restklassengrad 1, also auch nur von den Primidealen mit Relativgrad $f_{L/K}=1$ ab. Jede zu M unter G konjugierte Menge hat dieselbe Primidealdichte, also können nur solche (F)-Idealklassen verschiedene Dichten haben, die unter G nicht konjugiert sind.

SATZ 3. Es sei L/K eine normale Erweiterung algebraischer Zahlkörper mit Galoisgruppe G. Für $1 \le j \le l$ seien $a_j \in \mathcal{C}_L$ Repräsentanten für die verschiedenen Bahnen, in die \mathcal{C}_L unter G zerfällt. Weiters seien $m_j \in \mathbb{N}$ mit $m_j \le m(a_j)$ und $\epsilon_{i,j} \in \mathbb{R}$ mit $0 \le \epsilon_{i,j} \le 1$ und $\sum_{i=1}^{m_j} \epsilon_{i,j} = 1$. Dann existieren eine Gruppe F mit $K^* = E_K \times F$ und für $1 \le j \le l$, $1 \le i \le m_j$ paarweise verschiedene (F)-Idealklassen $b_{i,j}$ mit $b_{i,j} \subseteq a_j$ und Primidealdichten $\delta(b_{i,j}) = \epsilon_{i,j}/(b_L \cdot i(a_j))$.

BEWEIS. Wir gehen von einer Zerlegung $K^* = E_K \times F_0$ aus, wie sie zu Beginn des Kapitels beschrieben wurde, d. h. $F_0 = \coprod_{n \in \mathbb{N}} \langle \pi_n \rangle$, $\{[\mathfrak{p}_n] | 1 \le n \le n_0\}$ ist eine Basis von \mathscr{C}_K , und für jedes $\lambda \in K^*$ gilt (3). Für $1 \le j \le l$ sei $\mathfrak{A}_j \in a_j$ fest gewählt. Die endliche Menge $S \subseteq \mathscr{J}_L$ enthalte genau die Primideale von L, welche über den Idealen \mathfrak{p}_n mit $1 \le n \le n_0$ oder mit $\mathfrak{p}_n | \mathscr{N} \mathfrak{A}_j$ für $j \in \{1, ..., l\}$ liegen. Mit geeigneten $\varepsilon_n \in E_K$ werden wir $F = \coprod_{n \in \mathbb{N}} \langle \varepsilon_n \pi_n \rangle$ bilden und damit alle Behauptungen des Satzes verifizieren.

Es sei nun $j \in \{1, ..., l\}$. Wir wählen $\eta_1, ..., \eta_{m_j} \in E_K$ so, daß $\eta_1 N E_L, ..., \eta_{m_j} N E_L$ m_j verschiedene Nebenklassen von $(E_K/N E_L)/\Gamma_{a_j}$ repräsentieren.

 $\mu: \mathbb{N} \to \{1, 2, ..., m_j\}$ sei eine Funktion mit $\mu(k) = k$ für $1 \le k \le m_j$ und $\lim_{n \to \infty} \#\{k | \mu(k) = i \text{ und } k \le n\}/n = \varepsilon_{i,j}$ für $1 \le i \le m_j$.

 $\{\mathfrak{P}_i|i\in\mathbb{N}\}$ sei eine maximale Menge von unverzweigten Primidealen aus a_j mit Relativgrad $f_{L/K}=1$, die nicht in S enthalten sind und paarweise nicht konjugiert unter G sind. Außerdem sei ihre Reihenfolge so gewählt, daß $\mathcal{N}_{L/Q}\mathfrak{P}_i \leq \mathcal{N}_{L/Q}\mathfrak{P}_{i+1}$ gilt. Für $i\in\mathbb{N}$ ist dann $\mathcal{N}\mathfrak{P}_i = \mathfrak{p}_{n_i}$ mit $n_i > n_0$ und $\mathfrak{P}_i\mathfrak{A}_j^{-1} = (\alpha_i)$ mit $v_{n_i}(N\alpha_i) = 1$. Wir erhalten daher $N\alpha_i = \varepsilon \pi_{n_i} \prod_{n \in \mathbb{N}} \prod_{n \in \mathbb{N}} \pi_n^{\varepsilon_n}$ mit $\varepsilon \in E_K$, $c_n \in \mathbb{Z}$ und setzen $\varepsilon_{n_i} = \eta_{L/1}^{-1}\varepsilon$. In dieser Darstellung ist $c_n \neq 0$ nur möglich, wenn $\mathfrak{p}_n | \mathcal{N}\mathfrak{A}_j$ oder $n \leq n_0$. Auf

In dieser Darstellung ist $c_n \neq 0$ nur möglich, wenn $\mathfrak{p}_n | \mathcal{N}\mathfrak{A}_j$ oder $n \leq n_0$. Auf diese Weise konstruieren wir ε_{n_i} für alle $i \in \mathbb{N}$ und analog für jede Klasse a_k $(1 \leq k \leq l)$. Für die von dieser Konstruktion nicht erfaßten Indizes $n \in \mathbb{N}$ (das sind genau die, wo über \mathfrak{p}_n Ideale aus S, Primideale mit Relativgrad $f_{L/K} > 1$ oder verzweigte Primideale liegen) definieren wir $\varepsilon_n := 1$ und setzen

$$F := \coprod_{n \in \mathbb{N}} \langle \varepsilon_n \pi_n \rangle.$$

Wir kehren nun zu der oben betrachteten Idealklasse a_j zurück und behaupten, daß für $1 \le i \le m_j$, $b_{i,j} = \{\mathfrak{B} \in a_j | \mathfrak{B}\mathfrak{A}_j^{-1} = (\beta) \text{ mit } N\beta \in \eta_i NE_L \times F\}$ alle Behauptungen des Satzes erfüllt.

Man prüft leicht nach, daß $b_{i,j}$ eine (F)-Idealklasse ist, die \mathfrak{P}_k genau dann enthält, wenn $\mu(k)=i$ ist. Insbesondere ist $b_{i,j}$ wegen $\mathfrak{P}_i \in b_{i,j}$ nicht leer. Aus der Wahl der η_i folgt, daß die (F)-Idealklassen $b_{i,j}$ paarweise nicht konjugiert unter G sind. Für die Primidealdichte von $b_{i,j}$ erhalten wir:

$$\delta(b_{i,j}) = \lim_{n \to \infty} \frac{\# \{\mathfrak{P} \in b_{i,j} \setminus S | \mathfrak{P} \text{ prim, } f_{L/K}(\mathfrak{P}) = 1, \mathcal{N}_{L/Q} \mathfrak{P} \leq n\}}{h_L \# \{\mathfrak{P} \in a_j \setminus S | \mathfrak{P} \text{ prim, } f_{L/K}(\mathfrak{P}) = 1, \mathcal{N}_{L/Q} \mathfrak{P} \leq n\}} =$$

$$= \frac{1}{h_L} \lim_{n \to \infty} \frac{\# \{\mathfrak{P}_k^{\sigma} | k \leq n, \, \sigma \in G_{a_j}, \, \mu(k) = i\}}{\# \{\mathfrak{P}_k^{\sigma} | k \leq n, \, \sigma \in G_{a_j}\}} = \frac{1}{h_L} \lim_{n \to \infty} \frac{\# \{k | k \leq n, \, \mu(k) = i\} \# G_{a_j}'}{n \# G_{a_j}} =$$

$$= \varepsilon_{i,j} / (h_L i(a_j)).$$

BEMERKUNG. Durch geeignete Wahl der Funktion μ im Beweis kann erreicht werden, daß für einige oder für alle (F)-Idealklassen die Primidealdichten nicht existieren. Es kann auch (F)-Idealklassen geben, die keine Primideale enthalten, wie das folgende Beispiel zeigt: Für K=Q und $L=Q(\sqrt{34})$ ist $NE_L=\{1\}$, aber

 $E_K \cap NL^* = \{1, -1\}$, da $N((3+\sqrt{34})/5) = -1$ ist. Nach Satz 1 gilt $\# \mathscr{C}(F) = 2h_L = 4$ für jedes F mit $\mathbb{Q}^* = \{1, -1\} \times F$. Wählt man nun F so, daß die Normen aller Primelemente von L in F liegen, so enthält die (F)-Idealklasse $\{(\alpha)|N\alpha\in(-F)\}$ kein Primideal.

4. (F)-Idealklassengruppen von Erweiterungen über Q

In diesem Kapitel betrachten wir algebraische Zahlkörper L über $K=\mathbf{Q}$ und untersuchen, für welche $F \cong \mathbf{Q}^{\times}$ mit $\mathbf{Q}^{\times} = \{1, -1\} \times F$, $\mathscr{C}(F) = \mathscr{C}_L$ gelten kann. Außerdem werden wir zeigen, daß die exakte Sequenz (1) unabhängig von der Wahl von F als Kofaktor zu $\{1, -1\}$ spaltet bzw. nicht spaltet. Lemma 2 zeigt, daß für jedes solche F die mit geeigneten Vorzeichen versehenen Primzahlen eine Basis bilden. Ist $NE_L = \{1, -1\}$ (z. B. wenn $[L: \mathbf{Q}]$ ungerade ist), so ist $\mathscr{C}(F) = \mathscr{C}_L$ für jedes F mit $\mathbf{Q}^{\times} = \{1, -1\} \times F$.

Satz 4. Ist L/\mathbb{Q} ein algebraischer Zahlkörper und $NE_L = \{1\}$, so sind folgende Aussagen äquivalent:

- (i) Es existiert ein F_0 mit $\mathbf{Q}^{\times} = \{1, -1\} \times F_0$ und $\mathscr{C}(F_0) = \mathscr{C}_L$.
- (ii) Es gibt kein $\alpha \in L^{\times}$ mit $N\alpha = -r^2$, $r \in \mathbb{Q}$.

Zum Beweis dieses Satzes benötigen wir das folgende Lemma.

LEMMA 3. Für $n \in \mathbb{N}$ sei $V_n = \mathbb{F}_2^n$ der n-dimensionale Vektorraum über $\mathbb{F}_2 = \{0, 1\}$. Es seien $M_n = \{(\alpha_1, ..., \alpha_n) \in V_n | \forall 1 \leq i \leq n: \alpha_i = 0 \text{ oder } \sharp \{i | \alpha_i = 0\} = \sharp \{i | \alpha_i = 1\}\}$ und $\pi_i \colon V_n \to \mathbb{F}_2$ die Projektion auf die i-te Komponente $(1 \leq i \leq n)$. Ist A eine Untergruppe von V_n mit $A \subseteq M_n$, so existiert ein $i_0 \in \{1, ..., n\}$ mit $\pi_{i_0}(A) = \{0\}$.

BEWEIS. Ist n ungerade oder A trivial, ergibt sich die Behauptung unmittelbar. Es sei nun $m \in \mathbb{N}$ und n=2m. Nehmen wir an, es gäbe eine Untergruppe $A = \{e_1, ..., e_{2^d}\} \subseteq M_n$ mit $d \ge 1$ und für alle i sei $\pi_i(A) \ne 0$. Ist $\varepsilon(A)$ die Anzahl der "1", die als Komponenten in den Elementen von A auftreten, so erhält man $\varepsilon(A) = (2^d - 1)m$. Ist aber $\pi_i(A) \ne \{0\}$, so ist $\pi_i(e_j) = 1$ für genau 2^{d-1} Indizes $j \in \{1, 2, ..., 2^d\}$, womit sich $\varepsilon(A) = 2^{d-1}n = 2^dm$ ergibt, was wegen $m \ge 1$ einen Widerspruch darstellt.

Beweis von Satz 4. (i) \Rightarrow (ii) ist klar, denn $\mathscr{C}(F_0) = \mathscr{C}_L$ und $NE_L = \{1\}$ ergeben $N\alpha \in F_0$ für alle $\alpha \in L^{\times}$, und es ist $F_0 \cap \{-r^2 | r \in \mathbf{Q}^{\times}\} = \emptyset$.

(ii) \Rightarrow (i). P bezeichne die Menge aller rationalen Primzahlen. Für $p \in \mathbf{P}$ sei $v_p : \mathbf{Q}^{\times} \rightarrow \mathbf{Z}$ die p-adische Exponentenbewertung und

$$m(p) = \min \{v_p(N\alpha) | \alpha \in L^{\times} \text{ und } v_p(N\alpha) > 0\}.$$

m(p) ist der größte gemeinsame Teiler der Restklassengrade aller Primideale von L, die über p liegen, und $m(p)|v_p(N\beta)$ für alle $\beta \in L^{\times}$. Es sei $\mathbf{P_1} = \{p \in \mathbf{P} | m(p) \equiv 0 \mod (2)\}$ und $\mathbf{P} \setminus \mathbf{P_1} = \{p_1, p_2, \ldots\}$. Wir beweisen zunächst folgende Behauptung:

Ist n∈N und

$$L_n = \{\alpha \in L^{\times} | N\alpha \in \{1, -1\} \times \prod_{p \in P_1} \langle p \rangle \times \prod_{i=1}^n \langle p_i \rangle \},$$

so existieren $\varepsilon_1, ..., \varepsilon_n \in \{1, -1\}$, soda β

$$NL_n \subseteq \coprod_{p \in \mathbf{P}_1} \langle p \rangle \times \coprod_{i=1}^n \langle \varepsilon_i p_i \rangle \ gilt.$$

Für $1 \le j \le 2^n$ sei $F_j = \coprod_{p \in P_1} \langle p \rangle \times \prod_{i=1}^n \langle \varepsilon_i p_i \rangle$, wobei $(\varepsilon_1, ..., \varepsilon_n)$ die Menge $\{1, -1\}^n$ durchläuft. Wir definieren die Abbildung $\varphi \colon L_n \to \mathbb{F}_2^{2^n}$ durch $\varphi(\alpha) = = (e_1, ..., e_{2^n})$ und $e_j = \begin{cases} 0, & \text{wenn} \quad N\alpha \in F_j \\ 1, & \text{wenn} \quad N\alpha \notin F_j \end{cases}$. Man prüft leicht nach, daß φ ein

Gruppenhomomorphismus ist. Für $\alpha \in L_n$ ist $N\alpha = \pm \prod_{p \in P_1} p^{a(p)} \prod_{i=1}^n p_i^{a_i}$. Aus der Definition von \mathbf{P}_1 folgt, daß für alle $p \in \mathbf{P}_1$ $a(p) \equiv 0 \mod (2)$ ist. Sind alle a_i gerade, so gilt wegen (ii) das positive Vorzeichen für $N\alpha$, und es ist $\varphi(\alpha) = (0, ..., 0)$. Ist hingegen a_{i_0} ungerade und sind $\varepsilon_i \in \{1, -1\}$ für alle $i \neq i_0$ gewählt, so ist je nach der Wahl von $\varepsilon_{i_0} \in \{1, -1\}$ $N\alpha$ in der zu $(\varepsilon_1, ..., \varepsilon_n)$ gehörigen Menge F_j enthalten oder nicht. Es folgt, daß in diesem Fall $N\alpha$ in genau 2^{n-1} der Mengen F_j enthalten ist und $\varphi(\alpha)$ gleich viele "0" wie "1" als Komponenten besitzt. $\varphi(L_n)$ erfüllt somit die Voraussetzungen von Lemma 3. Es existieren daher ein $j \in \{1, ..., 2^n\}$, sodaß für $\varphi(L_n)$ die j-te Komponente 0 ist. Das heißt aber $NL_n \subseteq F_j$, womit (4) bewiesen ist.

Wollen wir mit (4) durch Induktion eine Vorzeichenfolge $(\varepsilon_i)_{i \in \mathbb{N}}$ konstruieren, sodaß $NL \subseteq F_0 = \prod_{p \in \mathbf{P}_1} \langle p \rangle \times \prod_{i \in \mathbb{N}} \langle \varepsilon_i p_i \rangle$ gilt, müssen wir noch zeigen, daß für ein $n_0 \in \mathbb{N}$ und für alle $k \in \mathbb{N}$ mit $k \ge n_0$ gilt:

Sind $\varepsilon_1, \ldots, \varepsilon_k \in \{1, -1\}$ und

$$NL_k \subseteq \coprod_{p \in \mathbf{P}_1} \langle p \rangle \times \coprod_{i=1}^k \langle \varepsilon_i p_i \rangle,$$

(5) so existiert ein $\varepsilon_{k+1} \in \{1, -1\}$ mit

$$NL_{k+1} \subseteq \coprod_{p \in \mathbf{P}_1} \langle p \rangle \times \coprod_{i=1}^{k+1} \langle \varepsilon_i p_i \rangle.$$

Wählen wir dazu $n_0 \in \mathbb{N}$ so, daß die Idealklassen der über $\mathbf{P}_1 \cup \{p_1, ..., p_{n_0}\}$ liegenden Primideale von L die Klassengruppe \mathscr{C}_L erzeugen, und $k \ge n_0$. Nach (4) existieren $\varepsilon_1, ..., \varepsilon_k \in \{1, -1\}$ mit $NL_k \subseteq \coprod_{p \in \mathbf{P}_1} \langle p \rangle \times \coprod_{i=1}^k \langle \varepsilon_i p_i \rangle$. Wegen der Wahl von n_0 existiert ein $\alpha \in L_{k+1}$ mit $v_{p_{k+1}}(N\alpha) = m(p_{k+1}) \equiv 1 \mod (2)$, also

$$N\alpha = \varepsilon p_{k+1}^{m(p_{k+1})} \prod_{p \in P_1} p^{a(p)} \prod_{i=1}^k (\varepsilon_i p_i)^{a_i}$$

mit $\varepsilon \in \{1, -1\}$. Wir behaupten, daß $\varepsilon_{k+1} := \varepsilon$ die gewünschte Eigenschaft besitzt. Gäbe es nämlich ein $\beta \in L_{k+1}$ mit

$$N\beta = -\prod_{p \in P_1} p^{b(p)} \prod_{i=1}^k (\varepsilon_i p_i)^{b_i} (\varepsilon_{k+1} p_{k+1})^{bm(p_{k+1})}$$

mit $b \in \mathbb{Z}$, so ist

$$N(\beta\alpha^{-b}) = -\prod_{p \in P_1} p^{b(p)-ba(p)} \prod_{i=1}^k (\varepsilon_i p_i)^{b_i-ba_i}.$$

Wegen $\beta \alpha^{-b} \in L_k$ ist dies aber ein Widerspruch zur Voraussetzung von (5). Mit dem Beweis von (5) ist aber auch der Beweis von Satz 4 abgeschlossen.

Abschließend bringen wir noch ein Resultat über die exakte Sequenz (1).

SATZ 5. Ist L ein algebraischer Zahlkörper und $NE_L = \{1\}$, so sind folgende Aussagen äquivalent:

- (a) Es existiert ein F_0 mit $\mathbf{Q}^{\times} = \{1, -1\} \times F_0$, sodaß die Sequenz (1) spaltet. (b) Für jedes F mit $\mathbf{Q}^{\times} = \{1, -1\} \times F$ spaltet die Sequenz (1).
- (c) Es existiert kein Hauptideal $(\alpha) \in \mathcal{J}_L^2$ mit $N\alpha = -r^2$, $r \in \mathbb{Q}$.

Beweis. Eine exakte Sequenz von abelschen Gruppen $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ spaltet genau dann, wenn A eine reine Untergruppe von B ist. (1) spaltet in unserem Fall daher genau dann, wenn für alle $a' \in \mathscr{C}(\hat{F})$ gilt: ist $2a' \in \mathscr{H}_L/\mathscr{H}(F)$, so ist 2a' = $=\mathcal{H}(F).$

- (a) \Rightarrow (c). Es spalte $0 \to \mathcal{H}_L/\mathcal{H}(F_0) \to \mathcal{C}(F_0) \to \mathcal{C}_L \to 0$. Es seien $\mathfrak{A} \in \mathcal{J}_L$ und $\alpha \in L$ mit $\mathfrak{A}^2 = (\alpha)$ und $N\alpha = \pm r^2$, $r \in \mathbb{Q}$. Weiters sei $\alpha' = [\mathfrak{A}]_{F_0} \in \mathscr{C}(F_0)$. Dann ist aber $(\alpha) \in 2a' = \mathcal{H}(F_0)$ und somit $N\alpha = r^2$.
- (c) \Rightarrow (b). Es sei $\mathbf{Q}^{\times} = \{1, -1\} \times F$ und $a' \in \mathcal{C}(F)$ mit $2a' \in \mathcal{H}_L/\mathcal{H}(F)$. Wählen wir $\mathfrak{A} \in a'$, so ist $\mathfrak{A}^2 = (\alpha)$ ein Hauptideal. (c) ergibt $N\alpha = r^2 \in F$, also $2a' = \mathcal{H}(F)$. Daher spaltet die Sequenz (1).
 - $(b) \Rightarrow (a)$. Klar.

Ich möchte Herrn Professor F. Halter-Koch für viele anregende Diskussionen und für seine Ratschläge beim Verfassen des Manuskripts an dieser Stelle herzlichst danken.

REFERENCES

- [1] BUMBY, R. T., Irreducible integers in Galois extensions, Pacific J. Math. 22 (1967), 221-229. MR 35 # 4186.
- [2] HASSE, H., Number theory, Grundlehren der mathematischen Wissenschaften, Band 229, Springer-Verlag, Berlin-New York, 1980. MR 81c: 12001b.
- [3] KURODA, S.-N., Idealgruppen und Dirichletsche Reihen in algebraischen Zahlkörpern, J. Math. Soc. Japan 22 (1970), 353-387. MR 42 # 1796.
- [4] NARKIEWICZ, W., Elementary and analytic theory of algebraic numbers, Monografic Matematyczne, tom 57, PWN-Polish Scientific Publishers, Warszawa, 1974. MR 50 #268.
- [5] Skolem, Th., On the existence of a multiplicative basis for an arbitrary algebraic field, Norske Vid. Selsk. Forhandlinger 20 (1947), no. 2, 4-7. MR 10-104.

(Received February 3, 1984)

INSTITUT FÜR MATHEMATIK KARL-FRANZENS-UNIVERSITÄT HALBÄRTHGASSE 1 A–8010 GRAZ AUSTRIA