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ISOMETRIES OF THE SPACE OF COMPACT SUBSETS OF £

by
PETER M. GRUBER and GUNTER LETTL

Summary

The isometries of the space of compact subsets of E¢ with respect to the Haus-
dorff-metric are the mappings generated by isometries of E4,

1. Introduction

Let " denote the class of all (non-empty) compact subsets of d-dimensional
Euclidean space E¢. For A, BC E? and 1€R define 4+ B:= {x+y|xcA, y¢B} and
Ad:={ix|x€A}. Let U denote the unit ball and ||.| the Euclidean norm of E¢.
Then the Hausdorff-metric § on # may be defined by

d(C, D):= min {A€R*|C < D+.U, D = C+.U)
for C, De A or, equivalently,
6(C, D):= max {ng min || x — yj, max min fx— y|}

for C, DEA (see, e.g., HAUSDORFF [9], p. 145 or BLASCHKE [2], p. 60).

Let " be endowed with the topology induced by é. Properties of " or, more
generally, of spaces of closed or compact subsets of general metric and topological
spaces have been investigated intensively during the last 50 years (see, e.g., HAus-
DORFF [9], KURATOWSKI [11] and Porov [12]). & also plays an important role in
convexity and approximation theory (see, e.g., BLASCHKE [2], HADWIGER [8], KELLY
and WEiss [10] and SEnpov [15]). These investigations indicate that the particular
metric space {4, &) is of independent interest.

R. SCHNEIDER [14]conjectured that the isometries of (A, 6) into itself are precisely
the mappings of the form C—i(C)(:={i(x)|xeC}) for CE£A where i is a fixed iso-
metry of £¢ into itself, i.., the isometries of (¥, 8) are generated by isometries of
the underlying space E% For the case of surjective isometries the conjecture has
been confirmed by GRuUBER [5] who has also proved some related results in [4].
In the present note we give a proof of the general case. This proof partly follows
the proof of the corresponding result for the class € of compact convex subsets of
E? (see [7]).

AMS (MOS) subject classification scheme 1979/80. Primary 52A99, 54E40. Secondary 46C99,
54E35, 54E45.
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170 P. M. GRUBER AND G. LETTL

THEOREM. A mapping 1: A~ A is an isometry of (A, &) into itself precisely when
there is an isometry i of E¥ into itself such that I{C)=i(C) for all Cex.

We conjecture that the Theorem holds also when the Euclidean norm is replaced
by an arbitrary norm.

The above Theorem as well as the results of [6] and [7] belong to the following
general problem: Let a class of functions # on, or a class of subsets & of some space
X be given, such that one can metrisize # or #in a simple manner using a metric
or a measure or some other property of X. Then one may expect that the isometries
of For & into itself are closely related to special mappings of X into itself. Well-
known examples for this are the classical theorems of BANACH [1], p. 173, and STONE
[17] (sec [3], p. 115) and Banach [1], p. 174, and their modern descendants. (The
paper of SOURMOUR [16] contains a review of some of them.)

Let {,) denote the inner product in E? There is no danger of confusing
{x,yy and (A;8). For x, y¢ E4 let [x, y] be the line segment with endpoints x, y.
o denotes the origin, S the (¢— 1)-dimensional unit sphere of E 4 We will not dis-
tinguish between x€ £9 and {x}¢ # bd, diam, conv, lin and pos stand, respectively,
for boundary, diameter and convex, linear and positive hull. o(-) is the Bachmann—
Landau symbol.

2. Preliminaries

This section contains a collection of simple results which will be needed in the
proof of the theorem in Section 3.

(1) Let I,,1,, ... be a sequence of isometries of (X, 8 (into itself) such that
1,(0), I,(0), ... are contained in a bounded subset of E® Then there exist a
subsequence I, I,, ... and an isometry I, such that IO(C)zrlir;n I, (C) for all

ceAl

This has been proved for (%, 8 in [7]. The same proof is valid in the present case
if the more general version of the Blaschke selection theorem (as stated e.g. in 8],
p. 154, or [13], p. 91) is used. The next proposition is due to GRUBER [4]:

(2) Any isometry of (#, &) which maps some point onto a point is generated by an
isomeiry of E*.

For C, D< # the definition of 6(C, D) shows that there is a point ¢€ C (or D) such
that for each point d¢ D (or C, respectively) which is nearest to ¢ we have |c—d| =
—=§(C, D). In general ¢ and d will not be unique. ¢—d will be called a d-vector and
(c—d)/||c—d| a §-unit vector from D to (the point ¢ of) C. We show:

(3) Let C, Cy, Cie4 be given such that 5(C, Co)+8(C,, C)=6(C, C)) and suppose,
that there exists a d-vector from C, to c€C. Then there exists a d-vector from
C, to C,.

Choose ¢, C, nearest to ¢, and ¢,¢ C; nearest to ¢,. Then the definition of & implies
le—cl =8(C, C), lleo—cl =6(Cy, €) and thus [le—cli=[c—co +le—all=
=5(C, C))+6(C,, C)=8(C, C;). Our assumptions show that ¢ has distance
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=4(C, C) from each point of C,. Therefore equality holds in each of the above
inequalities. In particular ||c,— ¢l =8(Cy, C)). Since ¢,£C, is nearest to € Cy we
infer that ¢,—c, is a d-vector from C, to C,. This proves (3). Essentially the same
proof yields the following result:

4 LetC,, Cy, Cy, ..., CiEA be such that 5(Cy, C)+6(Cy, C)+...+0(Cy, C)=
=38(C,, C)) and suppose that there is a d-vector from C, to ¢, Cy. Then there
exists a vector u which is a d-unit vector from each of C;, ..., C; to ¢£Cy.

Choose ¢, ¢ C; nearest to ¢, c;€ C, nearest to ¢, ..., ¢,€ C; nearest to ¢,_,. As before

leo—cll = 8(Co, €1, ..y sy =] = 3(Ciy, C).
Hence
leo—eill = llep—eill +...+llemr—all = 6(Cy, C)+ ... +3(Crq, C) = 0(Cy, C).

Since the assumptions in (4) imply that ¢, has distance =6(C,, C,) from each point
of C,, equality holds throughout. This implies that ||c,—¢;| =6(C,, C) foric{l, ..., I}
and that ¢,—c;, ¢y—Cs, ..., ¢o—¢, are positive multiples of each other, thus con-
firming (4).

The next two propositions are obvious:

(5) Let C,Det, c£C, deD be given. Then ||c—d|—d(C, D) =diam C+diam D.
(6) Let C,DeA. Then §(C, D)=d(conv C, conv D).

The smoothness of || | yields the following results:

(7) Let R be a ray in E* and o€ R*. Denote by * the orthogonal projection onto R.
Suppose that for ACR™ compact sets C, C(L)e A are given such that C’, C(1)" #0,
C, C(A)CR+alU and min {HyH[yE C(A)}—>+e= as A—+oo. Then, as L—+o=,

8(C,C(4)) = d(conv C’, C(A)+o(1)
= &(conv C’, convC(2))+o(l).
(8) Let C, Dc%. Then O {x+C+dé(x, D)U}=C+D.

XEE
We will also need the following properties of convergent sequences in 4"
9) If C,, Cy, ...c A with Cy, Cy, ...~ C, then
conv Cy, conv C,, ...~ conv C.
(10) If Cy, Cy, ..., Dy, Dy, ...€€ with Cy, C,, ...~ Cy, D1, Dy, ...~ D, then
Ci+D,, Co+ Dy, ...~ Cy+Dy.

Let i, ..., i, be orthogonal transformations of E¢ and 4, ..., 4,£[0, 1] with
A+ ...+ 2,=1. The mapping m: €% defined by

m(C)i= {Aiy(x)+ ... + A0, (x )Xy, ..., x,€C} for CEF

is called a rotational mean (see [8], p. 168). Then the sphericity theorem of Hadwiger
may be formulated in the following way:

(11) Let DE% consist of more than one point. Then there exist a sequence my, My, ...
of rotational means and a number pERY such that my(D), my(D), ...~ oU.
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172 P. M. GRUBER AND G. LETTL

If D has non-empty interior this is the theorem as stated in [8], p. 170. If D has
empty interior choose some rotational mean / such that /(D) has non-empty interior.
Then there are rotational means [, ,, ... such that [, (ID), ,(ID), ... converges to
a ball with center 0. Now let my,:=/0l, my:=10l, ... . Taking into account that a
composition of rotational means is again a rotational mean, we see that (11) holds
also in the case when D has empty interior.

3. Proof of the Theorem

If 7 is an isometry of E¢ then the mapping I: 2~ generated by i is obviously
an isometry of (4] d).

Converscly assume that J: %4 2¢"is an isometry of (%, &) (into itself).

In the first part of the proof we construct an isometry J which is closely related
to 7 and will permit us to construct an isometry i of E4.

For each k€N define an isometry I, of (A, ¢) by I(C):= (1/k)I(kC) for Ce A.
Since 1,(0), I1(0), ...~ {o}, (1) yields the existence of a subsequence I, I, ...
and of an isometry 7, of (] 8) such that

(12) 1,(C) = lim [,(C) for all CEX.

In particular 7,(0)= {o}. Hence by (2) there exists an isometry 7, of E? such that
(13) I,(C) = iy(C) for all CeX.

Since I(o)={0}, we have i,(0)=0 and thus i,(U)=U. Theréfore ll_{rg.} L=
=Iy(0)={o} and }EEIRI(U):IU(U):fD(U)zU. Choose £€]0, 1/2] and meN such
that the mapping

(14) J(:= 1, ) defined by J(C):= %I(kmC) for each CeA
is an isometry of (] &) satisfying the inequalities

(15) 8o, J(0)) [= 6(Iy(0), I, (0)] <&,

(16) (U, J(U)) [= 6(1,(U), L, (U))] <.

We shall establish the inclusion
(17 Jx) < {llx] —e = iyl = |Ix[|+&} for each xcE? with |x] = 1.

Choose x. Then 5(J(o), J(x))zé(o, x)=[x| yields J(x)cJ(o)+]|x| U and (15)
implies J(o)ceU. Thus

(18) J(x) S [J(o)+x| U eUt|x| U =1{ylly] = llx] +e}.

This proves half of (17). Since by (16) UcJ(U)+&U, we deduce from (18), x| =1
and £€]0, 1/2[ that

(19 J(x) S [(e+]xDU = U+(E+]|x]|-1)U c
= J(U)+(|x|| +2e— DU ] J(U)+||x|| U.
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Because of (16) J(U)c(1+¢) U. Hence for each y€J(x),
(20) JU) [ +a)Uc y+(|y|+14+)U <1Jx)+(yl + 1 +e) U.
The definition of & together with (19) and (20) shows that

max {|x[, [yl +1+e} = §(J(x), J(U)) = &(x, U) = ||x[|+1.

Thus || y]|+14e=| x| +1 for each ycJ(x), ie., J(x){y
the second half of (17).

Now we take the first step towards a description of the images of points and
prove

(1) diam J(k;x) = o(k) as |- = jforeach x<cE* o}

x| —e=| y[l}. This proves

If x is given, then (14), (12) and (11) imply that

1

I 1
g ke 0) ~

ke

1 1
E Sk x) = Ik, x) = k_m io(ky,x).

Consequently, diam (1/k;)J(k;x)—0 as [—~e-. This proves (21).
We show: .

(22) For each xS and IEN the set T, of pairs (u, ¢)E SXJ(0) where u is a S-unit
vector from J(k,x) to c€J(0) is non-empty and compact.

Choose x, I. J(k;x)Z(k;+¢€) U by (17). Since (16) implies Uc J(U)+¢eU we conclude
that J(k,x)cJ(U)+(k,+2e — 1)U J(U)+k,U. Therefore each point of J(k,x) has
distance =k, from some point of J(U). Taking into account that 8 (J (kyx), J(U))=
=d(k;x, Uy=k;+ 1=k, the definition of é-vectors implies that there is a J-vector
from J(k,x) to J(U) and

8(I(U), J(0))+3(J(0), J(k,x)) = [8(U, 0)+(0, kyx) = 1+k] = 6(J(U), J(k,x)).

Thus by (3) there is a d-vector from J(k;x) to some c€J(o). Hence T,=0. The
compactness of T; is obvious. This concludes the proof of (22). The following is a
refinement of (22):

(23) For each x¢ S there is a unique vector u¢ S and some point c€J(o) such that
u is a é-unit vector from J(k;x) to c€J(o) for each IEN.

Let x¢ § be given. For each /e N
3(J(0), J(ky x))+0(J (ky x), S (ke X))+ ... +6(J (K, -1 x), J (k%)) =
= ky+ (ke — k) + ... +(k— k1) = 6(J(0), I (k;x)).

By (22) there exists a J-unit vector from J(k;x) to some c€J(e). Now (4) implies
existence of a vector w€S such that » is a J-unit vector from each of
J(kyx), ..., J(k,x) to c€J(o). Using the notation of (22) we have T (MN...MNT;=0
foreach /¢N. Since T, T,, ... are compact 7= {T,[leN}#0. If (u, ¢)€ T and IEN,
the vector k;u is a d-vector from J(k;x) to c€J(o). To prove uniqueness of u choose
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174 P. M. GRUBER AND G. LETTL
(u, ¢), (v, d)eT. Then ¢ —k,u, d—k,ve J(k;x) for all /eN by the definition of d-vectors,
and thus

|k,\!u—v§] fl]cdej[é (e —ku)—(d—kv)|| = diam J(k;x)] = o(k) as |-+

by (21). Hence u=w, concluding the proof of (23).
Let —i denote the map x—~u of S into itself appearing in (23). Then

(24) i: S—S is an isometry.

Let x, y€ 5 and let u:= —i(x), v:i= —i(y). Then for each /€N the vectors ku, kv
are d-vectors from J(k;x) and J(k;y) to points ¢, d€J(0). Hence ¢ —kucJ(kx),
d—kweJ(k,y). From this, together with (5) and (21) we infer

(e —d) = ey (u = )| =k} x =y
[= [lte—kju)—(d = k)| —8(J (k,x), J (K, )|

= diam J(k;x)+diam J(k, »)]

=o0(k) as |- o
thus proving (24). ’

i can be extended uniquely to an isometry of E¢ which will also be denoted

by i. Let
(25) K: A~ A be defined by K(C):= i“’(J(C)) for CexA.

Obviously, K is an isometry of (4] §). The propositions (17), (21) and (23) now take
the following form:

(26) Kx) < {y|lxl—e= |yl = x| +e} for xcE* with |x| =1,

1)) diam K(k;x) = o(k)) as 1 — o for xcENJo},

(28) for all xS and I€N the vector —k,x is a d-vector from K(k;x) to a c€ K(o).
(26)—(28) will be used to prove that

(29) K(k,x) c lin {x}+2eU for x€S and I€N.

Let x and / be given. Suppose there exists a wé K(k;x) which is not contained in
the cylinder on the right-hand side of the inclusion (29). Then one can choose a
point Z€S with (x,z) =0, w=~¢x+{z, {<=—2.

Let ¢£]0, n/2[ be so small that

(30) |€] sin@+{ cos ¢ < —2e,

Since z is orthogonal to x we have

(31) kix—kyz|| < k,+¢ for all sufficiently large meN.
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Since [iz]| =1, (26) yields
(32) Kk, 2y < {ylk,—e = |ly| = k,+¢&} for each méeN.

Applying (28) to z we see that there exists a point d€ K(o) such that for all m the
vector —k,,z 18 a d-vector from K(k,z) to d€K(o). (27) implies diam K(k,z)=
=o(k,) as m—e=. Hence K(k,z){y|ly—k,z| =o(k,)} as m—o and thus

(33) Kk, z) c { !<rE]-)Jn)n7-, z> = Cos rp} Jor all sufficiently large meN.
Fix an méeN for which (31) and (33) hold. Then the definition of &, (32), (33) and
(31) imply
(34 weK(k,x) < K(k,,2)+(K(k;x), K(k,,2))U
= K(k, z)+lk;x—k, z| U

lan {yikm—-s =yl =k, +e, <ﬁ, z> = ¢cos qo}+(k,,,+e)U

= A+(k,+e)U.

lin {z} is the axis of rotation of the compact set A. Thus there exists a point y€ A/
Mlin {x, z} which is nearest to w={x+{z€lin {x, z}. An elementary argument shows
that y=(k,, —e)(sin ¢ -sign ¢ - x+cos ¢ - z). (Here sign 0=0.) From this together with
(34) and (30) we deduce that

(kp+e)? = |w—y|* = (& —(k,,—&) sin @ sign &)*+({ —(k,,—&) cos @)?
= (k,,—&)*—2|¢(k,, —¢&) sin @ —2|Ll(k,,— &) cos @ +E24(2
= k& =2k, e+e2+2(k,,—e)(—|&| sin ¢ —{ cos @)+ 2
> ki —2k,e+e&*+2(k,—e)2e+4e® = (k,,+¢)%

This contradiction shows that our assumption was false, thus confirming (29).

The next part of our proof contains a rough description of the images of points.
This will be used to obtain a rough description of the images of arbitrary compact
sets. It will turn out that the convex hull of the image (under K) of a compact set
can be obtained in a simple way from the convex hull of the set itself.

At first we show the following proposition:

(35) Let x£.S and denote by H(x) the supporting half space of K(o) with exterior
normal vector —x. Then

K(kix) < Hx)+(k4+o(1))x as |- .

Because of (28) there is a point ¢€ K(o) such that for each / the vector —k;x is a
d-vector from K(k;x) to ¢€ K(o). Therefore the definition of §-vectors shows that
K(kyx)={y|l y—e¢| = k(=] —kix|)}. Furthermore ¢-+k;x¢ K(k,x), together with (27)
and (29) shows that K(k,x)cpos {x}+2eU. It is obvious that c€bd H(x). From
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these statements we conclude that K(k;x)< H(x)+(k,+o(1))x as [—~eo. This proves
(35). Next we prove the following:

(36) Let z€EY, xS and let H(x) denote the supporting half space of K(o) with
exterior normal vector —x. Then K(z)Cz+ H(x).

Let ux be the orthogonal projection of z onto lin {x}. Clearly,
(37) lz—kx|| = k,—p+o(l) as - e

Since d(conv K(z), conv K(k;x))=5(K(z), K(kix))=|z—k,x| by (6) it follows
from (35) and (37) that

K(z) © conv K(z) < conv K(k,x)+]||z—k,x|| U
- H(x)+(ki+0(1))x+(ktﬁ,u+o(l))U
= H(x)+px+o(l)x = Hx)+z4+o0(l)x as | — =

and thus K(z)C H(x)+z concluding the proof of (36). An immediate consequence
of (36) is that

(38) conv K(z) C z+conv K(o) for each zcE°.
The following refinement of (38) will be required later on
(39) conv K(z) = z+conv K(0) for each z€E"“.

Considering (38), (25), (14) and the definition of 7, we see that so far we have proved:
For each isometry of (#; ) the convex hull of the image of an arbitrary point z
is contained in a translate of the convex hull of the image of 0. Applying this to
the isometry K, of (¥, 8) defined by K,(C):=K(C+z) for CC# one sees that for
each z€ E? the set conv K (o)=conv K, (—z) is contained in a translate of conv X (z2)=
=conv K, (o). Together with (38) this proves (39).

Given x¢ S let * denote the orthogonal projection onto lin {x}. Line segments
of the form [xx, fx] will be written simply as [, B]. The following propositions
(40) and (41) will be used in extending (39) from points to arbitrary compact sets C.

(39) together with (7) implies:

(40) Ler xS be given. Then
3(C, K(4x)) = é(conv C’, conv K(ix))+o0(1)
as A—~=eo for each C< A,
We show:

(41) Ler xS and conv K(o)' =[a, B] (¢=p). Then conv K([u, V)Y =la+p, B+v] for
all p, véR with v—pu=p—a (z=0),

Choose g, v and let conv K([u, v])’ =:[a, 1] (6 =1). (39) yields
conv K(2x)'[ = (conv K(0)+ix)" = conv K(o)’ +Ax]
= [a+4, f+1] for each A€R.
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From this together with (40) we conclude that

(42) max {a+i—a, f+A—1} = ([0, 7], [a+4, f+A))
= d(conv K([u, v])’, conv K(/x)’)
= 8(K([u,v]), K(Ax))+0(1) = 6([u, v], Ax)+o(1)
=A—pu+o(l) as A —+oo

(43) max {6 —a+i, T—-f+4i} = (o, 1], [x—A, f—A))
= d(conv K([u, v])’, conv K(—Aix)")
= 0(K([u, VD), K(—2ix)+o(1) = 5([u, v], —Ax)+o(l)
=v+ito(l) as A »+4oo.

In particular, a+A1—o=1-—pu+o(l), t—f+i=v+ito(l) (as A—+) and there-
fore a+pu=0, t=p+v. Suppose x+pu<c. Then a+A—o<A—pu+o(l) and thus
B+Ai—t=A4—pu+o0(1) by (42). Hence f=1—pu. Together with u<v this implies
T—B+i=pu+A<v+i+o(l). Now (43) shows that o—a+Ai=v+i+o(l), ie.,
a=0c—v. It follows from f=1—pu and a=0c—v that p-a=(v—pw)+(r—06)=v—p, a
contradiction. Therefore a+pu=o. Similarly, one can show that t=f+v. Thus
[o, T]=[x+pu, B+V]. confirming (41).

(44) For all x€S and p, veR* (u<v) the inclusion K([u, vy [u, vl+conv K(o)
holds.

Choose x, p, v. Then (44) is a consequence of the definition of d, (6), (39) and (B),
namely
K{([u, v]) < conv K{([u, v])
< () {conv K(z)+5(conv K(z), conv K([x, v))U}
z€E9

< () {z+conv K(0)+d(z, [u, V) U}
€E4

z

= [y, v]+conv K (o).
It follows from (44) and (7) that
(45) for all x£ S and C¢ A we have
d(conv C7, £[4, 22]) = 6(C, £[4, 24D +o(1)
= 8(K(C), K(+[4, 22])) +o(1)
= &(conv K(CY, conv K(+[4, 22]))+0(1) as i -+ oo
We are now in a position to prove that

(46) for all Ce and x¢ S the equality conv K(C) =conv C’+conv K(o)' holds.
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For given C, x let conv K{0)' =[x, fi] (z=§) be as before and suppose conv C'=
=[&, n] (¢=n), conv K(CY =[p. ] (¢=y). Then (45) and (41) yield

20—n =o6(&,nl, [4,24]) = d(conv C7, [4,22])

= d(conv K(C)', conv K([2, 24])")+o(1)

= d([@, ], [a+i, B+20])+0(1) = 2A+f—+0(l) as 4 —>+-so,
2A+E = S(E ), — 22]) = S(conv C’, —[4, 24])

= d(conv K(CY', conv K(—[2,22]))+o(1)

= 8o, 0], [6—24, B—AD+e(l) = @+2i—a+o(l) as A oo

Consequently, 24 —n =21+ —t4+o(1), 22+ =@ +21—a+0(1) as A>+ and thus
p=0+¢, y=PF+n, ie., [¢, y]=I¢ nl+{e fl. This proves (46). An immediate con-
sequence of (46) is:

(47) For each CE XA the equality conv K(C)=conv C+conv K(o) holds.

We now come to the final part of the proof. First we suppose that K(o) con-
sists of more than one point. Then it is possible to construct an isometry L for
which L(o)=U. Now an investigation of images of sets consisting of two points
only shows that L cannot be an isometry. This shows that we need to consider only
the case when K(o) consists of a single point. Then apply (2) to prove that K and
thus 7 is generated by an isometry of E°

Suppose K (o) consists of more than one point and let D:=conv K(0). By (11)
there exists a sequence of rotational means my;, m,, ... such that

(48) my (D), my(D), ...~ oU for suitable pcR™.

Given k€N suppose my (C)=21,i;(C)+...+4,i,(C) for C€¥ and let K,: H~A be
defined for C< % by

K (C)i= o7 A iy (KT T (A i (K (AT iz L (2,0, (K27 Y7 (0T ).
It is easy to see that K| is an isometry of (#; &) for each k. Furthermore (47) yields
(49) conv K, (C)[ = ¢ ' Ayiy(conv (K(AT LT (Auia (K(ATiTE ..000))
= o i (conv (A7 VT (A dp (K (A5 Yigt ..))) + D)
= conv (@7 A iy (K(ATVizt . ))) + o™ A i, (D)
= @ ' Agiy(conv(K(A5 izt ...)))+ e A0 (D)
= ¢ Yhgiy(conv (Aztizt..)+ D)+ 0 A0y (D)
= conv (...)+ 0 A4 i, (D) + A i(D)) =...]
=conv C+o tm (D) for each CeXN.

This together with (48) implies that conv K, (0o)=¢ ‘tm (D)—~U. Therefore the
sequence Kj(0), K,(0), ... is contained in a bounded subset of E4 Hence (1)
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shows that there are a subsequence K, , K,,, ... and an isometry L of (X;3d)

such that
L{C) = llim K, (C) foreach CexA.

From this together with (9), (49), (48) and (10) we infer that
(50) L(C) < conv L(C)[ = conv ll_im K, (C) = llim conv K, (C)
= lim (convC+¢~tm,(D))] = conv C+ U.

Let x, y€ .S be chosen so that é(x, y)(=|x—y|)=2 sin (n/8). Then
(51) S({—Ax, Ax), { =y, Ay)) = 22 sin% for each iER*.

Let " and ” be the orthogonal projections of £¢ onto lin{x} and lin{y}, respectively.

For line segments [ax, fx]cClin{x} we simply write [o, f]. Let S(x) denote the

hemisphere {z€ 5|(x, z)=0}. Similar notations will be used for y. We have

(52) (=S(x)—=Ax)U(S(x)+4x) € L({—ix, Ax}) € [=, A]+ U for each IER™,
L{{—ix,2x)Y c[—s—1, —i+o(D]U[A—0(1), A+1] as i -+

To prove this choose AcR*. By (50) conv (L({—4ix, Ax}))=[—4, A]+U. Since

each extreme point of the convex hull of a compact set belongs to the set,

(—S(x)—Ax)U(S(x)+ix)c L({—Ax, ix}). This proves half of (52). Now assume
A=2. As before

(st ol ol[ -4 3)

This together with (48) and the first part of (52) implies

(=4 Al o= (s oo )

S [=4, A+U o conv L({—ix, ix})] = L{{—2x, Ax}).

Thus o([—4/2, 4/2], {—4x, Ax})=7/=(2/2)+1 and the definition of & imply that

(53) L({—ix, ixh)+upU > L([#—%, %]]

holds for u=2 but not for uc|0, A[.
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In order to prove
(54) L{{—Ax, Ax}Y N]=i+e(D), i—e()[=
where &(1) = max {ﬂ. —Vir-2, 222V E =1 }

assume that there is a point z€ L({—Ax, Ax}) with z'€]—21+4¢(1), A—&(A)[. Then by
the first half of (52) and (47)

L({~ix, 2xP+pU o [((-S(x) - ) U S +ix)U{z}) +uU

[ 4 v (4 4 o= -4.2)

for some uc[0, 7[, which contradicts (53). Thus (54) holds. The first half of (52)
together with (54) proves the second half of (52). The same reasoning yields:

(55) (=S —2NUS+4iy) © L{—2y, iy}) < [~iy, iyl +U  for ACRH,
L({—4y, 2y} € [(—2=Dy, (=A+oM)yU[(A—0(D)y, A+ 1)y] as L —~+e.

Choose a coordinate system in lin {x, y} such that x=(1, 0), y=(1/}2, 1/¥2). Then

Zi= 2}'+[—sin%, COS%]ES()}H—Z}’ < L{{—4y, ¥}

by (55). The point of L({— ix, Ax}) which is nearest to z is of the form Jx+ (0, 1)+ w
with |w| =eo(1) as A—+-== by (52). Hence

(56) |z=(Ax+(0. D+ w)|| = 2)sm—8— [I—cosg)ﬁ—o(l) as i -+ oo,

On the other hand the definition of é and (51) imply that

2= (x+(0, D+w)| = (L({—ix, ix}), L({—Ay, iy}) = 2. sin%
which contradicts (56). Hence K{(o) cannot consist of more than one point.

Now assume that K(o) consists of one point only. Then (2) implies that the
isometry K of (] d) is generated by an isometry of EY. Because of (25) and (14)
this shows that 7 is generated by an isometry of E¥, concluding the proof of the
theorem.
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