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The complete integral closure

of monoids and domains II

A. GEROLDINGER - F. HALTER-KOCH - G. LETTL

RiASSUNTO: Utilizzando metodi geometrici, vengono costruiti monoidi primart la
cui chiusura integrale completa non & completamente integralmente chiusa. Tali mo-
noidi non vossono essere ottenuti come monoidi moltiplicativi di domini di integritd
con gruppo di divisibilitd finitamente generato.

ABSTRACT: Using geometrical methods we construct primary monoids whose com-
plete integral closure is not completely integrally closed. Such monoids cannot be re-
alized as multiplicative monoids of integral domains with finitely generated groups of
divisibility.

1 — Introduction

In this note we study the (complete) integral closure of monoids H
together with their groups of divisibility G(H) = Q(H)/H*. We will
show how under certain assumptions these investigations may be reduced
to the case where G(H) = Q(H) is torsion free (Theorem 1 and Corol-
lary 1); in particular, this works if G(H) is finitely generated. A monoid
with torsion free quotient group may be considered as a submonoid of
a real vector space. For such a monoid H we characterize its integral

closure H and the complete integral closure Hof H in geometrical terms
(Theorem 2).
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This allows us to construct primary monoids H whose complete in-
tegral closure H is not completely integrally closed (Theorem 3). In [1;

Theorem 4] it was proved that His completely integrally closed for all
primary monoids H; hence this latter result is sharp.

In section 5 we characterize integral domains R with finitely gen-
erated groups of divisibility whose multiplicative monoids are primary.
In particular it will turn out that the complete integral closure of these
domains is completely integrally closed.

2 — Preliminaries

Throughout this paper, a monoid means a commutative and cancella-
tive semigroup with unit element. In this section and in the following one
we use multiplicative notation.

Let H be a monoid; then H* denotes its group of invertible elements
and Q(H) a quotient group of H with H C Q(H); H is called reduced
if H* = {1}. H is said to be primary , if H # H* and if a,b € H and
b ¢ H*, then a|b” for some n € IN,. The integral closure H C Q(H) and
the complete integral closure HC Q(H) are defined by

4 H={ze Q(H)|z" € H for some n € N, }
an

H = {z € Q(H) | there exists some ¢ € H s.t. cz™ € H for all n € N, }.

H is called integrally closed if H = H , and it is called completely integrally
closed if H = H.
Clearly, we have .
HCHCHCQ(H);
furthermore H and H are integrally closed but in general H is not com-

pletely integrally closed. If H is primary then H is completely integrally
closed (cf. [1; Theorem 4]).
In analogy to the appropriate notion in ring theory we define

G(H)=Q(H)/H"

as the group of divisibility of H.
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As usual, we say that an abelian group G is bounded , if there exists
an n € IN, such that ¢" =1 for all g € G.

PROPOSITION 1.  Let H be a monoid, G an abelian group and
7 : Q(H) — G a group epimorphism with kernel K. Then we have:

1. If KH*/H* s a torsion group, then m(H) = w(H) and
n(H*)=m(H)*.

2. If KH*/H* is bounded, then 7(H) =@

3. If K C H* and G is a free abelian group, then H ~ K x w(H).

Proor. Clearly, G is a quotlent group of 7(H).

1. Obv10usly w(H) C W(H) and w(H*) C w(H)*. Conversely, let
y € ©(H ) C G be given; then there are z € Q(H),a € H and some
n € IN, such that y = n(z) and y" = 7m(a). Thus 2" = as for some s €
Ker(r) = K. Since KH* /H* is a torsion group, there exists an m € IN,
with s™ € H*. This yields z"™ € H,z € H whence y = 7(z) € m(H).

Next, let 7(a) € m(H)* with a € H. Then there exist ab € H and an
s € K such that ab = s. Since there is an m € IN,. for which s™ € H*,
it follows that a € H*.

2. We have ﬂ(ﬁ) C m and in order to verify the opposite inclusion
we take an element y = 7(z) € 1?(77?) with z = a™'b for some a,b € H.
Then there exists an element ¢ € H such that for all n € ]N+ cx™ =d,s,
for some d,, € H and s, € K. Let A\ € IN, be such that s* € H* for all
s € K, whence c*z** € H for all n € IN,. Setting ¢* = = c*a*! we infer
that c*z™ € H for all m € IN, whence z € H.

3. Since G is free abelian, the exact sequence
1-K—-QH)—-G-—1

splits; let n: G — Q(H) be the group monomorphism with 7 o7 = idg.
We set H' = n(n(H)); then H ~ =n(H),H' C H,Q(H') = n(G) and
Q(H) ~ K & Q(H'). Hence the product K x H' is a direct one, which
obviously is contained in H.

Conversely, let @ € H be given. Then a = ¢b with ¢ € K and
be (nor)(Q(H)). Hence b =1n(z) with z € G,

n(a) = 7(b) = (ron)(z) =z € n(H)
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and thus b =n(z) € n(x(H)) = H'. 0

3 — (Complete) integral closure and groups of divisibility

The aim of this section is to point out a way how to reduce investi-
gations concerning the (complete) integral closure of primary monoids H
to reduced primary monoids H* having torsion free groups of divisibility.
The relationship between H and H* will be most intimate if H is reduced
and G(H) is a direct sum of a bounded group and a free abelian group.

THEOREM 1.  Let H be a monoid, = : Q(H) — Q(H)/H* the
canonical epimorphism and H* = w(H). Then we have

1. H* is reduced, G(H*) = G(H) is torsion free and H* /H* is the
torsion subgroup of G(H).

2. H ~ H/H*, and if G(H) is free abelian then H ~ H* x H*.

3. Suppose H:’i/Hi is bounded. Then H*~H/H*, and if G(H) is
free abelian then H ~ H* x H*.

4. H is primary if and only if H* is primary.

PROOF.

1. H* is reduced by Proposition 1; hence G(H*) = Q(H*) =
Q(H)/H* = G(H). Clearly G(H) is torsion free and H*/H* is the
torsion group of G(H) because G(H)/(H*/H*) ~ G(H).

2. and 3. are consequences of Proposition 1.
4. This follows from [2; Lemma 2]. 0

COROLLARY 1. Let H be a reduced monoid and suppose that G(H)
is a direct_sum of a bounded group T' and a free abelian group. Then
H~TxH*and H~T x H".

Proor. Since H* = {1}, T = H* is the torsion subgroup of G(H) =
Q(H) and G(H ) G(H)/T. Thus the assertion follows immediately from
the previous theorem. 0
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4 — Geometrical methods

In this section we investigate monoids having torsion free quotient
groups. A torsion free abelian group G is a flat Z-module and hence the
injection Z — @ induces an injection G = G ® Z — G ® Q. Using base
extension again, the Q-vector space G ® @) embeds into the real vector
space G ® IR. Throughout this section we use additive notation for the
operation of monoids. Therefore we may consider a monoid H with Q(H)
torsion free as a submonoid of the additive group of the real vector space
V = Q(H) ® IR, and obviously H contains a basis of V. This allows us
to study H using geometrical methods in V.

Qur first aim is to derive geometrical descriptions of H and H and
to obtain a geometrical characterization of being primary. From this we
see that H is completely integrally closed, if the quotient group of H is
finitely generated, and it enables us to construct primary monoids H for
which H is not completely integrally closed.

We recall some geometrical notations. Let V' be a real vector space.
For two distinct elements z,y € V

[z,y] ={y+ Mz -y) [0S A< 1}

denotes the line segment joining = and y; we set [z,y) = [z,y] \ {y} and
(z.y) = [z,9) \ {z}.

Let M C V be a subset; M is called (algebraically) open if for all
a € M and for all @ # = € V there exists some b € (a,z) for which
[a,b] € M. M is called convex if [a,b] € M for all a,b € M. We denote
by

e(M)={>" A\

zeM

Az €IR>p and A, =0 for all but finitely many z € ]’Lf}.

the convex cone with apex 0 € V which is generated by M; C(M) C V is
a convex set. Finally

lin (M) =MU {z € V|[a,z) C M for some a € M with a # z}

is the set of points which are either in M or linearly accessible from M.
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If M is a convex subset with non empty interior in a topological vector
space then M is algebraically open if and only if M is topologically open,
and lin (M) is just the topological closure M of M ( [5; §11 A, Lemma]).

THEOREM 2.  Let H be a nontrivial monoid such that Q(H) 1is
torsion free and suppose that Q(H) C Q(H) 2 Q C QH)®@ R = V.
Then we have
1. H =C(H)n Q(H).

2. C(H) C(H).

3. H = lin (C(H))N Q(H).

4. H is primary and reduced if and only if C(H) \ {0} is open and
) #

C(H

PRrooOF.

1. Leta € H C Q(H); then we have na € H C C(H) for some
n € IN;, which yields a € C(H) N Q(H).

Conversely, let 0 # a € C(H) N Q(H) be given. Hence there exist
h; € H and A\, € IR, with a = Zf=1 Aihi. Since a and h; are contained
in the rational vector space Q(H)®Q, (A1,..., A\x) may be interpreted as
a solution of a system of linear equations over Q. Since this system has a
positive solution, it has a positive rational one, and thus we may assume
that all A; € Q.,. Let n € IN, be such that nA, € IN, for 1 < i < k;
then na € H and hence a € H.

2. We have

C(H) CC(H) CC(C(H)) =C(H).

3. Letac HC Q(H) be given; by definition there exists some ¢ € H
such that c+alN, C HC C(H). Therefore c+a € C(H) foralln € IN,.
Thus

[c+a,a)=J[c+a te+a] CCH)
n>1
which implies a € lin (C(H)).

To verify the opposite inclusion, we take an element a € lin (C(H))N

Q(H). Hence there is an element ¢’ € C(H) such that

[dya)={a+ A —a)|0< A< 1} CC(H),
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which implies that (n + 1)(a + =5(¢' — a)) = ¢/ + na € C(H) for all
nelN, Ifd =¥YF_ Ae, withe, € H and X, > 0, choose m € IN,

with 0 < A, <mforalll <v <k. Then

m(> ¢,) +na € C(HY)NQ(H)=H

<
1l =
-

for all n € IN,, and thus a € H.

4. Suppose that C(H)\ {0} is open and let a,b € H \ {0} be given.
Then there exists some ¢ € [a,a — b) = {a+ A(=b) | 0 < A < 1} such
that [a,c] © C(H), and therefore a — 2b € C(H) for some n € IN,. Then
na—beCH)NQH) = H and hence there exists some m € IN, such
that m(na—b) € H which yields mna—b € H. Since a,b € H\ {0} were
arbitrary, we conclude that either H is reduced and primery or H = H*,
which yields the contradiction C(H) = V.

Conversely, suppose that H is a reduced, primary monoid; then ob-
viously C(H)# V. Let 0# a € C(H) and z € V be given. Since H con-
tains a basis of V, there are h,,...,h, € H such that a = Y, p;hi, x —
a= " phi - S imke1 Mshi with all p;,pu; > 0. We may assume that
P > 0.

If £ = n everything is clear; otherwise we have

n k n
a,z] = {p1h1+(szhi+)\Z,uihi) A Y mh|0<A< 1}
i=1

i=2 i=k+1

={ P1 Z (hl—/\wn—_k)hi)-FC,\IUS/\Sl}
i=k+1 P
with ¢y € C(H)

Since H is reduced, hy ¢ H*, and since H is primary, there is an m € IN;.
such that mhy — h; € H for k+1 < i < n. Thus hy — A48 p, € C(H)
if A < ﬁ}l_—m for all K+ 1 < i < n with g; > 0, which implies that
[a,b] C C(H) for some b € (a,zx). a0

REMARK. Let H be a monoid such that Q(H) is finitely generated
and torsion free. Then Q(H) ® IR has finite dimension, the interior of
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C(H) is non empty and hence

——

H=C(H) N Q(H).

This immediately shows that H is completely integrally closed. Since
every monoid with finitely generated quotient group is a G-monoid, this
also follows from [1; Theorem 4].

This result cannot be enbettered even for primary monoids: the next
theorem exhibits primary monoids H C Z° with 2 < s < oo for which
all inclusions -

HcHCHCH
are strict; in particular H # H.

THEOREM 3. For every d € INy U {oc} there exist reduced primary
monoids H with dimg (Q(H)®IR) = d+1 such that H is not completely
integrally closed.

Proor.
1. Let de IN, U{oo} begivenandput I = {i e N |0<i<d+1}.
For 0 # ¢ € I choose &; € IR, with mel & < oc and define

d
H:{(xi)iéf EN_{:!SUPII’E! < 0o and thﬂfagzg}
el t=1

Thus H consists of all bounded sequences = € INf_ for which z; is suf-
ficiently large. If (z:)icr, (i)ier € H then S0 &(z, +y;) < 224+ 12 <
(2o + yo)?, hence H C Z' is a monoid which obviously is reduced, and
we claim that

(1) Q(H) = {(2:)ier € Z'|sup Jz,| < o}
el

Indeed, a sequence (z;):c1 € Z' is bounded if and only if it is the difference
of two bounded sequences in IN f_ with sufficiently large first component.

2. In the second step we will determine H and H. Put

H = {(xz)zg € ]N_f_‘ SEEPIE,\ < oo} u {0}
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H, = {(Iz)igf € ]l\J['s:LeI}I)|$1| < oc-}.

Let # = (2;)ier € H) and m € IN, with m > Zf=1 &,x;. Then we obtain
ma € H and hence +o € C(H) for all n € IN,. Thus we have

(2) U lH] C C(H) CRI,u{0},

n>1
where the second inclusion is obvious. Now Theorem 2.1 and (1) yield
H=C(H)NQ(H) = H,

Now let y = (y.)ic; € Ha. Then z = (max{y;,1}).,e; € H, C C(H)
and for any n € IN, 2™ = (max{y,, 2 })ic; € 1H, C C(H), which yields
[,9) = Up»y [2,2™] C C(H). Thus we have shown that

H, Clin (C(H)) C R,.

Using Theorem 2.3 and (1) yields

—

H=lin (C(H)NQ(H) =

3. Now we will show that H is a primary monoid. If d is finite we
deduce from (2) that C(H) = lRi-El U {0}, thus by Theorem 2.4 H is
primary.

For d = oo we will give a direct proof which is easier than show-
ing that C(H) is (algebraically) open. Let z = (z,)ier, ¥ = (¥i)ies €
H \ {0}. For sufficiently large n € IN we have nx; > y, for all i € I and
Z‘Ll &i(nz; — ;) < (nzo — yo)?, which shows nz —y € H.

4. In the final step we show that
H= {(Ii):EI € Hz‘l“o > 0} U {0}.

This yields H # H and thus H is not completely integrally closed. Since

H C H= H, we must prove that for 0 # x € H, we have: z € H if and
only if z¢ # 0.
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First consider x = (x;)ie; € H, with zp = 0 and z; # 0 for some
j € I. For any ¢ = (¢;);er € H we have for sufficiently large n € IN, :
S G +nz) > Ene; > ek thusc+ne ¢ Hand z ¢ H.

Now let z = (z,)ie; € Hy with zo > 1. Put m = max;e; |z;], choose
cg € IN, with ¢ > me:l & and let ¢ = (¢,1,1,...) € H. Then
one easily checks that ¢ +nx € H holds for all n € IN which proves
re H. 0

REMARK.
1. Considering the finite dimensional case d € IN., a quick glance at
the above proof exhibits

>0

C(H)=RY!, lin(C(H)) =R, H=N{",
H=N, x N’ and H = N“*!,

2. For every submonoid H & Z with Q(H) = Z we have He
{—=IN,IN, Z}. Thus H is completely integrally closed and the assumption
d+ 1 > 2 in the previous theorem cannot be improved.

5 — Integral domains

For an integral domain R let R® = R\ {0} denote the multiplicative
monoid of R, R* = R** its group of units, G(R) = G(R*) the group of
divisibility and R the integral closure of R in its quotient field.

We shall make use of the folléwing simple observation: let A, B be
two domains with A C B whose quotient fields coincide; then they give
rise to the exact sequence of abelian groups

(3) 1— B*/A* - G(A) - G(B)—1

THEOREM 4. Let R be an integral domain. Then the following
conditions are equivalent:

1. R* is primary and G(R) is finitely generated.

2. R is a one-dimensional local noetherian domain, its integral clo-
sure R is a finitely generated R-module and (R": R*) < oc.
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ProOF.

1. = 2. R is one-dimensional and local because R* is primary ([4;
Theorem 4.1]). Since G(R) is finitely generated, R is a finitely generated
R-module and R~ /R* is finite by [3; Theorem 3.9].

It remains to verify that R is noetherian. G(R) has finite torsion
free rank and therefore, by [3; Theorem 2.1], R is the intersection of
just finitely many valuation overrings, say R = (., V; with V; ¢ V; for
i # j. Then, for 1 < i < n, we have V;, = Rp, for P, < R prime ( [6;
Theorem 12.2]). Since Ris one-dimensional, all V; have rank one; setting
A= R and B =V, in (3) we infer that G(V;) is finitely generated and
hence isomorphic to Z; again from [6; Theorem 12.2] it follows that R
is a principal ideal domain. So finally R is noetherian by the theorem of
Eakin-Nagata.

2. = 1. R® is primary by [4; Theorem 4.1]. R is a Dedekind
domain with finitely many prime ideals, whence it is a principal ideal
domain. Thus

R =FxR"

where F' is a free abelian monoid with finite basis, and hence G(R)
Q(F) is a free abelian group of finite rank. Thus the exact sequence (3)
(with A= R and B = R ) splits and

G(R)=G(R)® R"/R”

is finitely generated. 0

REMARKS. Let R be an integral domain satisfying the equivalent
conditions of the previous theorem.

1. Since R is noetherian we infer B = R and being a Dedekind
domain R is completely integrally closed.

2. The number of prime ideals of R equals the torsion free rank of
G(R).

3. R® is a finitely primary monoid (cf. [2; Theorem 2]).

In a final example we discuss a class of domains satisfying the con-
ditions of Theorem 4.

EXAMPLE. Let o be an order in a Dedekind domain R (i.e. 0o C R
is a subring, the quotient fields of o and R coincide, and R is a finitely
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generated o-module). Then for every (0) # p € spec(o) o, is a one-
dimensional local noetherian domain, 3, is a finitely generated o,-module
and (3, :0y) < (R : F) where F is the conductor of o C R (cf. [7; Kap.
I, Satz 12.11]). Hence if R has the finite norm property, then o, satisfies
condition 2 of Theorem 4.
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