Stickelberger elements and cotangent numbers

Günter Lettl

Abstract. Using Leopoldt's theorem, which describes the structure of the integers of an abelian number field K as Galois module, we will show a connection between Stickelberger elements and cotangent numbers. Both of them have been used for index formulas containing h_K^- , the minus part of the class number of K.

1. Introduction

Let K be an abelian number field, i. e. a Galois extension of ${\bf Q}$ of finite degree with abelian Galois group $G=\operatorname{Gal}(K/{\bf Q})$. For any such K, Girstmair [1] defined a cotangent number $\eta_K\in K$ and calculated the index of the ${\bf Z}$ - module generated by the conjugates of η_K in the imaginary part of o_K , the ring of integers of K. This index turns out to be h_K^- , the minus part of the class number of K, multiplied with a rational factor, which depends only on well-known arithmetical constants of K. This new algebraic description of h_K^- is in contrast to the known relation of h_K^- to the index of the Stickelberger ideal in the imaginary part of the group ring over G ([2], [6], [7]), where the computation of the additional factor in the index formula is rather difficult in general. A formal analogy between cotangent numbers and Stickelberger elements is obvious, but there was no explanation for that.

In this paper we develop a connection between cotangent numbers and Stickelberger elements, using Leopoldt's description of o_K as Galois module ([4], [5]). It turns out that the cotangent number of K is obtained by applying a sum of (modified) Stickelberger elements to a "Basiszahl" of K. Going back to the group ring, we find fairly easy index formulas (also for Stickelberger elements of higher degree), using an -in general fractional- principal Stickelberger ideal.

2. Modified Stickelberger Elements

For $n \in \mathbf{N}$ let $\zeta_n = e^{\frac{2\pi i}{n}} \in \mathbf{C}$ be the analytically normed, primitive n- th root of unity and $\mathbf{Q}^{(n)} = \mathbf{Q}(\zeta_n) \subset \mathbf{C}$ the n- th cyclotomic field. Without loss of generality, every abelian number field shall be considered as a subfield of \mathbf{C} , thus by the theorem of Kronecker – Weber as subfield of some $\mathbf{Q}^{(n)}$. The natural operation of $\mathbf{Z}/(n)^{\times}$ on μ_n , the group of n- th roots of unity, yields

$$\{t \in \mathbf{Z} | (t, n) = 1\} \quad \to \quad \mathbf{Z}/(n)^{\times} \quad \stackrel{\sim}{\to} \quad G^{(n)} = \mathrm{Gal}(\mathbf{Q}^{(n)}/\mathbf{Q})$$

$$t \qquad \mapsto \quad t + (n) \quad \mapsto \quad \sigma_t$$

where σ_t is defined by $\sigma_t(\zeta_n) = \zeta_n^t$. Note that σ_{-1} is just complex conjugation for any n. For $m \in \mathbf{N}_0 = \mathbf{N} \cup \{0\}$ the m-th Bernoulli polynomial $B_m(X) \in \mathbf{Q}[X]$ is defined by

$$\frac{te^{Xt}}{e^t - 1} = \sum_{m=0}^{\infty} B_m(X) \frac{t^m}{m!} .$$

For $x \in \mathbf{R}$ let $\langle x \rangle = x - [x] \in [0,1)$ denote the least non-negative element of $x + \mathbf{Z}$. To establish the connection with cotangent numbers in the next chapter, we need modified Stickelberger elements. In contrast to the usual definition (see e. g. [3], p.44) we take the inverse of each element of the Galois group.

DEFINITION 1: Let $m, n \in \mathbb{N}$, K/\mathbb{Q} be an abelian number field with $G = \operatorname{Gal}(K/\mathbb{Q})$ and $K_n = K \cap \mathbb{Q}^{(n)}$.

a)
$$\vartheta_m(\mathbf{Q}^{(n)}, n) = \frac{n^{m-1}}{m} \sum_{\substack{t=1 \ (t,n)=1}}^n B_m(\langle \frac{t}{n} \rangle) \ \sigma_t \in \mathbf{Q}[G^{(n)}]$$
 is called

(modified) Stickelberger element of $\mathbf{Q}^{(n)}$ of degree m .

b)
$$\vartheta_m(K, n) = \operatorname{cor}_{K/K_n} \operatorname{res}_{\mathbf{Q}^{(n)}/K_n} \vartheta_m(\mathbf{Q}^{(n)}, n) = \frac{n^{m-1}}{m} \sum_{\substack{t=1 \ (t,n)=1}}^n \left(B_m(\langle \frac{t}{n} \rangle) \sum_{\substack{\sigma \in G \\ \sigma|_{K_n} = \sigma_t|_{K_n}}} \sigma \right) \in \mathbf{Q}[G] \text{ is called (modified)}$$

Stickelberger element of K of degree m and level n.

Definition 1.b) employs the usual method to transport Stickelberger elements from $\mathbf{Q}^{(n)}$ to K. res.../... and cor.../... denote restriction and corestriction between the rational group rings of the corresponding Galois groups (see e. g. [7], p.185).

The following lemma shows how Stickelberger elements behave, when they are restricted to a cyclotomic subfield.

LEMMA 1. Let $m, n, N \in \mathbf{N}$ with n|N and put $\mathcal{P} = \{p \in \mathbf{P} | p|N \text{ and } p \nmid n\}$. Then

$$\vartheta_m(\mathbf{Q}^{(n)}, N) = \prod_{p \in \mathcal{P}} (1 - p^{m-1}\sigma_p) \ \vartheta_m(\mathbf{Q}^{(n)}, n) \ .$$

Using the distribution relation for $B_m(X)$ (e. g. [3], pp.35f.), the usual straightforward calculation reducing the range of summation from $\mathbf{Z}/(N)^{\times}$ to $\mathbf{Z}/(n)^{\times}$ gives the proof of Lemma 1.

If K is an abelian number field with Galois group G, let the group ring $\mathbf{Q}[G]$ operate on the additive structure of K as usual, i. e. for $\rho = \sum_{\sigma \in G} r_{\sigma} \sigma \in \mathbf{Q}[G]$ and $\alpha \in K$ put $\rho \alpha = \sum_{\sigma \in G} r_{\sigma} \sigma(\alpha)$. Next we recall an obvious extension of Lemma 3 of [5].

LEMMA 2. Let $p \in \mathbf{P}$, $n \in \mathbf{N}$, $\sigma \in G^{(n)}$ and $\zeta \in \mu_{np}$ an np-th root of unity. Then

$$(\operatorname{cor}_{\mathbf{Q}^{(np)}/\mathbf{Q}^{(n)}}\sigma)\zeta = \begin{cases} \left[\mathbf{Q}^{(np)} : \mathbf{Q}^{(n)}\right]\sigma(\zeta) & \text{if } \zeta \in \mu_n \\ 0 & \text{if } \zeta \notin \mu_n \text{ and } p|n \\ -\sigma_p^{-1}\sigma(\zeta^p) & \text{if } \zeta \notin \mu_n \text{ and } p \nmid n \end{cases}$$
(ii)

For $n \in \mathbb{N}$ let q(n) be the powerful part of n, i. e. $n = q(n) \prod_{\substack{p \in \mathbb{P} \\ p \mid n, p^2 \nmid n}} p$. If $n, N \in \mathbb{N}$ with $n \mid N$, then $\mathbf{Q}^{(N)} / \mathbf{Q}^{(n)}$ is wildly

ramified if and only if $q(n) \neq q(N)$.

As usual, let φ denote Euler's totient function.

LEMMA 3. Let $d, m, n', n \in \mathbb{N}$, put $n_0 = (d, n')$, $n_1 = \operatorname{lcm}(d, n')$ and suppose $n_1 | n$. Further let ζ be a root of unity of order d. Then we have:

a) $\vartheta_m(\mathbf{Q}^{(n)}, n') \zeta = 0$, if $q(n_0) \neq q(d)$ (i. e. $\mathbf{Q}^{(d)}/\mathbf{Q}^{(n_0)}$ is wildly ramified).

b)
$$\vartheta_m(\mathbf{Q}^{(n)}, n') \zeta = \frac{\varphi(n)}{\varphi(n_1)} \prod_{p \mid \frac{d}{n_0}} (-\sigma_p^{-1}) \prod_{p \mid n', p \nmid n_0} (1 - p^{m-1} \sigma_p) \cdot \vartheta_m(\mathbf{Q}^{(n_0)}, n_0) \zeta^{\frac{d}{n_0}}$$
, if $q(n_0) = q(d)$.

PROOF: $\vartheta_m(\mathbf{Q}^{(n)}, n') \zeta = [\mathbf{Q}^{(n)} : \mathbf{Q}^{(n_1)}] \vartheta_m(\mathbf{Q}^{(n_1)}, n') \zeta = [\mathbf{Q}^{(n)} : \mathbf{Q}^{(n_1)}] \vartheta_m(\mathbf{Q}^{(n_1)}, n') \zeta$ $\mathbf{Q}^{(n_1)}] \ \vartheta_m(\mathbf{Q}^{(d)}, n') \ \zeta = [\mathbf{Q}^{(n)} : \mathbf{Q}^{(n_1)}] \ \operatorname{cor}_{\mathbf{Q}^{(d)}/\mathbf{Q}^{(n_0)}} \ \vartheta_m(\mathbf{Q}^{(n_0)}, n') \ \zeta =$ $[\mathbf{Q}^{(n)}: \mathbf{Q}^{(n_1)}] \operatorname{cor}_{\mathbf{Q}^{(d)}/\mathbf{Q}^{(n_0)}} \Big(\prod_{p|n', p \nmid n_0} (1 - p^{m-1}\sigma_p) \vartheta_m(\mathbf{Q}^{(n_0)}, n_0) \Big) \zeta$

using Lemma 1. If $\mathbf{Q}^{(d)}/\mathbf{Q}^{(n_0)}$ is wildly ramified, this equals 0 by Lemma 2.(ii), which proves part a).

Now suppose that $q(n_0) = q(d)$ and use Lemma 2.(iii). the above expression equals $[\mathbf{Q}^{(n)}]: \mathbf{Q}^{(n_1)} = \prod_{p|n', p \nmid n_0} (1 - p^{m-1}\sigma_p)$

$$\frac{n_0^{m-1}}{m} \sum_{\substack{t=1\\(t,n_0)=1}}^{n_0} B_m(\langle \frac{t}{n_0} \rangle) \operatorname{cor}_{\mathbf{Q}^{(d)}/\mathbf{Q}^{(n_0)}} \sigma_t \zeta =$$

LEMMA 4. Let $m, n \in \mathbb{N}$ with n odd. Then

$$\vartheta_m(\mathbf{Q}^{(2n)}, 2n) \zeta_{2n} = (2^{m-1} - \sigma_2^{-1}) \vartheta_m(\mathbf{Q}^{(n)}, \tilde{n}) \zeta_n.$$

PROOF: Using Lemma 2.(iii) with $\zeta = \zeta_{2n}$, p = 2 and $\sigma = \sigma_1$, we have $\zeta_{2n} = -\sigma_2^{-1}\zeta_n$. Therefore $\vartheta_m(\mathbf{Q}^{(2n)}, 2n)\zeta_{2n} = -\sigma_2^{-1}\vartheta_m(\mathbf{Q}^{(n)}, 2n)\zeta_n = -\sigma_2^{-1}(1 - 2^{m-1}\sigma_2)\vartheta_m(\mathbf{Q}^{(n)}, n)\zeta_n = -\sigma_2^{-1}(1 - 2^{m-1}\sigma_2)\vartheta_m(\mathbf$ $(2^{m-1}-\sigma_2^{-1})\,\vartheta_m(\mathbf{Q}^{(n)},n)\,\zeta_n$, where we made use of Lemma 1 again. \blacksquare

3. Cotangent Numbers and Main Result

For the rest of this paper, K denotes an abelian number field with $G = Gal(K/\mathbb{Q})$ and conductor n, i. e. n is the smallest positive integer with $K \subset \mathbf{Q}^{(n)}$.

Definition 2: For $m \in \mathbb{N}$ and $K \neq \mathbb{Q}$

$$\eta_{m,K} = \operatorname{Tr}_{\mathbf{Q}^{(n)}/K} \left(\left(\frac{i}{2} \right)^m \cot^{(m-1)} \left(\frac{\pi}{n} \right) - \frac{1}{2} \delta_{1,m} \right) =$$

$$= \operatorname{Tr}_{\mathbf{Q}^{(n)}/K} \left(\frac{n^{m-1}}{m} \sum_{j=1}^n B_m \left(\left\langle \frac{j}{n} \right\rangle \right) \zeta_n^{-j} \right)$$

is called cotangent number of K of degree m.

$$\eta_K = (1 - \sigma_{-1}) \, \eta_{1,K} = \operatorname{Tr}_{\mathbf{Q}^{(n)}/K} \left(i \cot \frac{\pi}{n} \right)$$

is called cotangent number of K.

Here $\operatorname{Tr}_{\mathbf{Q}^{(n)}/K}$ denotes the trace from $\mathbf{Q}^{(n)}$ to K, $\cot^{(m-1)}$ the (m-1)-st derivative of the cotangent function, and

 $\delta_{1,m} = \begin{cases} 1 & \text{if } m=1 \\ 0 & \text{if } m \neq 1 \end{cases}$ Kronecker's delta. The equality of the two expressions defining $\eta_{m,K}$ can be found in [1], considering the following remark: since $B_m(1) = B_m(0)$ for even m and $B_m(1) = -B_m(0) = 0$ for odd $m \geq 3$, the only difference between Girstmair's definition of $\eta_{m,K}$ and Definition 2 is for m=1, where Girstmair considers $\eta_{1,K} + [\mathbf{Q}^{(n)}:K] = \mathrm{Tr}_{\mathbf{Q}^{(n)}/K}\left(\frac{i}{2}\cot\frac{\pi}{n} + \frac{1}{2}\right)$. If we use $\eta_{1,K}$ to obtain the cotangent number $\eta_K = (1-\sigma_{-1})\eta_{1,K}$, this difference becomes immaterial.

Splitting the sum in Definition 2 by summing over those j, for which (j,n) is the same, and using the modified Stickelberger elements, we obtain

$$\eta_{m,K} = \operatorname{Tr}_{\mathbf{Q}^{(n)}/K} \left(\sigma_{-1} \sum_{\substack{t \\ 1 \le t \mid n}} \left(\frac{n}{t} \right)^{m-1} \vartheta_m(\mathbf{Q}^{(t)}, t) \zeta_t \right). \tag{1}$$

Let us define modified cotangent numbers of degree m by

$$\widetilde{\eta_{m,K}} = \operatorname{Tr}_{\mathbf{Q}^{(n)}/K} \left(\sigma_{-1} \sum_{\substack{1 \le t \mid n}} \vartheta_m(\mathbf{Q}^{(t)}, t) \zeta_t \right) =$$

$$= \operatorname{Tr}_{\mathbf{Q}^{(n)}/K} \left(\frac{n^{m-1}}{m} \sum_{j=1}^n \frac{1}{(j, n)^{m-1}} B_m(\left\langle \frac{j}{n} \right\rangle) \zeta_n^{-j} \right). \tag{2}$$

Obviously $\widetilde{\eta_{1,K}} = \eta_{1,K}$.

Now we will recall Leopoldt's theorem. Put $n^* = \prod_{p \in \mathbf{P}, \, p \mid n} p$, $\mathcal{D} = \{d \in \mathbf{N} | n^* | d \text{ and } d \mid n\}$, and define a "Basiszahl" of K by

$$T = \sum_{d \in \mathcal{D}} \operatorname{Tr}_{\mathbf{Q}(d)/K_d} \zeta_d \tag{3}$$

where $K_d = K \cap \mathbf{Q}^{(d)}$. Note that in [5] a slightly different set \mathcal{D} is used, namely the set of all possible conductors of Dirichlet characters of K. Since for odd $k \in \mathbf{N}$ $\mathbf{Q}^{(k)} = \mathbf{Q}^{(2k)}$ and $\zeta_{2k} = -\sigma_2^{-1}\zeta_k$, Leopoldt's theorem holds with T as defined in (3) as well:

Multiplication with T yields isomorphisms between $\mathbf{Q}[G]$ and K, as well as between \mathcal{O}_K and $o_K = \bigoplus_{d \in \mathcal{D}} \mathbf{Z}[G] \operatorname{Tr}_{\mathbf{Q}^{(d)}/K_d} \zeta_d$, where \mathcal{O}_K is Leopoldt's order (see [4], [5]) contained in the maximal order of $\mathbf{Q}[G]$, and o_K is the ring of integers of K.

Now one can guess our main result: an appropriate sum of Stickelberger elements corresponds to the cotangent number $\eta_{1,K}$ under the above isomorphism. For $m \geq 2$ the analogous sum of higher Stickelberger elements will correspond to the modified cotangent numbers $\widetilde{\eta_{m,K}}$. First we need another lemma:

LEMMA 5. Let $d \in \mathcal{D}, m, n' \in \mathbf{N}$ with n'|n, and put $n_0 = (d, n')$ and $n_1 = \operatorname{lcm}(d, n')$.

- a) If $q(d) \nmid n'$ then $\vartheta_m(K, n') \operatorname{Tr}_{\mathbf{Q}^{(d)}/K_d} \zeta_d = 0$.
- **b)** If q(d)|n' then $\vartheta_m(K, n')\operatorname{Tr}_{\mathbf{Q}^{(d)}/K_d}\zeta_d = \frac{1}{[\mathbf{Q}^{(n)}:K\mathbf{Q}^{(n')}][\mathbf{Q}^{(n)}:K\mathbf{Q}^{(d)}]}$ $\operatorname{Tr}_{\mathbf{Q}^{(n)}/K}\left(\frac{\varphi(n)}{\varphi(n_1)}\prod_{\substack{p\mid\frac{d}{n_0}\\p\neq n_0}}(-\sigma_p^{-1})\prod_{\substack{p\mid n'\\p\neq n_0}}(1-p^{m-1}\sigma_p)\vartheta_m(\mathbf{Q}^{(n_0)},n_0)\zeta_{n_0}\right).$

c)
$$[\mathbf{Q}^{(n)}: K\mathbf{Q}^{(d)}] = \begin{cases} 2 & \text{if } d \equiv 2 \ (4) \text{ and } [\mathbf{Q}^{(n)}: K\mathbf{Q}^{(n^*)}] = 2 \\ 1 & \text{else} \end{cases}$$

PROOF:
$$\vartheta_m(K, n') \operatorname{Tr}_{\mathbf{Q}^{(d)}/K_d} \zeta_d = \frac{1}{[\mathbf{Q}^{(n)}:K\mathbf{Q}^{(n')}]} \vartheta_m(\mathbf{Q}^{(n)}, n') \cdot \operatorname{Tr}_{\mathbf{Q}^{(d)}/K_d} \zeta_d = \frac{1}{[\mathbf{Q}^{(n)}:K\mathbf{Q}^{(n')}]} \operatorname{Tr}_{K\mathbf{Q}^{(d)}/K} \left(\vartheta_m(\mathbf{Q}^{(n)}, n') \zeta_d\right) = \frac{1}{[\mathbf{Q}^{(n)}:K\mathbf{Q}^{(n')}][\mathbf{Q}^{(n)}:K\mathbf{Q}^{(d)}]} \operatorname{Tr}_{\mathbf{Q}^{(n)}/K} \left(\vartheta_m(\mathbf{Q}^{(n)}, n') \zeta_d\right).$$
 Now using Lemma 3, gives assertions a) and b).

To prove c) we will use the notations of Chapter 2 of [5]. Let X (resp. Y) be the group of primitive Dirichlet characters of K (resp. of $K\mathbf{Q}^{(d)}$). Then Y is generated by X and $X^{(d)}$, the character group of $\mathbf{Q}^{(d)}$. Let ω_2 denote the Dirichlet character with conductor 4. Since the projection of X onto the characters of second kind modulo n is surjective ([5], Lemma 1) and $X^{(d)}$ contains all characters of first

kind except ω_2 if $d \equiv 2$ (4), one deduces

$$(X^{(n)}:Y)=\left\{\begin{array}{ll}2 & \text{if } n\equiv 0\ (8),\, d\equiv 2\ (4) \text{ and } f_\chi\not\equiv 4\ (8) \text{ for all }\chi\in X\\1 & \text{else}\end{array}\right.$$

The proof of assertion c) now follows easily.

We introduce the following notations: let $n = \prod_{i=1}^r p_i^{e_i}$ with pairwise different primes $p_i \in \mathbf{P}$ be the prime factorization of the conductor n of K, putting $p_1 = 2$ if n is even. For any $I \subset \{1, \ldots, r\}$ let

$$n_I = \prod_{i \in I} p_i^{e_i} \quad \text{ and } \quad c_I = \frac{[\mathbf{Q}^{(n)} : K\mathbf{Q}^{(n_I)}]}{\prod_{i \notin I} p_i^{e_i - 1}} \ \prod_{i \notin I} (-\operatorname{Frob}(p_i)) \in \mathbf{Q}[G] \ ,$$

where $\operatorname{Frob}(p_i)$ is any extension of $\operatorname{res}_{\mathbf{Q}^{(l_i)}/K_{l_i}} \sigma_{p_i}$ with $l_i = \frac{n}{p_i^{e_i}}$.

For $m \in \mathbb{N}$ we define

$$\kappa_m = \begin{cases} 0 & \text{if } [\mathbf{Q}^{(n)} : K\mathbf{Q}^{(n^*)}] = 1\\ 1 + 2^{m-1} - \text{Frob}(2)^{-1} & \text{if } [\mathbf{Q}^{(n)} : K\mathbf{Q}^{(n^*)}] = 2 \end{cases}, \quad (4)$$

$$\Theta_m = \sum_{I \subset \{1, \dots, r\}} c_I \,\vartheta_m(K, n_I) \tag{5}$$

and

$$\Theta'_{m} = \sigma_{-1} \left(\Theta_{m} + \kappa_{m} \sum_{I \subset \{2, \dots, r\}} c_{I} \vartheta_{m}(K, n_{I}) \right) . \tag{6}$$

With these notations we have the following result:

THEOREM 1.

$$\Theta_m' \ T = \widetilde{\eta_{m,K}}$$

Specializing the theorem for m=1, yields the relations

$$\Theta_1' T = \eta_{1,K} \quad \text{and} \quad (1 - \sigma_{-1}) \Theta_1' T = \eta_K .$$
 (7)

Note that for $K = \mathbf{Q}^{(n)}$ the definition of Θ_m uses the Stickelberger elements of the same subfields of $\mathbf{Q}^{(n)}$ as were used by Ramachandra to obtain circular units, which generate a subgroup of finite index in the full group of units (see [8], Theorem 8.3).

PROOF: Let $I \subset \{1,\ldots,r\}$ and $d \in \mathcal{D}$. Since Lemma 5.a) yields $\vartheta_m(K,n_I) \operatorname{Tr}_{\mathbf{Q}^{(d)}/K_d} \zeta_d = 0$ whenever $q(d) \nmid n_I$, we will always assume that $q(d)|n_I$. Then we have $n_0 = (d,n_I) = q(d) \prod_{i \in I, p_i \nmid q(d)} p_i$ and

 $\frac{d}{n_0} = \prod_{i \notin I} p_i \text{ . Furthermore } n_1 = \operatorname{lcm}(d, n_I) = n_I \prod_{i \notin I} p_i \text{ and } \frac{\varphi(n)}{\varphi(n_1)} = \prod_{i \notin I} p_i^{e_i - 1} \text{ . Using Lemma 5.b) a short calculation shows}$ $c_I \vartheta_m(K, n_I) \operatorname{Tr}_{\mathbf{Q}^{(d)}/K_d} \zeta_d = \frac{1}{[\mathbf{Q}^{(n)}:K\mathbf{Q}^{(d)}]} \operatorname{Tr}_{\mathbf{Q}^{(n)}/K} \left(\vartheta_m(\mathbf{Q}^{(n_0)}, n_0) \zeta_{n_0}\right).$

If I is fixed and d runs through \mathcal{D} with $q(d)|n_I$, then $n_0=(d,n_I)$ runs through $N_I=\{t\mid\prod_{i\in I}p_i\mid t\mid n_I\}$. This correspondence between d and n_0 is one-to-one, so we have $c_I\,\vartheta_m(K,n_I)\,T=\sum_{t\in N_I}\frac{1}{[\mathbf{Q}^{(n)}:K\mathbf{Q}^{(d_t)}]}\,\mathrm{Tr}_{\mathbf{Q}^{(n)}/K}\Big(\vartheta_m(\mathbf{Q}^{(t)},t)\,\zeta_t\Big)$, where $d_t=q(t)\prod_{\substack{1\leq i\leq r\\p_i\neq q(t)}}p_i$.

Since $\{t \in \mathbb{N} \mid t \mid n\} = \bigcup_{I \subset \{1, \dots, r\}} N_I$, we obtain

$$\Theta_{m} T = \sum_{\substack{1 \le t \mid n \\ t \equiv 0 \ (4)}} \operatorname{Tr}_{\mathbf{Q}^{(n)}/K} \left(\vartheta_{m}(\mathbf{Q}^{(t)}, t) \zeta_{t} \right) +$$

$$+ \frac{1}{\left[\mathbf{Q}^{(n)} : K \mathbf{Q}^{(n^{*})} \right]} \sum_{\substack{1 \le t \mid n \\ t \not\equiv 0 \ (4)}} \operatorname{Tr}_{\mathbf{Q}^{(n)}/K} \left(\vartheta_{m}(\mathbf{Q}^{(t)}, t) \zeta_{t} \right) .$$
(8)

If $[\mathbf{Q}^{(n)}: K\mathbf{Q}^{(n^*)}] = 1$, just multiply both sides with σ_{-1} , and remember $\kappa_m = 0$ and (2) to finish the proof of Theorem 1.

If $[\mathbf{Q}^{(n)}:K\mathbf{Q}^{(n^*)}]=2$, n must be even and $p_1=2$. In this case we calculate as above

$$\kappa_m \sum_{I \subset \{2,\dots,r\}} c_I \vartheta_m(K, n_I) T = \kappa_m \frac{1}{2} \sum_{\substack{1 \le t \mid n \\ t \equiv 1 \ (2)}} \operatorname{Tr}_{\mathbf{Q}^{(n)}/K} \left(\vartheta_m(\mathbf{Q}^{(t)}, t) \zeta_t \right) .$$

Using Lemma 4, this equals $\frac{1}{2} \sum_{\substack{1 \leq t \mid n \\ t \equiv 1 \ (2)}} \operatorname{Tr}_{\mathbf{Q}^{(n)}/K} \left(\vartheta_m(\mathbf{Q}^{(t)}, t) \zeta_t + \right)$

$$\vartheta_m(\mathbf{Q}^{(2t)}, 2t) \zeta_{2t} = \frac{1}{2} \sum_{\substack{1 \le t \mid n \\ t \ne 0 \ (4)}} \mathrm{Tr}_{\mathbf{Q}^{(n)}/K} \left(\vartheta_m(\mathbf{Q}^{(t)}, t) \zeta_t \right).$$

Adding this result to (8), one can finish the proof as above.

4. Index Formulas

In this chapter we use the generalized module index: if L and L' are lattices spanning the same finite-dimensional \mathbf{Q} - vector space V (i. e. L and L' are \mathbf{Z} - modules with $\dim_{\mathbf{Q}} V = \operatorname{rg}_{\mathbf{Z}} L = \operatorname{rg}_{\mathbf{Z}} L' < \infty$), define

$$(L:L') = |\det \phi|$$
,

where ϕ is any automorphism of V with $\phi(L)=L'$ (see e. g. [7], p.187). If $L'\subset L$, (L:L') equals the usual index of groups.

Let X be the group of primitive Dirichlet characters belonging to the abelian number field K, and let X^+ (resp. X^-) denote the group of even (resp. the set of odd) characters in X (see e. g. [8], chap.3). Using the cotangent number $\eta_K = (1-\sigma_{-1})\,\eta_{1,K} = \mathrm{Tr}_{\mathbf{Q}^{(n)}/K}(i\,\cot\frac{\pi}{n})$, Girstmair [1] computed $\left((1-\sigma_{-1})\,o_K:\mathbf{Z}[G]\,\eta_K\right)$ and found that h_K^- is a factor of this index. He also computed an analogous index for $\eta_{m,K}$, where $\prod_{\chi\in X^\pm}B_{m,\chi}$ appears as a factor. In this product χ runs through X^+ for even m, and through X^- for odd m. $B_{m,\chi}=f_\chi^{m-1}\sum_{t=1}^{f_\chi}\chi(t)\,B_m(\frac{t}{f_\chi})$ are Leopoldt's generalized Bernoulli numbers. If the conductor of K is a prime power, $\eta_{m,K}$ does not belong to o_K in general. Therefore in [1] the cotangent numbers are multiplied with appropriate rational integers to obtain $\eta_{m,K}^*\in o_K$, and the results are formulated for these numbers, using the usual index of groups.

If we assume that $[\mathbf{Q}^{(n)}:K\mathbf{Q}^{(n^*)}]=1$ and use Theorem 1, we can split the above index and transfer it with the help of Leopoldt's theorem into the group ring, abbreviating $R^-=(1-\sigma_{-1})\,\mathbf{Z}[G]:$ $((1-\sigma_{-1})\,o_K:\mathbf{Z}[G]\,\eta_K)=((1-\sigma_{-1})\,\mathcal{O}_K\,T:R^-\,T)\cdot(R^-\,T:\mathbf{Z}[G]\,(1-\sigma_{-1})\sigma_{-1}\Theta_1\,T)=((1-\sigma_{-1})\,\mathcal{O}_K:R^-)\,(R^-:\Theta_1\,R^-)$. We will investigate the second index and show that it is h_K^- times a rational factor, similarly easy as in [1]. More generally we will derive an index formula for Θ_m as defined in (5).

For this purpose let K^+ be the maximal real subfield of K. For any rational prime $p \in \mathbf{P}$ let g_p be the number of prime ideals of K lying above p and p^{f_p} be their norm, and define g_p^+ , f_p^+ analogously

for K^+ . If $K \neq K^+$, put

$$\psi(p) = \begin{cases} 0 \\ 1 & \text{if the primes of } K^+ \text{ lying above } p \text{ are } \begin{cases} \text{ramified split} \\ \text{split} \\ \text{inert} \end{cases}$$

in the relative extension K/K^+ . This is just the Hecke character of K/K^+ , which depends only on the rational primes, since K is abelian.

Lemma 6. Let z be algebraic independent over C. Then

$$\prod_{\chi \in X^+} (1 - \chi(p)z) = (1 - z^{f_p^+})^{g_p^+}$$

and if $K \neq K^+$

$$\prod_{\chi \in X^{-}} (1 - \chi(p)z) = (1 - \psi(p) z^{f_{p}^{+}})^{g_{p}^{+}}.$$

PROOF: If the product runs over a group of Dirichlet characters, the proof works with the usual idea of interpreting the ramification properties of primes via Dirichlet characters (see the proof of Theorem 4.3 in [8]). For the second product we have

$$\prod_{\chi \in X^{-}} (1 - \chi(p)z) = \frac{\prod_{\chi \in X} (1 - \chi(p)z)}{\prod_{\chi \in X^{+}} (1 - \chi(p)z)} = \frac{(1 - z^{f_{p}})^{g_{p}}}{(1 - z^{f_{p}})^{g_{p}^{+}}}.$$

Using ψ as defined above, the assertion follows.

THEOREM 2. Let R^{\pm} be any sublattice of $\mathbf{Q}[G]^{\pm} = (1 \pm \sigma_{-1}) \mathbf{Q}[G]$ or of $K^{\pm} = (1 \pm \sigma_{-1}) K$ such that R^{\pm} has maximal rank.

If $m \in \mathbf{N}$ is even

$$(R^+:\Theta_m R^+) = \Big| \prod_{p \in \mathbf{P}, \ p|n} \Big(1 - (p^{m-1} + p - 1)^{f_p^+} \Big)^{g_p^+} \prod_{\chi \in X^+} \frac{B_{m,\chi}}{m} \Big| .$$

If $m \in \mathbb{N}$ is odd and $K \neq K^+$

$$(R^{-}:\Theta_{m}R^{-}) = \prod_{p \in \mathbf{P}, \ p|n} \left(1 - \psi(p) \left(p^{m-1} + p - 1\right)^{f_{p}^{+}}\right)^{g_{p}^{+}} \prod_{\chi \in X^{-}} \frac{B_{m,\chi}}{m} \mid .$$

PROOF: Extend each character $\chi \in X$ to $\chi: \mathbf{Q}[G] \to \mathbf{C}$ by \mathbf{Q} -linearity. Then Lemma 1.2.b) of [7], p.188, yields $(R^{\pm}:\Theta_m\,R^{\pm})=|\prod_{\chi\in X^{\pm}}\chi(\Theta_m)|$ for any lattice $R^{\pm}\subset\mathbf{Q}[G]^{\pm}$, and by Leopoldt's theorem for any lattice $R^{\pm}\subset K^{\pm}$ as well. So we only have to compute $\chi(\Theta_m)$.

Let $\chi \in X$ and put $I_0 = \{i | 1 \leq i \leq r, p_i | f_\chi \}$. Then we have $\chi(\vartheta_m(K, n_I)) = \frac{1}{[\mathbf{Q}^{(n)}:K\mathbf{Q}^{(n_I)}]} \chi(\vartheta_m(\mathbf{Q}^{(n)}, n_I)) = \frac{1}{[\mathbf{Q}^{(n)}:K\mathbf{Q}^{(n_I)}]} \frac{n_I^{m-1}}{m} \sum_{\substack{1 \leq t \leq n_I \\ (t,n_I)=1}} B_m(\langle \frac{t}{n_I} \rangle) \chi(\mathrm{cor}_{\mathbf{Q}^{(n)}/\mathbf{Q}^{(n_I)}} \sigma_t)$. Now observe that

$$\chi(\operatorname{cor}_{\mathbf{Q}^{(n)}/\mathbf{Q}^{(n_I)}} \sigma_t) = \begin{cases} 0 & \text{if } \chi|_{\operatorname{Gal}(\mathbf{Q}^{(n)}/\mathbf{Q}^{(n_I)})} \neq 1 \\ \left[\mathbf{Q}^{(n)} : \mathbf{Q}^{(n_I)}\right] \chi(t) & \text{if } \chi \in X^{(n_I)}, \text{ i.e. } I_0 \subset I \end{cases}$$
and
$$[\mathbf{Q}^{(n)} : \mathbf{Q}^{(n_I)}] = \prod_{i \notin I} (p_i - 1) p_i^{e_i - 1}. \text{ If } I_0 \subset I \text{ we have furthermore}$$

$$\frac{n_I^{m-1}}{m} \sum_{1 \leq t \leq n_I} B_m(\langle \frac{t}{n_I} \rangle) \chi(t) = \prod_{i \in I \setminus I_0} (1 - p_i^{m-1} \chi(p_i)) \frac{B_{m,\chi}}{m} \text{ (except for } I_0 = I_0 =$$

m=n=1 and χ trivial, which will not be needed). Putting all together, we obtain $\chi(c_I \vartheta_m(K, n_I)) =$

$$= \left\{ \begin{array}{ll} 0 & \text{if } I_0 \not\subset I \\ \prod\limits_{i \not\in I} (1-p_i) \, \chi(p_i) \prod\limits_{i \in I \backslash I_0} (1-p_i^{m-1} \, \chi(p_i)) \, \frac{B_{m,\chi}}{m} & \text{if } I_0 \subset I \end{array} \right.$$

This yields
$$\chi(\Theta_m) = \chi\Big(\sum_{\substack{I\\I_0 \subset I \subset \{1,...,r\}}} c_I \,\vartheta_m(K,n_I)\Big) =$$

$$\frac{B_{m,\chi}}{m} \sum_{\substack{I \\ I_0 \subset I \subset \{1,\dots,r\}}} \left(\prod_{i \notin I} (1-p_i) \chi(p_i) \prod_{i \in I \setminus I_0} (1-p_i^{m-1} \chi(p_i)) \right) =$$

$$\frac{B_{m,\chi}}{m} \prod_{j \in \{1,\dots,r\} \setminus I_0} \left((1 - p_j) \chi(p_j) + (1 - p_j^{m-1} \chi(p_j)) \right) =$$

 $\frac{B_{m,\chi}}{m}\prod_{j=1}^r\left(1-\chi(p_j)\left(p_j^{m-1}+p_j-1\right)\right)$. Now taking the product over all $\chi\in X^+$ if m is even, or over all $\chi\in X^-$ if m is odd, and using Lemma 6 gives the formulas of the theorem.

Using the analytic class number formula for h_K^- ([8], Theorem 4.17) and Theorem 2 with m=1, immediately yields the following

Corollary 1. Assume that $K \neq K^+$. Then

$$(R^{-}:\Theta_{1} R^{-}) = h_{K}^{-} \frac{2^{\frac{[K:Q]}{2}}}{Qw} \prod_{p \in \mathbf{P}, \ p|n} \left| 1 - \psi(p) p^{f_{p}^{+}} \right|^{g_{p}^{+}}$$

Note that the above formula holds in the group ring as well as in the ring of integers. Thus we can choose for example $R^- = \{\alpha \in \mathbf{Z}[G] | \sigma_{-1} \alpha = -\alpha\}$ or $R^- = \{\alpha \in o_K | \sigma_{-1} \alpha = -\alpha\} \simeq \{\alpha \in \mathcal{O}_K | \sigma_{-1} \alpha = -\alpha\}$.

References

- Girstmair, K., An Index Formula for the Relative Class Number of an Abelian Number Field, J. Number Th. 32 (1989), 100–110.
- Iwasawa, K., A class number formula for cyclotomic fields, Ann. of Math. 76 (1962), 171–179.
- 3. Lang, S., Cyclotomic fields, GTM 59, Springer, New York (1978).
- Leopoldt, H.-W., Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. reine angew. Math. 201 (1959), 119–149.
- 5. Lettl, G., The ring of integers of an abelian number field, J. reine angew. Math. 404 (1990), 162-170.
- 6. Sinnott, W., On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math. 108 (1978), 107–134.
- Sinnott, W., On the Stickelberger Ideal and the Circular Units of an Abelian Field, Invent. math. 62 (1980), 181–234.
- Washington, L. C., Introduction to Cyclotomic Fields, GTM 83, Springer, New York (1982).

Received: 28.09.89 Revised: 30.04.90

Institut für Mathematik Karl-Franzens-Universität Halbärthgasse 1/1 A-8010 Graz