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Abstract. Using Leopoldt’s theorem, which describes the structure of the integers of an
abelian number field K as Galois module, we will show a connection between Stickelberger
elements and cotangent numbers. Both of them have been used for index formulas containing
g , the minus part of the class number of K.

1. INTRODUCTION

Let K be an abelian number field, i. e. a Galois extension of Q of
finite degree with abelian Galois group G = Gal(K/Q) . For any such
K | Girstmair [1] defined a cotangent number ngx € K and calculated
the index of the Z- module generated by the conjugates of 7x in the
imaginary part of oy , the ring of integers of K . This index turns
out to be hj , the minus part of the class number of K , multiplied
with a rational factor, which depends only on well-known arithmetical
constants of K . This new algebraic description of hj isin contrast
to the known relation of hj to the index of the Stickelberger ideal
in the imaginary part of the group ring over G ([2], [6], [7]), where
the computation of the additional factor in the index formula is rather
difficult in general. A formal analogy between cotangent numbers and
Stickelberger elements is obvious, but there was no explanation for that.

In this paper we develop a connection between cotangent numbers and
Stickelberger elements, using Leopoldt’s description of oy as Galois
module ([4], [5]). It turns out that the cotangent number of K is
obtained by applying a sum of (modified) Stickelberger elements to a
“Basiszahl” of K . Going back to the group ring, we find fairly easy
index formulas (also for Stickelberger elements of higher degree), using
an -in general fractional- principal Stickelberger ideal.
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2. MODIFIED STICKELBERGER ELEMENTS
For ne N let ¢, = e € C be the analytically normed, primitive
n- th root of unity and Q™ = Q((,) € C the n- th cyclotomic
field. Without loss of generality, every abelian number field shall be
considered as a subfield of C | thus by the theorem of Kronecker -
Weber as subfield of some Q™) . The natural operation of Z/(n)* on
tr , the group of n- th roots of unity, yields

{tezZ|(t,n)=1} — Z/(n)* 5 ¢ =gGa(Q"™/qQ)

t — t+(n) Iof

where ¢; is defined by o¢,((,) = ¢} . Note that o_; is just complex
conjugation for any n . For m € Ny = NU {0} the m- th Bernoulli
polynomial B, (X) € Q[X] is defined by

te! = tm
e = B, (X)— .
et —1 ;) (%) m!

For z € R let (2} =z —[z] € [0,1) denote the least non-negative
element of r+4Z . To establish the connection with cotangent numbers
in the next chapter, we need modified Stickelberger elements. In contrast
to the usual definition (see e. g. [3], p.44) we take the inverse of each
element of the Galois group.

DEFINITION 1: Let m,n € N |, K/Q be an abelian number field with
G =Gal(K/Q) and K, =KnQ™

m—1

a) 9, (Q™.n) = "= S B,((L) o € QG  is called
t=1

m
(t,n)=1
(modified) Stickelberger element of Q'™ of degree m .
b) ¥, (A, n)=corg/g, resqen /K, -ﬁyn(Q(”),n) -

T

ntoe (Bm((%)) 5 a) € Q[G] is called (modified)
t=1 geld
{t,n)=1 Tk, =0k,

Stickelberger element of K of degree m and level n .
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Definition 1.b) employs the usual method to transport Stickelberger
elements from Q™ to K . res ;. and cor_,  denote restriction
and corestriction between the rational group rings of the corresponding
Galois groups (see e. g. [7], p.185).

The following lemma shows how Stickelberger elements behave, when
they are restricted to a cyclotomic subfield.

LEMMA 1. Let m,n, N € N with n|N andput P ={p € P| p|N and
p4n} . Then

U (Q™ N) = T] (1= p""0p) 9m(Q™, ) .
peP

Using the distribution relation for B,,(X) (e. g. [3], pp.35f.), the
usual straightforward calculation reducing the range of summation from
Z/(N)Y* to Z/(n)* gives the proof of Lemma 1.

If K isan abelian number field with Galois group G, let the group
ring Q[G] operate on the additive structure of K as usual, i. e. for
P=2ecc o0 €QIG] and o € K put pa=} ., ro0(a). Next
we recall an obvious extension of Lemma 3 of [5].

LEMMA 2. Let pe P, neN, g € G and C € pinp an np- th root
of unity., Then

Q2 Q™ o(() i€ pa (i)
(COTQ(angQ(n)J)C = 0 If & pn and pin (ii)
—o;to((P) (& pp andp bn  (iii)

For n € N let ¢(n) be the powerful part of n , 1 e. n =
gin) JI p.If n,NeN with n|N, then Q™/QM™ is wildly

peP
pin,plgn
ramified if and only if g(n) # g(N) .

As usual, let ¢ denote Euler’s totient function.

LemMma 3. Let d,m,n’,n e N, put ng = (d,n’) , n; =lem(d,n') and

suppose ny|n . Further let { be a root of unity of order d . Then we

have:

8) Un(QU,n)C =0, if g(ne) #q(d) (i e. Q/QU) is wildly
ramified).
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b) U,(Q™, n')( = t,;p((nn])) HPI%(_U;I) Hp[n’,p#nu(l —p"lop)
Om(Q),mo) (75, if g(no) = g(d)

PrROOF: 0,(Q™ n/) ¢ = [Q . Q» D] 9,,(Q™) n') ¢

Q

QU] ¥ (Q ) ¢ = [QM™) - QU] corch)/qw Vm Q’ o C
[Q(n) : Q(n])] COI‘Q(C”/Q(“O)( H (1 - ) Q TLO )
pln’, ptno

using Lemma 1. If Q(¥/Q(") is wildly ramified, this equals 0 by
Lemma 2.(i1), which proves part a).

Now suppose that ¢(ng) = g¢(d) and use Lemma 2.(iii). Then
the above expression equals  [Q(™) : Q(m)] len,’p*no (1-p™to,)

— o

2. Bn({35) corqu g i (=
t=1
(ting)=1

d_
2 Moo s (1=27710p) T (077) 9m(QC, o) (76 .
LEMMA 4. Let m,n € N with n odd. Then
I (QP™,20) Gon = (27 — 0571 9,0 (Q™) 1)

ProoF: Using Lemma 2.(iii) with ( = (3, , p=2 and o = oy , we
have (3, = —0;'(, . Therefou U (QUP™ 20) Gy =
—O'-—;] P (QUY) 2n) (n=—05 (1 —2m" Los) ‘z9m(Q(“),n) (n =

(2™ — 319, (Q™), n) ¢, , where we made use of Lemma 1 again. i

3. COTANGENT NUMBERS AND MAIN REsuULT

For the rest of this paper, K denotes an abelian number field with
G = Gal(K/Q) and conductor n , i e n is the smallest positive
integer with K C QU™ .

DEFINITION 2: For m € N and K # Q

1\ ™ me11 (T 1
s = Trauk((5) cot™ () = 5 6im) =

m—1

= TIQ(n)/K( nm Z;;; Bm(<%>) C;j)
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is called cotangent number of K of degree m .

A, - TI_
ni = (1—=0o-1)m,k = Trgu g (i cot;)

is called cotangent number of K .

Here Trgm, i denotes the trace from Q™ to K, cott™1) the
(rm — 1)- st derivative of the cotangent function, and
O = { ! ff m=l Kronecker’s delta. The equality of the two

0 if m#1

expressions defining #,, ;¢ can be found in [1], considering the following
remark: since B;,(1) = B,,(0) for even m and Bp,(l) = —B,,(0) =0
for odd m > 3, the only difference between Girstmair’s definition
of 7m. i and Definition 2 is for m = 1 , where Girstmair considers
mx + QM K] = Trq /i (5 cot” + %) . If we use 77 g to obtain
the cotangent number 7ng = (1 —o_1)n g , this difference becomes
immaterial.

Splitting the sum in Definition 2 by summing over those j , for which
(7,n) 1s the same, and using the modified Stickelberger elements, we
obtain

Nm,K = TI'Q(n)/K (0—1 Z (;)mﬁl ﬁm(Q(‘),t) Ct) . (1)
t

1<t|n

Let us define modified cotangent numbers of degree m by

Mm K = TrQ(n)/K (U—l Z T9m(Q(t)ut) Ct) =

t
1<t|n

— n
mnm—1 1

= T (" 3 g Bl 2)6).

1=

—

Obviously 1 x =m x .

Now we will recall Leopoldt’s theorem. Put n* = HpeP,pln P,
D ={d e N| n*|d and d|n} , and define a “Basiszahl” of K by

T = Z TrQ(d)/Kd Cd (3)
deD
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where Ky = K N QY . Note that in [5] a slightly different set D is
used, namely the set of all possible conductors of Dirichlet characters
of K . Since for odd £k € N Q¥ = Q% and ¢ = —Ug_ch ,
Leopoldt’s theorem holds with 7' as defined in (3) as well:

Multiplication with T yields wsomorphisms between Q[G] and K |
as well as between Oy and ox = Dyep Z[G) Tk, Ca , where
Ok ts Leopoldt’s order (see [4], [5] ) contained in the mazimal order of
Q[G] , and ok s the ring of integers of K .

Now one can guess our main result: an appropriate sum of Stickel-
berger elements corresponds to the cotangent number 7; ¢ under the
above isomorphism. For m > 2 the analogous sum of higher Stick-
elberger elements will correspond to the modified cotangent numbers
Nm.k - First we need another lemmas:

LEMMA 5. Let d € D, m,n’ € N with n'|n, and put ng = (d,n’)
and n; = lem(d,n') .

a) If q(d) n' then ¥,,(K,n') Trqu g, Ca=0.
b) If Q(d)lnf then 19'm(-‘g*‘l-’)‘nf)TI‘IQ(“)/KH’- Ca = [Q(“):KQ("’)}[Q("):A'Q(d)]
TrQ(“)/K (f(%% HI (_Up_l) H (1 “pmﬁlap) ﬁm(Q(nﬂ)anﬂ)gnu)
Plng

pln’
pino

2 if d=2(4) and [Q™:KQ"I)] =2

1 else

¢) [Q™: KQW) = {

PROOF: (K, n') Trqu k, (4 = W 9.(QM™, n'y -
Trquyk, Ca = [_Q(n);ijl(Q(n’)] Trxqux (In(QM, n') (i) =

[Q(n):]\'Q(n’)il[an):]\’Q(d)] Trqomx (ﬁm(Q(n)a n') Cd) :
Now using Lemma 3, gives assertions a) and b).

To prove ¢) we will use the notations of Chapter 2 of [5]. Let X
(resp. Y ) be the group of primitive Dirichlet characters of K (resp.
of KQ@ ). Then Y is generated by X and X4 | the character
group of Q{4 . Let w, denote the Dirichlet character with conductor
4 . Since the projection of X onto the characters of second kind modulo
n is surjective ([5], Lemma 1) and X(4) contains all characters of first
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kind except w, if d=2 (4), one deduces

(X" Y) = { 2 Mn=0(8),d=2(4)and f, #4(8) forall y € X
1 else
The proof of assertion ¢} now follows easily. I

We introduce the following notations: let n = IT;_, p§* with pairwise
different primes p; € P be the prime factorization of the conductor n
of K ,putting p; =2 if n iseven. For any I C {1,...,r} let

(n) . FOln:)
ny= pr" and ¢; = Q™: K 8_1 ] H(—Frob(pi)) € QG ,

el [ligr P igl

where Frob{p;) is any extension of resqui g, Op; With [ = ;’;—1 .

For m € N we define

{ 0 if QM :KQ"I]=1 ()
T4 2m T S Fob(2)7! i [Q): KQUT =2
O, = Z cr9m(K,ny) (5)
IC{I,A..J‘}
and
(—):rn =0 (Gm + Km Z Cr 1S'w'n(f(: Tl,[)) . (6)
IC{2,...,r}
With these notations we have the following result:
THEOREM 1.
@’m T =N
Specializing the theorem for m =1, yields the relations
O\T =n x and (1—0_1)0\T =ng . (7)

Note that for K = Q") the definition of ©,, uses the Stickelberger
elements of the same subfields of Q") as were used by Ramachandra
to obtain circular units, which generate a subgroup of finite index in the
full group of units (see [8], Theorem 8.3).
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Proor: Let I C {1,...,r} and d € D . Since Lemma 5.a) yields
U (K, nr) Trga kg, (o = 0 whenever q(d) 4 ny, we will always assume
that g(d)jny . Then we have no = (d,n;) = q(d) [l pi and

i€l, pitg{d)
= [I;g; pi - Furthermore n; = lem(d,ny) = ny[[;4; pi and

win) _
elny)

4
g
[T.g; pi*~" . Using Lemma 5.b) a short calculation shows

Cr ﬁm(ﬁ', n[) TI'Q(ri)/A'd Cd = m TI'Q(n)/K ('ﬁm(Q(nU),ng) Cnu) .

If I isfixed and d runsthrough D with ¢(d)|n;, then ny = (d,n;)
runs through N; = {t | [[,c;p: | t| nr} . This correspondence
between d and mng is one-to-one, so we have c¢;d, (K, n;)T =
Z' [Q("):II\'Q(dt)] TI.Q(“)/J’\' (ﬂnl(Q(U7t) gt) ,Wherﬁ di = q(t) H pl "
LEN; 1<:<r

pika(1)

Since {t&N| t|n}= |J N;,we obtain
IC{1,..,r}

@mT: Z TrQ(")/K(ﬁm(Q(t)‘t)Cf)_!»
1<t|n
t=0 (4)
1 » (8)
+ RETTRGE] Trqe i (9m(QY,1)¢:) -

1<t|n
t#£0 (4)

If [Q(”) ; I&"Q(”‘)] = 1, just multiply both sides with o_; , and
remember &, =0 and (2) to finish the proof of Theorem 1.

If [QU: KQ™] =2, n mustbe even and p; = 2 . In this case
we calculate as above

Km 9 C[’lgm(.[(,nj)T:n‘{m% ) TrQ(nJ/K(??m(Q(”,t)(1).

[c{z,..r) 1<t|n
=1 (2)
Using Lemma 4, this equals £ 3 Trqm /i (ﬂm(Qm,t) Ci+
ilzgltt(g)
9,,(Q2Y, 2¢) gZi) =1 Y Trqek (19m(Q“),t) gi) _
tlfc’SOtLZ)

Adding this result to (8), one can finish the proof as above. §
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4. INDEX FORMULAS

In this chapter we use the generalized module index: if L and L’
are lattices spanning the same finite-dimensional Q- vector space V
(i.e. L and L' are Z- modules with dimqV =1gzL =gzl < oc ),
define

(L:L")=|det ¢,

where ¢ is any automorphism of V' with ¢(L) = L' (seee. g. [7],
p.187). If L' C L, (L:L") equals the usual index of groups.

Let X be the group of primitive Dirichlet characters belonging to the
abelian number field K, and let X* (resp. X~ ) denote the group
of even (resp. the set of odd) characters in X (see e. g. [8], chap.3).
Using the cotangent number ng = (1 —o_;)n x = Trgo (i cotl),

Girstmair [1] computed ((1 — o_))ox @ Z[G]ng ] and found that
) U

hje1s a factor of this index. He also computed an analogous index
for n,, s , where erxi B, appears as a factor. In this product
X’ runs through X7 for even m , and through X~ for odd m .

Bpny = J‘m_1 Zi_l x(t (i) are Leopoldt’s generalized Bernoulli
numbers. If the comin(,tm of K is a prime power, 7, x does not
belong to oy in general. Therefore in [1] the cotangent numbers are
multiplied with appropriate rational integers to obtain M.k € 0K, and
the results are formulated for these numbers, using the usual index of
groups.

If we assume that [Q(") : KQ" )] =1 and use Theorem 1, we can
split the above index and transfer it with the help of Leopoldt’s theorem
mto the group ring, abbreviating R~ = (1 ~ o_;) Z[G] :

((l —o_y)ox : Z|G] ‘I“\') = ((l —0.,)OkT:R™ T) .

(R_ T:ZIG](1-0_1)0_10.T) = ((1 —0_1) Ok : R‘)(R" aCH Rf) .
We will investigate the second index and show that it is hy times a
rational factor, similarly easy as in [1]. More generally we will derive an
index formula for ©,, as defined in (5).

For this purpose let K™t be the maximal real subfield of K . For
any rational prime p € P let g, be the number of prime ideals of K
lying above p and p/» be their norm, and define gj, f;"f analogously
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for K+ . If K# K" | put

0 ramified
wip) = 1 if the primes of KT lying above p are split
—1 inert

in the relative extension K/KT . This is just the Hecke character of
K /Kt | which depends only on the rational primes, since K 1s abelian.

LEMMA 6. Let z be algebraic independent over C . Then
IT - xp)e) = (1= 2)%
XEXT
and if K # K™t
, +. ot
[T 0= xp)2) = —(p) 277 )% .

XEX ~

ProoF: If the product runs over a group of Dirichlet characters, the
proof works with the usual idea of interpreting the ramification proper-
ties of primes via Dirichlet characters (see the proof of Theorem 4.3 in
[8]). For the second product we have

. — )z _pr 9p
II a-xp2) = Hex (1= xin)z) _ (1 )

XEX~ HX€X+ (1= x(p)2) N (1_ij)g;' -

Using v as defined above, the assertion follows. 1§

THEOREM 2. Let R* be any sublattice of Q[G]* = (1 £ 0_1) Q[G]
orof K* =(14+0_,)K suchthat R* has maximal rank.

If me N Iseven
ot
(R 0. R =| [ (1= +p-0%)" I P2

T
pEP, p|n xEXT

If meN isodd and K # K™t
-Bm.,\'

g
w0, m)=| [[ (1-e@er+p-nH)" T =X

peEP, pin xXEX ™
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Proor: Extend each character y € X to x: Q[G] - C by Q-
linearity. Then Lemma 1.2.b) of [7], p.188, yields (R* : ©,, R*) =
[l ex+ x(©y)] for any lattice R* C Q[G]* | and by Leopoldt’s
theorem for any lattice R* C K% as well. So we only have to compute

X(Om) .

Let x € X and put Iy = {1] 1 <1 <7, pi|fy} . Then we have

m—1

- 1 . n
X(Im( K, nr)) = emgegen; XO0n(QM™,n1) = momgrm
> Ba((: -)) x(corgin) yqenr) @1) . Now observe that

1<t<ny
(t,np)=1

if X‘Gal(q(n)/Q(w)) #1

X(Corg(n) /oin )ai
wrer { (nn) ]X(f) if xe X e IycT

and [Q(™) : Q(”’ J=I1igs (i . If Iy C I we have furthermore
n™~1 - B g
a2 Bal(E) x f) H (1= """ x(pi)) =% (except for
(1St5n1 1€I\ 1o
I,‘.‘l]):l

m =mn =1 and x trivial, which will not be needed). Putting all
together, we obtain x(c; ¥, (K ,ny)) =

0 if Iy ¢ 1
m— B .
[T =p)x(p) TT (1=p ' x(ps)) 222 if Iy I
i@l i€I\Iy
This yields x(0,,) = \/( Y ﬁm(ff.,n[)) =

Incfcgl,...,r}
By m=—1
Fex oy (IO =p)xtp) T (=5 xip) =

I g1 e\,
J’QCIC{],.,.,T'}

a1 (=) ) + (1= 27 x(p))) =

jEU S\ o

ﬁl H (1 —x(p;) (P +p; — 1)) . Now taking the product over all

M)
X € )&* if m iseven oroverall y € X~ if m is odd, and using

Lemma 6 gives the formulas of the theorem. §

Using the analytic class number formula for A% ([8], Theorem 4.17)
and Theorem 2 with m =1, immediately yields the following
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COROLLARY 1. Assume that K # K* . Then

2K:Q 4

- .0 T : WfF 19p

(RT:O1R )—hK—Q-‘w— H |1_¢(P)PP |
p€EP, pln

Note that the above formula holds in the group ring as well as in

the ring of integers. Thus we can choose for example k™ =

{a € Z|G])| o1 = —a} or W ={a€og|loja=—~a}~»{ac

Ogloia=—-al.
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