Higher Order Multiphase Image Segmentation and Registration

Stephen Keeling Institute for Mathematics and Scientific Computing Karl Franzens University of Graz, Austria

in cooperation with Stefan Fürtinger and Renier Mendoza

Mathematical Image Processing Section, GAMM 2012, Darmstadt

March 28, 2012

Goal: Overcome the essentially piecewise constant model of TV regularization.

Goal: Overcome the essentially piecewise constant model of TV regularization. In the classical approach, minimize:

$$J(I) = \int_{\Omega} |I - \tilde{I}|^2 + \mathsf{TV}_{lpha}(I)$$

Goal: Overcome the essentially piecewise constant model of TV regularization. In the classical approach, minimize:

$$J(I) = \int_{\Omega} |I - \tilde{I}|^2 + \mathsf{TV}_{\alpha}(I)$$
 where

$$\alpha \int_{\Omega} |DI| = \mathsf{TV}_{\alpha}(I) = \sup \left\{ \int_{\Omega} I \operatorname{div} \psi : \|\psi\|_{\infty} \leq \alpha, \psi \in C_0^1(\Omega, \mathbb{R}^n) \right\}$$

Goal: Overcome the essentially piecewise constant model of TV regularization. In the classical approach, minimize:

$$J(I) = \int_{\Omega} |I - \tilde{I}|^2 + \mathsf{TV}_{\alpha}(I)$$
 where

$$\alpha \int_{\Omega} |DI| = \mathsf{TV}_{\alpha}(I) = \sup \left\{ \int_{\Omega} I \operatorname{div} \psi : \|\psi\|_{\infty} \leq \alpha, \psi \in C_0^1(\Omega, \mathbb{R}^n) \right\}$$

Noisy and TV-reconstructed images:

Goal: Develop a functional with a kernel which is richer than piecewise constants.

Goal: Develop a functional with a kernel which is richer than piecewise constants. In the generalized approach, minimize:

$$J(I) = \int_{\Omega} |I - \tilde{I}|^2 + \mathsf{TGV}_{\alpha}^k(I)$$

Goal: Develop a functional with a kernel which is richer than piecewise constants. In the generalized approach, minimize:

$$J(I) = \int_{\Omega} |I - \tilde{I}|^2 + \mathrm{TGV}_{\alpha}^k(I)$$
 where

$$\mathsf{TGV}_{\alpha}^{k}(I) = \sup\left\{\int_{\Omega} I \operatorname{div}^{k} \psi : \underbrace{\|\operatorname{div}^{l} \psi\|_{\infty} \leq \alpha_{I}}_{I=0,\dots,k-1}, \psi \in C_{0}^{k}(\Omega, \operatorname{Sym}^{k}(\mathbb{R}^{n}))\right\}$$

Goal: Develop a functional with a kernel which is richer than piecewise constants. In the generalized approach, minimize:

$$J(I) = \int_{\Omega} |I - \tilde{I}|^2 + \mathrm{TGV}_{\alpha}^k(I)$$
 where

$$\mathsf{TGV}_{\alpha}^{k}(I) = \sup\left\{\int_{\Omega} I \operatorname{div}^{k} \psi : \underbrace{\|\operatorname{div}^{l} \psi\|_{\infty} \leq \alpha_{I}}_{I=0,\dots,k-1}, \psi \in C_{0}^{k}(\Omega, \operatorname{Sym}^{k}(\mathbb{R}^{n}))\right\}$$

Noisy and TGV $_{\alpha}^{2}$ -reconstructed images: [Bredies, Kunisch, Pock]

Note: For example, TGV_{α}^2 reformulated with duality as

$$\operatorname{TGV}_{\alpha}^{2}(I) = \min_{\boldsymbol{G}} \int_{\Omega} \left\{ \alpha_{1} | DI - \boldsymbol{G} | + \frac{1}{2} \alpha_{1} | \nabla \boldsymbol{G}^{\mathrm{T}} + \nabla \boldsymbol{G} | \right\}$$

Note: For example, TGV_{α}^2 reformulated with duality as

$$\mathrm{TGV}_{\alpha}^{2}(I) = \min_{\boldsymbol{G}} \int_{\Omega} \left\{ \alpha_{1} | DI - \boldsymbol{G} | + \frac{1}{2} \alpha_{1} | \nabla \boldsymbol{G}^{\mathrm{T}} + \nabla \boldsymbol{G} | \right\}$$

Locally:

- *DI* smooth $\Rightarrow \mathbf{G} = \nabla I \approx \text{optimal} \Rightarrow \text{TGV}_{\alpha}^{2}(I) \approx \alpha_{0} \int_{\text{loc}} |\nabla^{2}I|.$
- *I* jumps $\Rightarrow \mathbf{G} = \mathbf{0} \approx \text{optimal} \Rightarrow \text{TGV}_{\alpha}^{2}(\mathbf{I}) \approx \alpha_{1} \int_{\text{loc}} |\nabla \mathbf{I}|.$

Note: For example, TGV_{α}^2 reformulated with duality as

$$\mathrm{TGV}_{\alpha}^{2}(I) = \min_{\boldsymbol{G}} \int_{\Omega} \left\{ \alpha_{1} | DI - \boldsymbol{G} | + \frac{1}{2} \alpha_{1} | \nabla \boldsymbol{G}^{\mathrm{T}} + \nabla \boldsymbol{G} | \right\}$$

Locally:

- *DI* smooth $\Rightarrow \mathbf{G} = \nabla I \approx \text{optimal} \Rightarrow \text{TGV}_{\alpha}^{2}(I) \approx \alpha_{0} \int_{\text{loc}} |\nabla^{2}I|.$
- *I* jumps $\Rightarrow \mathbf{G} = \mathbf{0} \approx \text{optimal} \Rightarrow \text{TGV}_{\alpha}^{2}(\mathbf{I}) \approx \alpha_{1} \int_{\text{loc}} |\nabla \mathbf{I}|.$

Generally:

- So computing TGV²_α can be seen as solving a minimization problem,
- in which terms of first and second order are optimally balanced out,
- and the vector field G represents the smooth part of the measure DI.

Higer Order Models for Segmentation and Registration

Example:

Objective: Remove the motion in a DCE-MRI sequence so that individual tissue points can be investigated.

Higer Order Models for Segmentation and Registration

Example:

Objective: Remove the motion in a DCE-MRI sequence so that individual tissue points can be investigated.

Challenges: Contrast changes with time, and the images are far from piecewise constant.

Higer Order Models for Segmentation and Registration

Example:

Objective: Remove the motion in a DCE-MRI sequence so that individual tissue points can be investigated.

Challenges: Contrast changes with time, and the images are far from piecewise constant.

Plan: Segment the images, transform the edge sets to diffuse surfaces using blurring, register the diffuse surfaces with progressively less blurring.

Established Approaches to Segmentation

Method of kmeans:

$$\min_{\boldsymbol{p}_{k},\chi_{k}}\left\{\sum_{k=1}^{K}\int_{\Omega}|\boldsymbol{p}_{k}\chi_{k}-\tilde{\boldsymbol{l}}|^{2}:\{\boldsymbol{p}_{k}\}\in\mathcal{P}^{0},\chi_{k}:\Omega\rightarrow\{0,1\}\right\}$$

Established Approaches to Segmentation

Method of kmeans:

$$\min_{\boldsymbol{p}_{k},\chi_{k}}\left\{\sum_{k=1}^{K}\int_{\Omega}|\boldsymbol{p}_{k}\chi_{k}-\tilde{\boldsymbol{l}}|^{2}:\{\boldsymbol{p}_{k}\}\in\mathcal{P}^{0},\chi_{k}:\Omega\rightarrow\{0,1\}\right\}$$

Minimizing the Mumford-Shah functional:

$$\min_{I,\Gamma} \left\{ \int_{\Omega} |I - \tilde{I}|^2 + \delta^{-1} \int_{\Omega \setminus \Gamma} |\nabla I|^2 + \beta |\Gamma| \right\}$$

Established Approaches to Segmentation

Method of kmeans:

$$\min_{\boldsymbol{p}_{k},\chi_{k}}\left\{\sum_{k=1}^{K}\int_{\Omega}|\boldsymbol{p}_{k}\chi_{k}-\tilde{\boldsymbol{l}}|^{2}:\{\boldsymbol{p}_{k}\}\in\mathcal{P}^{0},\chi_{k}:\Omega\rightarrow\{0,1\}\right\}$$

Minimizing the Mumford-Shah functional:

$$\min_{I,\Gamma} \left\{ \int_{\Omega} |I - \tilde{I}|^2 + \delta^{-1} \int_{\Omega \setminus \Gamma} |\nabla I|^2 + \beta |\Gamma| \right\}$$

or the Ambrosio-Tortorelli phase function approximation:

$$\min_{I,\chi} \left\{ \int_{\Omega} \left[|I - \tilde{I}|^2 + \delta^{-1} |\nabla I|^2 \chi^2 + \epsilon |\nabla \chi|^2 + \epsilon^{-1} |1 - \chi|^2 \right] \right\}$$

Higher Order Counterparts

Method of kmeans:

$$\min_{\boldsymbol{p}_{k},\boldsymbol{\chi}_{k}}\left\{\sum_{m=1}^{M}\int_{\Omega}|\boldsymbol{p}_{k}\boldsymbol{\chi}_{k}-\tilde{\boldsymbol{I}}|^{2}:\{\boldsymbol{p}_{k}\}\in\mathcal{P}^{m-1},\boldsymbol{\chi}_{k}:\Omega\rightarrow\{0,1\}\right\}$$

Minimizing the Mumford-Shah functional:

$$\min_{I,\Gamma} \left\{ \int_{\Omega} |I - \tilde{I}|^2 + \delta^{-1} \int_{\Omega \setminus \Gamma} |\nabla^m I|^2 + \beta |\Gamma| \right\}$$

or the Ambrosio-Tortorelli phase function approximation:

$$\min_{I,\chi} \left\{ \int_{\Omega} \left[|I - \tilde{I}|^2 + \delta^{-1} |\nabla^m I|^2 \chi^2 + \epsilon |\nabla \chi|^2 + \epsilon^{-1} |1 - \chi|^2 \right] \right\}$$

Representative Problems with These Methods

kmeans leads to staircasing and disconnectedness:

Representative Problems with These Methods

kmeans leads to staircasing and disconnectedness:

Ambrosio-Tortorelli gives a *fuzzy* edge function:

Higher Order on Connected Components of Segments

Higher Order on Connected Components of Segments Initial Final Constant 0.5 0.5 0 0.25 0.5 0.75 0.25 0.5 0.75 0 Linear 0.5 0.5 0.25 0.5 0.75 0.25 0.5 0 0.75 0 Quadratic 0.5 0.5 0.25 0.5 0.75 0.25 0.5 0.75 0 1 0

Use multiple phase functions $\{\chi_k\}$ and model functions $\{I_k\}$.

Estimate $\tilde{I} \approx \sum_{k=1}^{K} I_k \chi_k$

Use multiple phase functions $\{\chi_k\}$ and model functions $\{I_k\}$.

Estimate $\tilde{l} \approx \sum_{k=1}^{K} l_k \chi_k$ through minimizing:

$$\min_{\{\boldsymbol{l}_{k}\},\{\boldsymbol{\chi}_{k}\}} \left\{ \sum_{k=1}^{K} \int_{\Omega} \left[|\boldsymbol{l}_{k} - \tilde{\boldsymbol{l}}|^{2} \boldsymbol{\chi}_{k}^{2} + (\epsilon + \epsilon^{-1} \boldsymbol{\chi}_{k}^{2}) |\nabla^{m} \boldsymbol{l}_{k}|^{2} \right] \right\}$$

Use multiple phase functions $\{\chi_k\}$ and model functions $\{I_k\}$.

Estimate $\tilde{l} \approx \sum_{k=1}^{K} l_k \chi_k$ through minimizing:

$$\min_{\{I_{k}\},\{\chi_{k}\}} \left\{ \sum_{k=1}^{K} \int_{\Omega} \left[|I_{k} - \tilde{I}|^{2} \chi_{k}^{2} + (\epsilon + \epsilon^{-1} \chi_{k}^{2}) |\nabla^{m} I_{k}|^{2} + \delta |\nabla \chi_{k}|^{2} + \delta^{-1} |\chi_{k} (\chi_{k} - 1)|^{2} \right] + \delta^{-1} \int_{\Omega} \left[\sum_{l=1}^{K} \chi_{l} - 1 \right]^{2} \right\}$$

Use multiple phase functions $\{\chi_k\}$ and model functions $\{I_k\}$.

Estimate $\tilde{l} \approx \sum_{k=1}^{K} l_k \chi_k$ through minimizing:

$$\min_{\{I_k\},\{\chi_k\}} \left\{ \sum_{k=1}^{K} \int_{\Omega} \left[|I_k - \tilde{I}|^2 \chi_k^2 + (\epsilon + \epsilon^{-1} \chi_k^2) |\nabla^m I_k|^2 + \delta |\nabla \chi_k|^2 + \delta^{-1} |\chi_k(\chi_k - 1)|^2 \right] + \delta^{-1} \int_{\Omega} \left[\sum_{l=1}^{K} \chi_l - 1 \right]^2 \right\}$$

Combines elements of kmeans and Ambrosio Tortorelli.

Simplification:

$$\min_{\{I_k\}}\sum_{k=1}^{K}\int_{\Omega}\left[|I_k-\tilde{I}|^2\chi_k+(\epsilon+\epsilon^{-1}\chi_k)|\nabla^m I_k|^2\right]$$

with each χ_k binary and depending upon $\{I_l\}$:

$$\chi_k(\boldsymbol{x}) = \begin{cases} 1, & |I_k(\boldsymbol{x}) - \tilde{I}(\boldsymbol{x})| < |I_l(\boldsymbol{x}) - \tilde{I}(\boldsymbol{x})|, & \forall l \neq k \\ 0, & \text{otherwise.} \end{cases}$$

Simplification:

$$\min_{\{I_k\}}\sum_{k=1}^{K}\int_{\Omega}\left[|I_k-\tilde{I}|^2\chi_k+(\epsilon+\epsilon^{-1}\chi_k)|\nabla^m I_k|^2\right]$$

with each χ_k binary and depending upon $\{I_l\}$:

$$\chi_k(\boldsymbol{x}) = \begin{cases} 1, & |I_k(\boldsymbol{x}) - \tilde{I}(\boldsymbol{x})| < |I_l(\boldsymbol{x}) - \tilde{I}(\boldsymbol{x})|, & \forall l \neq k \\ 0, & \text{otherwise.} \end{cases}$$

Effects:

► $\epsilon^{-1}\chi_k |\nabla^m I_k|^2 \Rightarrow I_k$ nearly in \mathcal{P}^{m-1} on each connected component of $(\chi_k = 1)$.

Simplification:

$$\min_{\{I_k\}}\sum_{k=1}^{K}\int_{\Omega}\left[|I_k-\tilde{I}|^2\chi_k+(\epsilon+\epsilon^{-1}\chi_k)|\nabla^m I_k|^2\right]$$

with each χ_k binary and depending upon $\{I_l\}$:

$$\chi_k(\boldsymbol{x}) = \begin{cases} 1, & |I_k(\boldsymbol{x}) - \tilde{I}(\boldsymbol{x})| < |I_l(\boldsymbol{x}) - \tilde{I}(\boldsymbol{x})|, & \forall l \neq k \\ 0, & \text{otherwise.} \end{cases}$$

Effects:

► $\epsilon^{-1}\chi_k |\nabla^m I_k|^2 \Rightarrow I_k$ nearly in \mathcal{P}^{m-1} on each connected component of $(\chi_k = 1)$.

• $\epsilon |\nabla^m I_k|^2 \Rightarrow I_k$ extended naturally outside ($\chi_k = 1$).

Simplification:

$$\min_{\{I_k\}}\sum_{k=1}^{K}\int_{\Omega}\left[|I_k-\tilde{I}|^2\chi_k+(\epsilon+\epsilon^{-1}\chi_k)|\nabla^m I_k|^2\right]$$

with each χ_k binary and depending upon $\{I_l\}$:

$$\chi_k(\boldsymbol{x}) = \begin{cases} 1, & |I_k(\boldsymbol{x}) - \tilde{I}(\boldsymbol{x})| < |I_l(\boldsymbol{x}) - \tilde{I}(\boldsymbol{x})|, & \forall l \neq k \\ 0, & \text{otherwise.} \end{cases}$$

Effects:

- ► $\epsilon^{-1}\chi_k |\nabla^m I_k|^2 \Rightarrow I_k$ nearly in \mathcal{P}^{m-1} on each connected component of $(\chi_k = 1)$.
- ► $\epsilon |\nabla^m I_k|^2 \Rightarrow I_k$ extended naturally outside ($\chi_k = 1$).

•
$$|I_k - \hat{I}|^2 \chi_k \Rightarrow I_k \approx \hat{I} \text{ on } (\chi_k = 1).$$

Computational Investigation of the Approach Example: $K = 2, m = 2, \{\chi_k\} \& \{I_k\}$ by splitting, $\chi = \chi_1$.

Computational Investigation of the Approach Example: K = 2, m = 2, $\{\chi_k\}$ & $\{I_k\}$ by splitting, $\chi = \chi_1$.

Since $|I_1 - \tilde{I}| < |I_2 - \tilde{I}|$ on and just outside ($\chi = 1$), next curves:

Fig 2b

Computational Investigation of the Approach $(\chi = 1)$ has grown to include $(\tilde{l} > 0)$, but also some $(x < \delta)$,

Computational Investigation of the Approach $(\chi = 1)$ has grown to include $(\tilde{l} > 0)$, but also some $(x < \delta)$,

Since $|I_1 - \tilde{I}| < |I_2 - \tilde{I}|$ in $(x < \delta)$, converged result:

Fig 2c

Computational Investigation of the Approach

Converged result:

Converged result:

Effects: $(K = 2, m = 2, \chi = \chi_1)$

- ► $\epsilon^{-1}\chi_k |\nabla^m I_k|^2 \Rightarrow I_k$ nearly in \mathcal{P}^{m-1} on each connected component of $(\chi_k = 1)$.
- ϵ|∇^mI_k|² ⇒ I_k extended naturally outside (χ_k = 1).
 |I_k − Ĩ|²χ_k ⇒ I_k ≈ Ĩ on (χ_k = 1).

Above \tilde{l} was piecewise linear, now piecewise quadratic:

Above \tilde{i} was piecewise linear, now piecewise quadratic:

Converged result with an unnatural edge in left piece of $(\tilde{l} > 0)$:

This result motivates changing $\epsilon^{-1}\chi_k$ to $\alpha\chi_k$ where $\alpha \ll \epsilon^{-1}$ as $\epsilon \to 0$ (small, i.e., ϵ need not be tuned).

New simplified approach:

$$\min_{\{I_k\}}\sum_{k=1}^{K}\int_{\Omega}\left[|I_k-\tilde{I}|^2\chi_k+(\epsilon+\alpha\chi_k)|\nabla^m I_k|^2\right]$$

again with each χ_k binary and depending upon $\{I_l\}$:

$$\chi_k(\boldsymbol{x}) = \begin{cases} 1, & |I_k(\boldsymbol{x}) - \tilde{I}(\boldsymbol{x})| < |I_l(\boldsymbol{x}) - \tilde{I}(\boldsymbol{x})|, & \forall l \neq k \\ 0, & \text{otherwise.} \end{cases}$$

This result motivates changing $\epsilon^{-1}\chi_k$ to $\alpha\chi_k$ where $\alpha \ll \epsilon^{-1}$ as $\epsilon \to 0$ (small, i.e., ϵ need not be tuned).

New simplified approach:

$$\min_{\{I_k\}}\sum_{k=1}^{K}\int_{\Omega}\left[|I_k-\tilde{I}|^2\chi_k+(\epsilon+\alpha\chi_k)|\nabla^m I_k|^2\right]$$

again with each χ_k binary and depending upon $\{I_l\}$:

$$\chi_k(\boldsymbol{x}) = \begin{cases} 1, & |I_k(\boldsymbol{x}) - \tilde{I}(\boldsymbol{x})| < |I_l(\boldsymbol{x}) - \tilde{I}(\boldsymbol{x})|, & \forall l \neq k \\ 0, & \text{otherwise.} \end{cases}$$

(Alternative to choosing α : Increase the order *m*.)

Computational Investigation of the Approach $|l_1 - \tilde{l}|$ small near ($\chi = 1$) and $|l_2 - \tilde{l}|$ large near ($\chi = 0$):

Computational Investigation of the Approach $|l_1 - \tilde{l}|$ small near ($\chi = 1$) and $|l_2 - \tilde{l}|$ large near ($\chi = 0$):

 $\alpha < \epsilon^{-1} \Rightarrow |I_1 - \tilde{I}| < |I_2 - \tilde{I}|$ always near ($\chi = 1$). Finally:

Fig 4b

- ightarrow *\tilde{I}* is simply piecewise linear.
- $0 \approx |l_1 \tilde{l}| < |l_2 \tilde{l}|$ on $(\chi = 1)$.
- $0 \approx |I_2 \tilde{I}| < |I_1 \tilde{I}|$ on $(\chi = 0)$.

- \sim \tilde{l} is simply piecewise linear.
- ► $0 \approx |I_1 \tilde{I}| < |I_2 \tilde{I}|$ on $(\chi = 1)$.
- $0 \approx |I_2 \tilde{I}| < |I_1 \tilde{I}|$ on $(\chi = 0)$.
- Result is converged.

- \sim \tilde{l} is simply piecewise linear.
- ► $0 \approx |I_1 \tilde{I}| < |I_2 \tilde{I}|$ on $(\chi = 1)$.
- $0 \approx |I_2 \tilde{I}| < |I_1 \tilde{I}|$ on $(\chi = 0)$.
- Result is converged.
- Such cases are more likely with K > 2.

Examples motivate starting with $\{\chi_k\}$ which respect edges.

Examples motivate starting with $\{\chi_k\}$ which respect edges.

Determining non-fuzzy edge set ($\chi = 0$) for $\chi : \Omega \rightarrow \{0, 1\}$:

$$\min_{\chi} \int_{\Omega} |I(\chi) - \tilde{I}|^2 \quad \text{where} \quad I(\chi) = \arg\min_{I} \int_{\Omega} \left[|I - \tilde{I}|^2 \chi + (\epsilon + \alpha \chi) |\nabla^m I|^2 \right]$$

Examples motivate starting with $\{\chi_k\}$ which respect edges.

Determining non-fuzzy edge set ($\chi = 0$) for $\chi : \Omega \rightarrow \{0, 1\}$:

$$\min_{\chi} \int_{\Omega} |I(\chi) - \tilde{I}|^2 \quad \text{where} \quad I(\chi) = \arg\min_{I} \int_{\Omega} \left[|I - \tilde{I}|^2 \chi + (\epsilon + \alpha \chi) |\nabla^m I|^2 \right]$$

Here the edge set $(\chi = 0) = (|x| < \delta)$ can be determined explicitly by minimizing with respect to δ .

Examples motivate starting with $\{\chi_k\}$ which respect edges.

Determining non-fuzzy edge set ($\chi = 0$) for $\chi : \Omega \rightarrow \{0, 1\}$:

$$\min_{\chi} \int_{\Omega} |I(\chi) - \tilde{I}|^2 \quad \text{where} \quad I(\chi) = \arg\min_{I} \int_{\Omega} \left[|I - \tilde{I}|^2 \chi + (\epsilon + \alpha \chi) |\nabla^m I|^2 \right]$$

Here the edge set $(\chi = 0) = (|x| < \delta)$ can be determined explicitly by minimizing with respect to δ . In general?...

Edge Determination Approach

Edge set is $(\chi = 0)$ for $\chi : \Omega \rightarrow \{0, 1\}$,

$$\chi(\boldsymbol{x}) = \begin{cases} 1, & |\boldsymbol{I}_{b}(\boldsymbol{x}) - \tilde{\boldsymbol{E}}(\boldsymbol{x})| < \theta |\boldsymbol{I}_{f}(\boldsymbol{x}) - \tilde{\boldsymbol{E}}(\boldsymbol{x})| \\ 0, & \text{otherwise.} \end{cases}$$

Fuzzy edge function $\tilde{E} = |\nabla I_{\rm s}|$,

$$I_{\rm s} = \arg\min_{I} \int_{\Omega} \left[|I - \tilde{I}|^2 \chi + (\epsilon + \alpha \chi) |\nabla^m I|^2 \right]$$

 $I_{\rm b}$ and $I_{\rm f}$ are background and foreground estimations of \tilde{E} ,

$$I_{b} = \arg\min_{I} \int_{\Omega} \left[|I - \tilde{E}|^{2} \chi + (\epsilon + \alpha \chi) |\nabla I|^{2} \right]$$

$$f = \arg\min_{I} \int_{\Omega} \left[|I - \tilde{E}|^{2} (1 - \chi) + (\epsilon + \alpha (1 - \chi)) |\nabla I|^{2} \right]$$

Edge Determination Approach

Example:

Computed by splitting, starting with $\chi = 1$, then

$$\cdots \to \chi \to \mathit{I}_{s} \to \tilde{\mathit{E}} \to \{\mathit{I}_{f}, \mathit{I}_{b}, \chi\} \to \chi \to \cdots$$

Edge Determination Approach

Example:

Computed by splitting, starting with $\chi = 1$, then

$$\cdots \to \chi \to \mathit{I}_{s} \to \widetilde{\mathit{E}} \to \{\mathit{I}_{f}, \mathit{I}_{b}, \chi\} \to \chi \to \cdots$$

Theorem: There exists a fixed point for this mapping. [Fürtinger & Keeling]

Segmentation Regularization

Segments are regularized by smoothing $\{\chi_l\}$ according to

$$\psi_{I} = \arg\min_{\psi} \int_{\Omega} \left[|\psi - \chi_{I}|^{2} + \delta |\nabla \psi|^{2} \right], \quad I = 1, \dots, L$$

and updating

$$\phi(\mathbf{x}) = I, \quad \forall \mathbf{x} : \chi_I(\mathbf{x}) = 1$$

for redefined

$$\chi_l(\boldsymbol{x}) = \begin{cases} 1, & \psi_l(\boldsymbol{x}) > \psi_k(\boldsymbol{x}), & \forall k \neq l \\ 0, & \text{otherwise} \end{cases}$$

Segmentation Regularization

Segments are regularized by smoothing $\{\chi_I\}$ according to

$$\psi_{I} = \arg\min_{\psi} \int_{\Omega} \left[|\psi - \chi_{I}|^{2} + \delta |\nabla \psi|^{2} \right], \quad I = 1, \dots, L$$

and updating

$$\phi(\boldsymbol{x}) = l, \quad \forall \boldsymbol{x} : \chi_l(\boldsymbol{x}) = 1$$

for redefined

$$\chi_{l}(\boldsymbol{x}) = \begin{cases} 1, & \psi_{l}(\boldsymbol{x}) > \psi_{k}(\boldsymbol{x}), & \forall k \neq l \\ 0, & \text{otherwise} \end{cases}$$

Resulting segments are smoother with increasing δ .

χ

Ъ

χ

If

Ъ

χ

If

lb

Obtaining a Segmentation

With χ in hand, the multiphase approach can be well initialized. For the above examples:

Obtaining a Segmentation

With χ in hand, the multiphase approach can be well initialized. For the above examples:

Defining a Segmentation

With χ in hand, the multiphase approach can be well initialized. For the above examples:

Defining a Segmentation

With χ in hand, the multiphase approach can be well initialized. For the above examples:

Original Image, I~

Smoothed Reconstruction, I

Fuzzy Edge Function, E~

Background I_b of E~

Original Image, I~

Smoothed Reconstruction, I

Foreground I_r of E~

Fuzzy Edge Function, E~

Original Image, I~

Smoothed Reconstruction, I

Foreground I_r of E~

Background I_b of E~

Original Image, I~

Smoothed Reconstruction, I

Foreground I_r of E~

Fuzzy Edge Function, E~

Background I_b of E~

Comparison of the fuzzy edge function

Comparison of the fuzzy edge function with a higher order Ambrosio-Tortorelli approach:

Comparison of the fuzzy edge function with a higher order Ambrosio-Tortorelli approach:

and the respective edge functions,

Original Image, I~

Edge Function x

Smoothed Reconstruction, I

Foreground I_r of E~

Fuzzy Edge Function, E~

Background I_b of E~

Application to Measured Images

Original Image, I~

Smoothed Reconstruction, I

Foreground I_r of E~

Fuzzy Edge Function, E~

Background I_b of E~

Application to Measured Images

Original Image, I~

Smoothed Reconstruction, I

Foreground I_r of E~

Fuzzy Edge Function, E~

Background I_b of E~

Application to Measured Images

Original Image, I~

Smoothed Reconstruction, I

Foreground I_r of E~

Fuzzy Edge Function, E~

Background I_b of E~

For mapping a Purkinje fiber network system [Fürtinger & Keeling]:

For mapping a Purkinje fiber network system [Fürtinger & Keeling]:

Performed using 2D slices,

$$\min_{\boldsymbol{u}} \int_{\Omega} \left\{ |l_0^{\boldsymbol{\epsilon}} \circ (\mathrm{Id} + \boldsymbol{u}) - l_1^{\boldsymbol{\epsilon}}|^2 + \mu |\nabla \boldsymbol{u}^{\mathrm{T}} + \nabla \boldsymbol{u}|^2 \right\}$$

For mapping a Purkinje fiber network system [Fürtinger & Keeling]:

Performed using 2D slices,

$$\min_{\boldsymbol{u}} \int_{\Omega} \left\{ |I_0^{\epsilon} \circ (\mathrm{Id} + \boldsymbol{u}) - I_1^{\epsilon}|^2 + \mu |\nabla \boldsymbol{u}^{\mathrm{T}} + \nabla \boldsymbol{u}|^2 \right\}$$

with diffuse images I_0^{ϵ} and I_1^{ϵ} , providing strong registration force, then $\epsilon \to 0$.

But reducing $\epsilon \rightarrow 0 \Rightarrow \text{argmin} = 0!$ Landscape is

But reducing $\epsilon \rightarrow 0 \Rightarrow \text{argmin} = 0!$ Landscape is

Theorem: There exists a minimizer $\boldsymbol{u}^{\epsilon} \in H^1(\Omega)$ which converges (subsequentially) in $H^1(\Omega)$ as $\epsilon \to 0$.

Registration of Edge Sets But reducing $\epsilon \rightarrow 0 \Rightarrow \operatorname{argmin} = 0!$ Landscape is (@ left)

Theorem: There exists a minimizer $u^{\epsilon} \in H^1(\Omega)$ which converges (subsequentially) in $H^1(\Omega)$ as $\epsilon \to 0$.

However, with

$$\int_{\Omega} |I_0^{\epsilon} \circ (\mathrm{Id} + \boldsymbol{u}) - I_1^{\epsilon}|^2 \quad \rightarrow \quad \int_{\Omega} |I_0^{\epsilon} \circ (\mathrm{Id} + \boldsymbol{u}) - I_1^{\epsilon}|^2 / \int_{\Omega} [|I_0^{\epsilon}|^2 + I_1^{\epsilon}|^2]$$

the landscape becomes (@ right).

Registration of Edge Sets But reducing $\epsilon \rightarrow 0 \Rightarrow \operatorname{argmin} = 0!$ Landscape is (@ left)

Theorem: There exists a minimizer $u^{\epsilon} \in H^1(\Omega)$ which converges (subsequentially) in $H^1(\Omega)$ as $\epsilon \to 0$.

However, with

$$\int_{\Omega} |I_0^{\epsilon} \circ (\mathrm{Id} + \boldsymbol{u}) - I_1^{\epsilon}|^2 \quad \rightarrow \quad \int_{\Omega} |I_0^{\epsilon} \circ (\mathrm{Id} + \boldsymbol{u}) - I_1^{\epsilon}|^2 / \int_{\Omega} [|I_0^{\epsilon}|^2 + I_1^{\epsilon}|^2]$$

the landscape becomes (@ right).

Convergence to Hausdorf distance between edge sets to be shown.

Thank You!