## Higher Order Multiphase Image Segmentation and Registration

Stephen Keeling<br>Institute for Mathematics and Scientific Computing<br>Karl Franzens University of Graz, Austria

in cooperation with
Stefan Fürtinger and Renier Mendoza

Mathematical Image Processing Section, GAMM 2012, Darmstadt

March 28, 2012


## Higher Order Models: Total Generalized Variation

Goal: Overcome the essentially piecewise constant model of TV regularization.

## Higher Order Models: Total Generalized Variation

Goal: Overcome the essentially piecewise constant model of TV regularization. In the classical approach, minimize:

$$
J(I)=\int_{\Omega}|I-\tilde{I}|^{2}+\mathrm{TV}_{\alpha}(I)
$$

## Higher Order Models: Total Generalized Variation

Goal: Overcome the essentially piecewise constant model of TV regularization. In the classical approach, minimize:

$$
\begin{gathered}
J(I)=\int_{\Omega}|I-\tilde{I}|^{2}+\operatorname{TV}_{\alpha}(I) \quad \text { where } \\
\alpha \int_{\Omega}|D I|=\operatorname{TV}_{\alpha}(I)=\sup \left\{\int_{\Omega} I \operatorname{div} \psi:\|\psi\|_{\infty} \leq \alpha, \psi \in C_{0}^{1}\left(\Omega, \mathbb{R}^{n}\right)\right\}
\end{gathered}
$$

## Higher Order Models: Total Generalized Variation

Goal: Overcome the essentially piecewise constant model of TV regularization. In the classical approach, minimize:

$$
\begin{gathered}
J(I)=\int_{\Omega}|I-\tilde{I}|^{2}+\mathrm{TV}_{\alpha}(I) \quad \text { where } \\
\alpha \int_{\Omega}|D I|=\operatorname{TV}_{\alpha}(I)=\sup \left\{\int_{\Omega} I \operatorname{div} \boldsymbol{\psi}:\|\boldsymbol{\psi}\|_{\infty} \leq \alpha, \boldsymbol{\psi} \in C_{0}^{1}\left(\Omega, \mathbb{R}^{n}\right)\right\}
\end{gathered}
$$

Noisy and TV-reconstructed images:


## Higher Order Models: Total Generalized Variation

Goal: Develop a functional with a kernel which is richer than piecewise constants.

## Higher Order Models: Total Generalized Variation

Goal: Develop a functional with a kernel which is richer than piecewise constants. In the generalized approach, minimize:

$$
J(I)=\int_{\Omega}|I-\tilde{I}|^{2}+\operatorname{TGV}_{\alpha}^{k}(I)
$$

## Higher Order Models: Total Generalized Variation

Goal: Develop a functional with a kernel which is richer than piecewise constants. In the generalized approach, minimize:

$$
J(I)=\int_{\Omega}|I-\tilde{I}|^{2}+\operatorname{TGV}_{\alpha}^{k}(I) \quad \text { where }
$$

$$
\operatorname{TGV}_{\alpha}^{k}(I)=\sup \{\int_{\Omega} I \operatorname{div}^{k} \psi: \underbrace{\left\|\operatorname{div}^{\prime} \psi\right\|_{\infty} \leq \alpha_{I}}_{I=0, \ldots, k-1}, \boldsymbol{\psi} \in C_{0}^{k}\left(\Omega, \operatorname{Sym}^{k}\left(\mathbb{R}^{n}\right)\right)\}
$$

## Higher Order Models: Total Generalized Variation

Goal: Develop a functional with a kernel which is richer than piecewise constants. In the generalized approach, minimize:

$$
J(I)=\int_{\Omega}|I-\tilde{I}|^{2}+\operatorname{TGV}_{\alpha}^{k}(I) \quad \text { where }
$$

$$
\operatorname{TGV}_{\alpha}^{k}(I)=\sup \{\int_{\Omega} I \operatorname{div}^{k} \psi: \underbrace{\left\|\operatorname{div}^{\prime} \psi\right\|_{\infty} \leq \alpha_{l}}_{I=0, \ldots, k-1}, \psi \in C_{0}^{k}\left(\Omega, \operatorname{Sym}^{k}\left(\mathbb{R}^{n}\right)\right)\}
$$

Noisy and $\mathrm{TGV}_{\boldsymbol{\alpha}}^{2}$-reconstructed images:
[Bredies, Kunisch, Pock]


## Higher Order Models: Total Generalized Variation

Note: For example, $\mathrm{TGV}_{\alpha}^{2}$ reformulated with duality as

$$
\operatorname{TGV}_{\alpha}^{2}(I)=\min _{\boldsymbol{G}} \int_{\Omega}\left\{\alpha_{1}|D I-\boldsymbol{G}|+\frac{1}{2} \alpha_{1}\left|\nabla \boldsymbol{G}^{\mathrm{T}}+\nabla \boldsymbol{G}\right|\right\}
$$

## Higher Order Models: Total Generalized Variation

Note: For example, $\mathrm{TGV}_{\alpha}^{2}$ reformulated with duality as

$$
\operatorname{TGV}_{\alpha}^{2}(I)=\min _{\boldsymbol{G}} \int_{\Omega}\left\{\alpha_{1}|D I-\boldsymbol{G}|+\frac{1}{2} \alpha_{1}\left|\nabla \boldsymbol{G}^{\mathrm{T}}+\nabla \boldsymbol{G}\right|\right\}
$$

Locally:

- DI smooth $\Rightarrow \boldsymbol{G}=\nabla I \approx$ optimal $\Rightarrow \operatorname{TGV}_{\alpha}^{2}(I) \approx \alpha_{0} \int_{\text {loc }}\left|\nabla^{2} I\right|$.
- $I$ jumps $\Rightarrow \boldsymbol{G}=0 \approx$ optimal $\Rightarrow \operatorname{TGV}_{\alpha}^{2}(I) \approx \alpha_{1} \int_{\text {loc }}|\nabla \||$.


## Higher Order Models: Total Generalized Variation

Note: For example, $\mathrm{TGV}_{\alpha}^{2}$ reformulated with duality as

$$
\operatorname{TGV}_{\alpha}^{2}(I)=\min _{\boldsymbol{G}} \int_{\Omega}\left\{\alpha_{1}|D I-\boldsymbol{G}|+\frac{1}{2} \alpha_{1}\left|\nabla \boldsymbol{G}^{\mathrm{T}}+\nabla \boldsymbol{G}\right|\right\}
$$

Locally:

- DI smooth $\Rightarrow \boldsymbol{G}=\nabla I \approx$ optimal $\Rightarrow \operatorname{TGV}_{\alpha}^{2}(I) \approx \alpha_{0} \int_{\text {loc }}\left|\nabla^{2}\right| \mid$.
- $I$ jumps $\Rightarrow \boldsymbol{G}=0 \approx$ optimal $\Rightarrow \operatorname{TGV}_{\alpha}^{2}(I) \approx \alpha_{1} \int_{\text {loc }}|\nabla I|$.

Generally:

- So computing TGV ${ }_{\alpha}^{2}$ can be seen as solving a minimization problem,
- in which terms of first and second order are optimally balanced out,
- and the vector field $\mathbf{G}$ represents the smooth part of the measure DI.

Higer Order Models for Segmentation and Registration
Example:


Objective: Remove the motion in a DCE-MRI sequence so that individual tissue points can be investigated.

## Higer Order Models for Segmentation and Registration

Example:


Objective: Remove the motion in a DCE-MRI sequence so that individual tissue points can be investigated.

Challenges: Contrast changes with time, and the images are far from piecewise constant.

## Higer Order Models for Segmentation and Registration

Example:


Objective: Remove the motion in a DCE-MRI sequence so that individual tissue points can be investigated.

Challenges: Contrast changes with time, and the images are far from piecewise constant.

Plan: Segment the images, transform the edge sets to diffuse surfaces using blurring, register the diffuse surfaces with progressively less blurring.

## Established Approaches to Segmentation

Method of kmeans:

$$
\min _{p_{k}, \chi_{k}}\left\{\sum_{k=1}^{K} \int_{\Omega}\left|p_{k} \chi_{k}-\tilde{l}\right|^{2}:\left\{p_{k}\right\} \in \mathcal{P}^{0}, \chi_{k}: \Omega \rightarrow\{0,1\}\right\}
$$

## Established Approaches to Segmentation

Method of kmeans:

$$
\min _{p_{k}, \chi_{k}}\left\{\sum_{k=1}^{K} \int_{\Omega}\left|p_{k} \chi_{k}-\tilde{l}\right|^{2}:\left\{p_{k}\right\} \in \mathcal{P}^{0}, \chi_{k}: \Omega \rightarrow\{0,1\}\right\}
$$

Minimizing the Mumford-Shah functional:

$$
\min _{I, \Gamma}\left\{\int_{\Omega}|I-\tilde{I}|^{2}+\delta^{-1} \int_{\Omega \backslash \Gamma}|\nabla I|^{2}+\beta|\Gamma|\right\}
$$

## Established Approaches to Segmentation

Method of kmeans:

$$
\min _{p_{k}, \chi_{k}}\left\{\sum_{k=1}^{K} \int_{\Omega}\left|p_{k} \chi_{k}-\tilde{l}\right|^{2}:\left\{p_{k}\right\} \in \mathcal{P}^{0}, \chi_{k}: \Omega \rightarrow\{0,1\}\right\}
$$

Minimizing the Mumford-Shah functional:

$$
\min _{I, \Gamma}\left\{\int_{\Omega}|I-\tilde{I}|^{2}+\delta^{-1} \int_{\Omega \backslash \Gamma}|\nabla I|^{2}+\beta|\Gamma|\right\}
$$

or the Ambrosio-Tortorelli phase function approximation:

$$
\min _{I, \chi}\left\{\int_{\Omega}\left[|I-\tilde{I}|^{2}+\delta^{-1}|\nabla I|^{2} \chi^{2}+\epsilon|\nabla \chi|^{2}+\epsilon^{-1}|1-\chi|^{2}\right]\right\}
$$

## Higher Order Counterparts

Method of kmeans:

$$
\min _{p_{k}, \chi_{k}}\left\{\sum_{m=1}^{M} \int_{\Omega}\left|p_{k} \chi_{k}-\tilde{l}\right|^{2}:\left\{p_{k}\right\} \in \mathcal{P}^{m-1}, \chi_{k}: \Omega \rightarrow\{0,1\}\right\}
$$

Minimizing the Mumford-Shah functional:

$$
\min _{I, \Gamma}\left\{\int_{\Omega}|I-\tilde{I}|^{2}+\delta^{-1} \int_{\Omega \backslash \Gamma}\left|\nabla^{m} I\right|^{2}+\beta|\Gamma|\right\}
$$

or the Ambrosio-Tortorelli phase function approximation:

$$
\min _{I, \chi}\left\{\int_{\Omega}\left[|I-\tilde{I}|^{2}+\delta^{-1}\left|\nabla^{m} I\right|^{2} \chi^{2}+\epsilon|\nabla \chi|^{2}+\epsilon^{-1}|1-\chi|^{2}\right]\right\}
$$

## Representative Problems with These Methods

 kmeans leads to staircasing and disconnectedness:

## Representative Problems with These Methods

 kmeans leads to staircasing and disconnectedness:

Ambrosio-Tortorelli gives a fuzzy edge function:


## Higher Order on Connected Components of Segments





## Higher Order on Connected Components of Segments



## Proposed Multiphase Segmentation Approach

Use multiple phase functions $\left\{\chi_{k}\right\}$ and model functions $\left\{I_{k}\right\}$.
Estimate $\tilde{I} \approx \sum_{k=1}^{K} I_{k} \chi_{k}$

## Proposed Multiphase Segmentation Approach

Use multiple phase functions $\left\{\chi_{k}\right\}$ and model functions $\left\{I_{k}\right\}$.
Estimate $\tilde{I} \approx \sum_{k=1}^{K} I_{k} \chi_{k}$ through minimizing:

$$
\min _{\left\{I_{k}\right\},\left\{\chi_{k}\right\}}\left\{\sum _ { k = 1 } ^ { K } \int _ { \Omega } \left[\left|I_{k}-\tilde{I}\right|^{2} \chi_{k}{ }^{2}+\left(\epsilon+\epsilon^{-1} \chi_{k}{ }^{2}\right)\left|\nabla^{m} I_{k}\right|^{2}\right.\right.
$$

## Proposed Multiphase Segmentation Approach

Use multiple phase functions $\left\{\chi_{k}\right\}$ and model functions $\left\{I_{k}\right\}$.
Estimate $\tilde{I} \approx \sum_{k=1}^{K} I_{k} \chi_{k}$ through minimizing:

$$
\begin{array}{r}
\min _{\left.\left\{k_{k}\right\}, \chi_{k}\right\}}\left\{\sum _ { k = 1 } ^ { K } \int _ { \Omega } \left[\left|I_{k}-\tilde{\imath}\right|^{2} \chi_{k}^{2}+\left(\epsilon+\epsilon^{-1} \chi_{k}^{2}\right)\left|\nabla^{m} I_{k}\right|^{2}\right.\right. \\
\left.\left.+\delta\left|\nabla \chi_{k}\right|^{2}+\delta^{-1}\left|\chi_{k}\left(\chi_{k}-1\right)\right|^{2}\right]+\delta^{-1} \int_{\Omega}\left[\sum_{l=1}^{K} \chi_{l}-1\right]^{2}\right\}
\end{array}
$$

## Proposed Multiphase Segmentation Approach

Use multiple phase functions $\left\{\chi_{k}\right\}$ and model functions $\left\{I_{k}\right\}$.
Estimate $\tilde{I} \approx \sum_{k=1}^{K} I_{k} \chi_{k}$ through minimizing:

$$
\begin{array}{r}
\min _{\left.\left\{k_{k}\right\}, \chi_{k}\right\}}\left\{\sum _ { k = 1 } ^ { K } \int _ { \Omega } \left[\left|I_{k}-\tilde{I}\right|^{2} \chi_{k}^{2}+\left(\epsilon+\epsilon^{-1} \chi_{k}^{2}\right)\left|\nabla^{m} I_{k}\right|^{2}\right.\right. \\
\left.\left.+\delta\left|\nabla \chi_{k}\right|^{2}+\delta^{-1}\left|\chi_{k}\left(\chi_{k}-1\right)\right|^{2}\right]+\delta^{-1} \int_{\Omega}\left[\sum_{l=1}^{K} \chi_{l}-1\right]^{2}\right\}
\end{array}
$$

Combines elements of kmeans and Ambrosio Tortorelli.

## Proposed Multiphase Segmentation Approach

Simplification:

$$
\min _{\left\{I_{k}\right\}} \sum_{k=1}^{K} \int_{\Omega}\left[\left|I_{k}-\tilde{I}\right|^{2} \chi_{k}+\left(\epsilon+\epsilon^{-1} \chi_{k}\right)\left|\nabla^{m} I_{k}\right|^{2}\right]
$$

with each $\chi_{k}$ binary and depending upon $\left\{I_{l}\right\}$ :

$$
\chi_{k}(\boldsymbol{x})= \begin{cases}1, & \left|I_{k}(\boldsymbol{x})-\tilde{I}(\boldsymbol{x})\right|<\left|I_{l}(\boldsymbol{x})-\tilde{I}(\boldsymbol{x})\right|, \quad \forall I \neq k \\ 0, & \text { otherwise } .\end{cases}
$$

## Proposed Multiphase Segmentation Approach

Simplification:

$$
\min _{\left\{I_{k}\right\}} \sum_{k=1}^{K} \int_{\Omega}\left[\left|I_{k}-\tilde{I}\right|^{2} \chi_{k}+\left(\epsilon+\epsilon^{-1} \chi_{k}\right)\left|\nabla^{m} I_{k}\right|^{2}\right]
$$

with each $\chi_{k}$ binary and depending upon $\left\{I_{l}\right\}$ :

$$
\chi_{k}(\boldsymbol{x})= \begin{cases}1, & \left|I_{k}(\boldsymbol{x})-\tilde{I}(\boldsymbol{x})\right|<\left|I_{l}(\boldsymbol{x})-\tilde{I}(\boldsymbol{x})\right|, \quad \forall I \neq k \\ 0, & \text { otherwise }\end{cases}
$$

Effects:

- $\epsilon^{-1} \chi_{k}\left|\nabla^{m} I_{k}\right|^{2} \Rightarrow I_{k}$ nearly in $\mathcal{P}^{m-1}$ on each connected component of ( $\chi_{k}=1$ ).


## Proposed Multiphase Segmentation Approach

Simplification:

$$
\min _{\left\{I_{k}\right\}} \sum_{k=1}^{K} \int_{\Omega}\left[\left|I_{k}-\tilde{l}\right|^{2} \chi_{k}+\left(\epsilon+\epsilon^{-1} \chi_{k}\right)\left|\nabla^{m} I_{k}\right|^{2}\right]
$$

with each $\chi_{k}$ binary and depending upon $\left\{I_{\}}\right\}$:

$$
\chi_{k}(\boldsymbol{x})= \begin{cases}1, & \left|I_{k}(\boldsymbol{x})-\tilde{I}(\boldsymbol{x})\right|<\left|I_{l}(\boldsymbol{x})-\tilde{I}(\boldsymbol{x})\right|, \quad \forall I \neq k \\ 0, & \text { otherwise }\end{cases}
$$

Effects:

- $\epsilon^{-1} \chi_{k}\left|\nabla^{m} I_{k}\right|^{2} \Rightarrow I_{k}$ nearly in $\mathcal{P}^{m-1}$ on each connected component of ( $\chi_{k}=1$ ).
- $\epsilon\left|\nabla^{m} I_{k}\right|^{2} \Rightarrow I_{k}$ extended naturally outside $\left(\chi_{k}=1\right)$.


## Proposed Multiphase Segmentation Approach

Simplification:

$$
\min _{\left\{I_{k}\right\}} \sum_{k=1}^{K} \int_{\Omega}\left[\left|I_{k}-\tilde{I}\right|^{2} \chi_{k}+\left(\epsilon+\epsilon^{-1} \chi_{k}\right)\left|\nabla^{m} I_{k}\right|^{2}\right]
$$

with each $\chi_{k}$ binary and depending upon $\left\{I_{\}}\right\}$:

$$
\chi_{k}(\boldsymbol{x})= \begin{cases}1, & \left|I_{k}(\boldsymbol{x})-\tilde{I}(\boldsymbol{x})\right|<\left|I_{l}(\boldsymbol{x})-\tilde{I}(\boldsymbol{x})\right|, \quad \forall I \neq k \\ 0, & \text { otherwise }\end{cases}
$$

Effects:

- $\epsilon^{-1} \chi_{k}\left|\nabla^{m} I_{k}\right|^{2} \Rightarrow I_{k}$ nearly in $\mathcal{P}^{m-1}$ on each connected component of ( $\chi_{k}=1$ ).
- $\epsilon\left|\nabla^{m} I_{k}\right|^{2} \Rightarrow I_{k}$ extended naturally outside $\left(\chi_{k}=1\right)$.
- $\left|I_{k}-\tilde{I}\right|^{2} \chi_{k} \Rightarrow I_{k} \approx \tilde{I}$ on $\left(\chi_{k}=1\right)$.


## Computational Investigation of the Approach

 Example: $K=2, m=2,\left\{\chi_{k}\right\} \&\left\{I_{k}\right\}$ by splitting, $\chi=\chi_{1}$.Fig 2a

Given:


## Computational Investigation of the Approach

Example: $K=2, m=2,\left\{\chi_{k}\right\} \&\left\{I_{k}\right\}$ by splitting, $\chi=\chi_{1}$.
Fig 2a

Given:


Since $\left|I_{1}-\tilde{I}\right|<\left|I_{2}-\tilde{I}\right|$ on and just outside $(\chi=1)$, next curves:
Fig 2b


## Computational Investigation of the Approach

( $\chi=1$ ) has grown to include ( $(\bar{I}>0)$, but also some $(x<\delta)$,
Fig 2b


## Computational Investigation of the Approach

 ( $\chi=1$ ) has grown to include ( $(\bar{I}>0)$, but also some $(x<\delta)$,Fig 2b


Since $\left|l_{1}-\tilde{I}\right|<\left|I_{2}-\tilde{I}\right|$ in $(x<\delta)$, converged result:
Fig 2c


## Computational Investigation of the Approach

Converged result:
Fig 2c


## Computational Investigation of the Approach

Converged result:
Fig 2c


Effects:

$$
\left(K=2, m=2, \chi=\chi_{1}\right)
$$

- $\epsilon^{-1} \chi_{k}\left|\nabla^{m} I_{k}\right|^{2} \Rightarrow I_{k}$ nearly in $\mathcal{P}^{m-1}$ on each connected component of ( $\chi_{k}=1$ ).
- $\epsilon\left|\nabla^{m} I_{k}\right|^{2} \Rightarrow I_{k}$ extended naturally outside $\left(\chi_{k}=1\right)$.
- $\left|I_{k}-\tilde{I}\right|^{2} \chi_{k} \Rightarrow I_{k} \approx \tilde{I}$ on $\left(\chi_{k}=1\right)$.


## Computational Investigation of the Approach

 Above Ĩ was piecewise linear, now piecewise quadratic:Fig 3a


## Computational Investigation of the Approach

 Above Ĩ was piecewise linear, now piecewise quadratic:Fig 3a


Converged result with an unnatural edge in left piece of ( $\tilde{I}>0$ ):
Fig 3b


## Computational Investigation of the Approach

This result motivates changing $\epsilon^{-1} \chi_{k}$ to $\alpha \chi_{k}$ where $\alpha \ll \epsilon^{-1}$ as $\epsilon \rightarrow 0$ (small, i.e., $\epsilon$ need not be tuned).

New simplified approach:

$$
\min _{\left\{I_{k}\right\}} \sum_{k=1}^{K} \int_{\Omega}\left[\left|I_{k}-\tilde{I}\right|^{2} \chi_{k}+\left(\epsilon+\alpha \chi_{k}\right)\left|\nabla^{m} I_{k}\right|^{2}\right]
$$

again with each $\chi_{k}$ binary and depending upon $\left\{I_{l}\right\}$ :

$$
\chi_{k}(\boldsymbol{x})= \begin{cases}1, & \left|I_{k}(\boldsymbol{x})-\tilde{l}(\boldsymbol{x})\right|<\left|I_{l}(\boldsymbol{x})-\tilde{I}(\boldsymbol{x})\right|, \quad \forall I \neq k \\ 0, & \text { otherwise } .\end{cases}
$$

## Computational Investigation of the Approach

This result motivates changing $\epsilon^{-1} \chi_{k}$ to $\alpha \chi_{k}$ where $\alpha \ll \epsilon^{-1}$ as $\epsilon \rightarrow 0$ (small, i.e., $\epsilon$ need not be tuned).

New simplified approach:

$$
\min _{\left\{I_{k}\right\}} \sum_{k=1}^{K} \int_{\Omega}\left[\left|I_{k}-\tilde{I}\right|^{2} \chi_{k}+\left(\epsilon+\alpha \chi_{k}\right)\left|\nabla^{m} I_{k}\right|^{2}\right]
$$

again with each $\chi_{k}$ binary and depending upon $\left\{I_{l}\right\}$ :

$$
\chi_{k}(\boldsymbol{x})= \begin{cases}1, & \left|I_{k}(\boldsymbol{x})-\tilde{I}(\boldsymbol{x})\right|<\left|I_{l}(\boldsymbol{x})-\tilde{I}(\boldsymbol{x})\right|, \quad \forall I \neq k \\ 0, & \text { otherwise }\end{cases}
$$

(Alternative to choosing $\alpha$ : Increase the order m.)

## Computational Investigation of the Approach

$\left|I_{1}-\tilde{I}\right|$ small near $(\chi=1)$ and $\left|I_{2}-\tilde{I}\right|$ large near $(\chi=0)$ :
Fig 4a


## Computational Investigation of the Approach

 $\left|I_{1}-\tilde{I}\right|$ small near $(\chi=1)$ and $\left|I_{2}-\tilde{I}\right|$ large near $(\chi=0)$ :Fig 4a

$\alpha<\epsilon^{-1} \Rightarrow\left|I_{1}-\tilde{I}\right|<\left|I_{2}-\tilde{I}\right|$ always near $(\chi=1)$. Finally:
Fig 4b


## Computational Investigation of the Approach

But the method can still get stuck:
Fig 5


## Computational Investigation of the Approach

But the method can still get stuck:
Fig 5


- $\tilde{I}$ is simply piecewise linear.
- $0 \approx\left|I_{1}-\tilde{I}\right|<\left|I_{2}-\tilde{I}\right|$ on $(\chi=1)$.
- $0 \approx\left|I_{2}-\tilde{I}\right|<\left|I_{1}-\tilde{I}\right|$ on $(\chi=0)$.


## Computational Investigation of the Approach

But the method can still get stuck:
Fig 5


- $\tilde{I}$ is simply piecewise linear.
- $0 \approx\left|I_{1}-\tilde{I}\right|<\left|I_{2}-\tilde{I}\right|$ on $(\chi=1)$.
- $0 \approx\left|I_{2}-\tilde{I}\right|<\left|I_{1}-\tilde{I}\right|$ on $(\chi=0)$.
- Result is converged.


## Computational Investigation of the Approach

But the method can still get stuck:
Fig 5


- $\tilde{I}$ is simply piecewise linear.
- $0 \approx\left|I_{1}-\tilde{I}\right|<\left|I_{2}-\tilde{I}\right|$ on $(\chi=1)$.
- $0 \approx\left|I_{2}-\tilde{I}\right|<\left|I_{1}-\tilde{I}\right|$ on $(\chi=0)$.
- Result is converged.
- Such cases are more likely with $K>2$.


## Determining Edges

## Examples motivate starting with $\left\{\chi_{k}\right\}$ which respect edges.

## Determining Edges

Examples motivate starting with $\left\{\chi_{k}\right\}$ which respect edges.
Determining non-fuzzy edge set $(\chi=0)$ for $\chi: \Omega \rightarrow\{0,1\}$ :

$$
\min _{\chi} \int_{\Omega}|I(\chi)-\tilde{I}|^{2} \text { where } I(\chi)=\arg \min _{i} \int_{\Omega}\left[|I-\tilde{I}|^{2} \chi+(\epsilon+\alpha \chi)\left|\nabla^{m}\right|^{2}\right]
$$

Fig 6


## Determining Edges

Examples motivate starting with $\left\{\chi_{k}\right\}$ which respect edges.
Determining non-fuzzy edge set $(\chi=0)$ for $\chi: \Omega \rightarrow\{0,1\}$ :

$$
\min _{\chi} \int_{\Omega} \mid I(\chi)-\tilde{I}^{2} \text { where } \quad I(\chi)=\arg \min _{I} \int_{\Omega}\left[|I-\tilde{I}|^{2} \chi+(\epsilon+\alpha \chi) \mid \nabla^{m} I^{2}\right]
$$

Fig 6


Here the edge set $(\chi=0)=(|x|<\delta)$ can be determined explicitly by minimizing with respect to $\delta$.

## Determining Edges

Examples motivate starting with $\left\{\chi_{k}\right\}$ which respect edges.
Determining non-fuzzy edge set $(\chi=0)$ for $\chi: \Omega \rightarrow\{0,1\}$ :

$$
\min _{\chi} \int_{\Omega}|I(\chi)-\tilde{I}|^{2} \text { where } \quad I(\chi)=\arg \min _{i} \int_{\Omega}\left[|I-\tilde{I}|^{2} \chi+(\epsilon+\alpha \chi) \mid \nabla^{m} \|^{2}\right]
$$

Fig 6


Here the edge set $(\chi=0)=(|x|<\delta)$ can be determined explicitly by minimizing with respect to $\delta$. In general?...

## Edge Determination Approach

Edge set is $(\chi=0)$ for $\chi: \Omega \rightarrow\{0,1\}$,

$$
\chi(\boldsymbol{x})= \begin{cases}1, & \left|\vartheta_{\mathrm{b}}(\boldsymbol{x})-\tilde{E}(\boldsymbol{x})\right|<\theta\left|I_{\mathrm{f}}(\boldsymbol{x})-\tilde{E}(\boldsymbol{x})\right| \\ 0, & \text { otherwise } .\end{cases}
$$

Fuzzy edge function $\tilde{E}=\left|\nabla I_{\mathrm{s}}\right|$,

$$
I_{\mathrm{s}}=\arg \min _{I} \int_{\Omega}\left[|I-\tilde{I}|^{2} \chi+(\epsilon+\alpha \chi)\left|\nabla^{m} I\right|^{2}\right]
$$

$I_{\mathrm{b}}$ and $I_{\mathrm{f}}$ are background and foreground estimations of $\tilde{E}$,

$$
\begin{gathered}
I_{\mathrm{b}}=\arg \min _{I} \int_{\Omega}\left[|I-\tilde{E}|^{2} \chi+(\epsilon+\alpha \chi)|\nabla I|^{2}\right] \\
I_{\mathrm{f}}=\arg \min _{I} \int_{\Omega}\left[|I-\tilde{E}|^{2}(1-\chi)+(\epsilon+\alpha(1-\chi))|\nabla I|^{2}\right]
\end{gathered}
$$

## Edge Determination Approach

Example:
Fig 7


Computed by splitting, starting with $\chi=1$, then

$$
\cdots \rightarrow \chi \rightarrow I_{\mathrm{s}} \rightarrow \tilde{E} \rightarrow\left\{I_{\mathrm{f}}, I_{\mathrm{b}}, \chi\right\} \rightarrow \chi \rightarrow \cdots
$$

## Edge Determination Approach

Example:
Fig 7


Computed by splitting, starting with $\chi=1$, then

$$
\cdots \rightarrow \chi \rightarrow I_{\mathrm{s}} \rightarrow \tilde{E} \rightarrow\left\{I_{\mathrm{f}}, I_{\mathrm{b}}, \chi\right\} \rightarrow \chi \rightarrow \cdots
$$

Theorem: There exists a fixed point for this mapping.
[Fürtinger \& Keeling]

## Segmentation Regularization

Segments are regularized by smoothing $\left\{\chi_{1}\right\}$ according to

$$
\psi_{l}=\arg \min _{\psi} \int_{\Omega}\left[|\psi-\chi|^{2}+\delta|\nabla \psi|^{2}\right], \quad I=1, \ldots, L
$$

and updating

$$
\phi(\boldsymbol{x})=I, \quad \forall \boldsymbol{x}: \chi_{l}(\boldsymbol{x})=1
$$

for redefined

$$
\chi_{l}(\boldsymbol{x})= \begin{cases}1, & \psi_{l}(\boldsymbol{x})>\psi_{k}(\boldsymbol{x}), \quad \forall k \neq 1 \\ 0, & \text { otherwise }\end{cases}
$$

## Segmentation Regularization

Segments are regularized by smoothing $\left\{\chi_{1}\right\}$ according to

$$
\psi_{l}=\arg \min _{\psi} \int_{\Omega}\left[|\psi-\chi|^{2}+\delta|\nabla \psi|^{2}\right], \quad I=1, \ldots, L
$$

and updating

$$
\phi(\boldsymbol{x})=I, \quad \forall \boldsymbol{x}: \chi_{l}(\boldsymbol{x})=1
$$

for redefined

$$
\chi_{l}(\boldsymbol{x})= \begin{cases}1, & \psi_{l}(\boldsymbol{x})>\psi_{k}(\boldsymbol{x}), \quad \forall k \neq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Resulting segments are smoother with increasing $\delta$.

## Computational Investigation of the Approach

 2D Examples:

Is


If


## Computational Investigation of the Approach

 2D Examples:I~



Is

Ib


## Computational Investigation of the Approach

 2D Examples:

Is


If


E~



## Computational Investigation of the Approach

 2D Examples:

Is


If


Ib


## Obtaining a Segmentation

With $\chi$ in hand, the multiphase approach can be well initialized.
For the above examples:


## Obtaining a Segmentation

With $\chi$ in hand, the multiphase approach can be well initialized.
For the above examples:


## Defining a Segmentation

With $\chi$ in hand, the multiphase approach can be well initialized.
For the above examples:


## Defining a Segmentation

With $\chi$ in hand, the multiphase approach can be well initialized.
For the above examples:


## Application to Measured Images

Original Image, $\downarrow$


Edge Function, $X$





## Application to Measured Images

Original Image, $\downarrow$


Edge Function, $\chi$



Foreground $\mathrm{I}_{\mathrm{f}}$ of $\mathrm{E} \sim$




## Application to Measured Images

Original Image, $\downarrow$


Edge Function, $\chi$


Smoothed Reconstruction, $I_{s}$




## Application to Measured Images

Original Image, $\downarrow$


Edge Function, $\chi$


Smoothed Reconstruction, $I_{s}$



## Application to Measured Images

 Comparison of the fuzzy edge function

## Application to Measured Images

Comparison of the fuzzy edge function with a higher order Ambrosio-Tortorelli approach:


## Application to Measured Images

Comparison of the fuzzy edge function with a higher order Ambrosio-Tortorelli approach:

and the respective edge functions,


## Application to Measured Images

Original Image, $\downarrow$


Edge Function, $x$


Smoothed Reconstruction, $I_{s}$


Foreground $I_{f}$ of $E \sim$


Fuzzy Edge Function, E~


## Application to Measured Images

Original Image, $\downarrow$


Edge Function, $x$



Smoothed Reconstruction, $I_{s}$


Foreground $\mathrm{I}_{\mathrm{f}}$ of $\mathrm{E} \sim$


Fuzzy Edge Function, E~


## Application to Measured Images

Original Image, $\downarrow$


Edge Function, $x$


Smoothed Reconstruction, $I_{s}$


Foreground $I_{f}$ of $E \sim$


Fuzzy Edge Function, E~


## Application to Measured Images

Original Image, $\downarrow$


Edge Function, $x$


Smoothed Reconstruction, $I_{s}$


Foreground $I_{f}$ of $E \sim$


Fuzzy Edge Function, E~


Background $I_{b}$ of $E$


## Registration of Edge Sets

For mapping a Purkinje fiber network system
[Fürtinger \& Keeling]:


## Registration of Edge Sets

For mapping a Purkinje fiber network system
[Fürtinger \& Keeling]:


Performed using 2D slices,

$$
\min _{u} \int_{\Omega}\left\{\left|\iota_{0}^{\epsilon} \circ(\operatorname{Id}+\boldsymbol{u})-I_{1}^{\epsilon}\right|^{2}+\mu\left|\nabla \boldsymbol{u}^{\mathrm{T}}+\nabla \boldsymbol{u}\right|^{2}\right\}
$$

## Registration of Edge Sets

For mapping a Purkinje fiber network system
[Fürtinger \& Keeling]:


Performed using 2D slices,

$$
\min _{\boldsymbol{u}} \int_{\Omega}\left\{\left|l_{0}^{\epsilon} \circ(\operatorname{Id}+\boldsymbol{u})-I_{1}^{\epsilon}\right|^{2}+\mu\left|\nabla \boldsymbol{u}^{\mathrm{T}}+\nabla \boldsymbol{u}\right|^{2}\right\}
$$

with diffuse images $I_{0}^{\epsilon}$ and $I_{1}^{\epsilon}$, providing strong registration force, then $\epsilon \rightarrow 0$.


## Registration of Edge Sets

But reducing $\epsilon \rightarrow 0 \Rightarrow \operatorname{argmin}=0$ ! Landscape is


## Registration of Edge Sets

But reducing $\epsilon \rightarrow 0 \Rightarrow \operatorname{argmin}=0$ ! Landscape is


Theorem: There exists a minimizer $\boldsymbol{u}^{\epsilon} \in H^{1}(\Omega)$ which converges (subsequentially) in $H^{1}(\Omega)$ as $\epsilon \rightarrow 0$.

## Registration of Edge Sets

But reducing $\epsilon \rightarrow 0 \Rightarrow \operatorname{argmin}=0$ ! Landscape is $(@$ left $)$


Theorem: There exists a minimizer $\boldsymbol{u}^{\epsilon} \in H^{1}(\Omega)$ which converges (subsequentially) in $H^{1}(\Omega)$ as $\epsilon \rightarrow 0$.

However, with
$\int_{\Omega}\left|I_{0}^{\epsilon} \circ(\operatorname{Id}+\boldsymbol{u})-I_{1}^{\epsilon}\right|^{2} \rightarrow \int_{\Omega}\left|I_{0}^{\epsilon} \circ(\operatorname{Id}+\boldsymbol{u})-I_{1}^{\epsilon}\right|^{2} / \int_{\Omega}\left[\left.| |_{0}^{\epsilon}\right|^{2}+\left.I_{1}^{\epsilon}\right|^{2}\right]$ the landscape becomes (@ right).

## Registration of Edge Sets

But reducing $\epsilon \rightarrow 0 \Rightarrow \operatorname{argmin}=0$ ! Landscape is $(@$ left $)$


Theorem: There exists a minimizer $\boldsymbol{u}^{\epsilon} \in H^{1}(\Omega)$ which converges (subsequentially) in $H^{1}(\Omega)$ as $\epsilon \rightarrow 0$.

However, with
$\int_{\Omega}\left|I_{0}^{\epsilon} \circ(\operatorname{Id}+\boldsymbol{u})-I_{1}^{\epsilon}\right|^{2} \rightarrow \int_{\Omega}\left|I_{0}^{\epsilon} \circ(\operatorname{Id}+\boldsymbol{u})-I_{1}^{\epsilon}\right|^{2} / \int_{\Omega}\left[\left.| |_{0}^{\epsilon}\right|^{2}+\left.I_{1}^{\epsilon}\right|^{2}\right]$
the landscape becomes (@ right).
Convergence to Hausdorf distance between edge sets to be shown.

Thank You!

