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Higher Order Models: Total Generalized Variation
Goal: Overcome the essentially piecewise constant model of
TV regularization.

In the classical approach, minimize:

J(I) =

∫
Ω
|I − Ĩ|2 + TVα(I) where

α

∫
Ω
|DI| = TVα(I) = sup

{∫
Ω

I divψ : ‖ψ‖∞≤α,ψ∈C1
0(Ω,Rn)

}
Noisy and TV-reconstructed images:
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Higher Order Models: Total Generalized Variation

Goal: Develop a functional with a kernel which is richer than
piecewise constants.

In the generalized approach, minimize:

J(I) =

∫
Ω
|I − Ĩ|2 + TGVk

α(I) where

TGVk
α(I)=sup

{∫
Ω
I divkψ : ‖divlψ‖∞≤αl︸ ︷︷ ︸

l=0,...,k−1

,ψ∈Ck
0 (Ω,Symk (Rn))

}

Noisy and TGV2
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Higher Order Models: Total Generalized Variation
Note: For example, TGV2

α reformulated with duality as

TGV2
α(I) = min

G

∫
Ω

{
α1|DI −G|+ 1

2α1|∇GT +∇G|
}

Locally:
I DI smooth⇒ G = ∇I ≈ optimal⇒ TGV2

α(I) ≈ α0
∫

loc |∇
2I|.

I I jumps⇒ G = 0 ≈ optimal⇒ TGV2
α(I) ≈ α1

∫
loc |∇I|.

Generally:
I So computing TGV2

α can be seen as solving a
minimization problem,

I in which terms of first and second order are optimally
balanced out,

I and the vector field G represents the smooth part of the
measure DI.
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Higer Order Models for Segmentation and Registration

Example:

Objective: Remove the motion in a DCE-MRI sequence so that
individual tissue points can be investigated.

Challenges: Contrast changes with time, and the images are
far from piecewise constant.

Plan: Segment the images, transform the edge sets to diffuse
surfaces using blurring, register the diffuse surfaces with
progressively less blurring.
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Established Approaches to Segmentation

Method of kmeans:

min
pk ,χk

{
K∑

k=1

∫
Ω
|pkχk − Ĩ|2 : {pk} ∈ P0, χk : Ω→ {0,1}

}

Minimizing the Mumford-Shah functional:

min
I,Γ

{∫
Ω
|I − Ĩ|2 + δ−1

∫
Ω\Γ
|∇I|2 + β|Γ|

}

or the Ambrosio-Tortorelli phase function approximation:

min
I,χ

{∫
Ω

[
|I − Ĩ|2 + δ−1|∇I|2χ2 + ε|∇χ|2 + ε−1|1− χ|2

]}
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Higher Order Counterparts

Method of kmeans:

min
pk ,χk

{
M∑

m=1

∫
Ω
|pkχk − Ĩ|2 : {pk} ∈ Pm−1, χk : Ω→ {0,1}

}

Minimizing the Mumford-Shah functional:

min
I,Γ

{∫
Ω
|I − Ĩ|2 + δ−1

∫
Ω\Γ
|∇mI|2 + β|Γ|

}

or the Ambrosio-Tortorelli phase function approximation:

min
I,χ

{∫
Ω

[
|I − Ĩ|2 + δ−1|∇mI|2χ2 + ε|∇χ|2 + ε−1|1− χ|2

]}



Representative Problems with These Methods
kmeans leads to staircasing and disconnectedness:

Ambrosio-Tortorelli gives a fuzzy edge function:
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Higher Order on Connected Components of Segments
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Proposed Multiphase Segmentation Approach

Use multiple phase functions {χk} and model functions {Ik}.

Estimate Ĩ ≈
∑K

k=1 Ikχk

through minimizing:

min
{Ik},{χk}


K∑

k=1

∫
Ω

[
|Ik − Ĩ|2χk

2 + (ε+ ε−1χk
2)|∇mIk |2

+δ|∇χk |2 + δ−1|χk (χk − 1)|2
]

+ δ−1
∫

Ω

[ K∑
l=1

χl − 1
]2


Combines elements of kmeans and Ambrosio Tortorelli.
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Proposed Multiphase Segmentation Approach

Simplification:

min
{Ik}

K∑
k=1

∫
Ω

[
|Ik − Ĩ|2χk + (ε+ ε−1χk )|∇mIk |2

]
with each χk binary and depending upon {Il}:

χk (x) =

{
1, |Ik (x)− Ĩ(x)| < |Il(x)− Ĩ(x)|, ∀l 6= k
0, otherwise.

Effects:
I ε−1χk |∇mIk |2 ⇒ Ik nearly in Pm−1 on each connected

component of (χk = 1).
I ε|∇mIk |2 ⇒ Ik extended naturally outside (χk = 1).
I |Ik − Ĩ|2χk ⇒ Ik ≈ Ĩ on (χk = 1).
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Computational Investigation of the Approach
Example: K = 2, m = 2, {χk} & {Ik} by splitting, χ = χ1.

Given:

Since |I1 − Ĩ| < |I2 − Ĩ| on and just outside (χ = 1), next curves:
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Computational Investigation of the Approach
(χ = 1) has grown to include (̃I > 0), but also some (x < δ),

Since |I1 − Ĩ| < |I2 − Ĩ| in (x < δ), converged result:
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Computational Investigation of the Approach

Converged result:

Effects: (K = 2, m = 2, χ = χ1)
I ε−1χk |∇mIk |2 ⇒ Ik nearly in Pm−1 on each connected

component of (χk = 1).
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Computational Investigation of the Approach
Above Ĩ was piecewise linear, now piecewise quadratic:

Converged result with an unnatural edge in left piece of (̃I > 0):
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Computational Investigation of the Approach

This result motivates changing ε−1χk to αχk where α� ε−1

as ε→ 0 (small, i.e., ε need not be tuned).

New simplified approach:

min
{Ik}

K∑
k=1

∫
Ω

[
|Ik − Ĩ|2χk + (ε+ αχk )|∇mIk |2

]
again with each χk binary and depending upon {Il}:

χk (x) =

{
1, |Ik (x)− Ĩ(x)| < |Il(x)− Ĩ(x)|, ∀l 6= k
0, otherwise.

(Alternative to choosing α: Increase the order m.)
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Computational Investigation of the Approach
|I1 − Ĩ| small near (χ = 1) and |I2 − Ĩ| large near (χ = 0):

α < ε−1 ⇒ |I1 − Ĩ| < |I2 − Ĩ| always near (χ = 1). Finally:
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Computational Investigation of the Approach
But the method can still get stuck:

I Ĩ is simply piecewise linear.
I 0 ≈ |I1 − Ĩ| < |I2 − Ĩ| on (χ = 1).
I 0 ≈ |I2 − Ĩ| < |I1 − Ĩ| on (χ = 0).
I Result is converged.
I Such cases are more likely with K > 2.
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Determining Edges
Examples motivate starting with {χk} which respect edges.

Determining non-fuzzy edge set (χ = 0) for χ : Ω→ {0,1}:

min
χ

∫
Ω
|I(χ)−Ĩ|2 where I(χ) = arg min

I

∫
Ω

[
|I − Ĩ|2χ+ (ε+ αχ)|∇mI|2

]

Here the edge set (χ = 0) = (|x | < δ) can be determined
explicitly by minimizing with respect to δ. In general?...
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Edge Determination Approach

Edge set is (χ = 0) for χ : Ω→ {0,1},

χ(x) =

{
1, |Ib(x)− Ẽ(x)| < θ|If(x)− Ẽ(x)|
0, otherwise.

Fuzzy edge function Ẽ = |∇Is|,

Is = arg min
I

∫
Ω

[
|I − Ĩ|2χ+ (ε+ αχ)|∇mI|2

]
Ib and If are background and foreground estimations of Ẽ ,

Ib = arg min
I

∫
Ω

[
|I − Ẽ |2χ+ (ε+ αχ)|∇I|2

]
If = arg min

I

∫
Ω

[
|I − Ẽ |2(1− χ) + (ε+ α(1− χ))|∇I|2

]



Edge Determination Approach

Example:

Computed by splitting, starting with χ = 1, then

· · · → χ→ Is → Ẽ → {If, Ib, χ} → χ→ · · ·

Theorem: There exists a fixed point for this mapping.
[Fürtinger & Keeling]
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Segmentation Regularization

Segments are regularized by smoothing {χl} according to

ψl = arg min
ψ

∫
Ω

[
|ψ − χl |2 + δ|∇ψ|2

]
, l = 1, . . . ,L

and updating
φ(x) = l , ∀x : χl(x) = 1

for redefined

χl(x) =

{
1, ψl(x) > ψk (x), ∀k 6= l
0, otherwise

Resulting segments are smoother with increasing δ.
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Obtaining a Segmentation
With χ in hand, the multiphase approach can be well initialized.
For the above examples:
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Registration of Edge Sets
For mapping a Purkinje fiber network system
[Fürtinger & Keeling]:

Performed using 2D slices,

min
u

∫
Ω

{
|Iε0 ◦ (Id + u)− Iε1|2 + µ|∇uT +∇u|2

}
with diffuse images Iε0 and Iε1, providing strong registration force,
then ε→ 0.
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Registration of Edge Sets
But reducing ε→ 0⇒ argmin = 0! Landscape is

(@ left)

Theorem: There exists a minimizer uε ∈ H1(Ω) which
converges (subsequentially) in H1(Ω) as ε→ 0.

However, with∫
Ω
|Iε0 ◦(Id+u)− Iε1|2 →

∫
Ω
|Iε0 ◦(Id+u)− Iε1|2

/∫
Ω

[|Iε0|2 + Iε1|2]

the landscape becomes (@ right).
Convergence to Hausdorf distance between edge sets to be shown.
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Thank You!


