Robust Principal Component Pursuit via Alternating Minimization Scheme on Matrix Manifolds

Tao Wu

Institute for Mathematics and Scientific Computing Karl-Franzens-University of Graz

- - E ►

Riem-RPCP (1/19)

joint work with Prof. Michael Hintermüller

Low-rank paradigm.

Low-rank matrices arise in one way or another:

- ► low-degree statistical processes ~> e.g. collaborative filtering, latent semantic indexing.
- ▶ regularization on complex objects → e.g. manifold learning, metric learning.
- ► approximation of compact operators ~> e.g. proper orthogonal decomposition.

Fig.: Collaborative filtering (courtesy of wikipedia.org).

イロト イヨト イヨト イヨト

Robust principal component pursuit.

- Sparse component corresponds to pattern-irrelevant outliers.
- ► Robustifies classical principal component analysis.
- Carries important information in certain applications;
 e.g. moving objects in surveillance video.
- Robust principal component pursuit:

 Introduced in [Candés, Li, Ma, and Wright, '11], [Chandrasekaran, Sanghavi, Parrilo, and Willsky, '11].

イロト イポト イヨト イヨト

Convex-relaxation approach.

• A popular (convex) variational model:

 $\min \|A\|_{\text{nuclear}} + \lambda \|B\|_{\ell^1}$ s.t. $\|A + B - Z\| \le \varepsilon$.

- Considered in [Candés, Li, Ma, and Wright, '11], [Chandrasekaran, Sanghavi, Parrilo, and Willsky, '11], ...
- ► rank(A) relaxed by nuclear-norm; ||B||₀ relaxed by ℓ¹-norm.
- Numerical solvers: proximal gradient method, augmented Lagrangian method, ...

 \rightsquigarrow Efficiency is constrained by SVD in full dimension at each iteration.

イロト イポト イヨト イヨト 二日

Manifold constrained least-squares model.

• Our variational model:

$$\min \frac{1}{2} \|A + B - Z\|^2$$

s.t. $A \in \mathcal{M}(r) := \{A \in \mathbb{R}^{m \times n} : \operatorname{rank}(A) \le r\},$
 $B \in \mathcal{N}(s) := \{B \in \mathbb{R}^{m \times n} : \|B\|_0 \le s\}.$

• Our goal is to develop an algorithm such that:

- globally converges to a stationary point (often a local minimizer).
- provides exact decomposition with high probability for noiseless data.

イロト イポト イヨト イヨト

Riem-RPCP (5/19)

 outperforms solvers based on convex-relaxation approach, especially in large scales.

Existence of solution and optimality condition.

A little quadratic regularization (0 < µ ≪ 1) is included for the (theoretical) sake of existence of a solution; i.e.

min
$$f(A, B) := \frac{1}{2} ||A + B - Z||^2 + \frac{\mu}{2} ||A||^2,$$

s.t. $(A, B) \in \mathcal{M}(r) \times \mathcal{N}(s).$

In numerics, choosing $\mu = 0$ seems fine.

Stationarity condition as variational inequalities:

$$\begin{cases} \langle \Delta, (1+\mu)A^* + B^* - Z \rangle \ge 0, & \text{for any } \Delta \in T_{\mathcal{M}(r)}(A^*), \\ \langle \Delta, A^* + B^* - Z \rangle \ge 0, & \text{for any } \Delta \in T_{\mathcal{N}(s)}(B^*). \end{cases}$$

 $T_{\mathcal{M}(r)}(A^*)$ and $T_{\mathcal{N}(s)}(B^*)$ refer to tangent cones.

Constraints of Riemannian manifolds.

- *M*(*r*) is Riemannian manifold around *A*^{*} if rank(*A*^{*}) = *r*;
 N(*s*) is Riemannian manifold around *B*^{*} if ||*B*^{*}||₀ = *s*.
- Optimality condition reduces to:

$$\begin{cases} P_{T_{\mathcal{M}(r)}(A^*)}((1+\mu)A^* + B^* - Z) = 0, \\ P_{T_{\mathcal{N}(s)}(B^*)}(A^* + B^* - Z) = 0. \end{cases}$$

 $P_{T_{\mathcal{M}(r)}(A^*)}$ and $P_{T_{\mathcal{N}(s)}(B^*)}$ are orthogonal projections onto subspaces.

Tangent space formulae:

$$T_{\mathcal{M}(r)}(A^*) = \{ UMV^\top + U_pV^\top + UV_p^\top : A^* = U\Sigma V^\top \text{ as compact SVD}, M \in \mathbb{R}^{r \times r}, U_p \in \mathbb{R}^{m \times r}, U_p^\top U = 0, V_p \in \mathbb{R}^{n \times r}, V_p^\top V = 0 \}, T_{\mathcal{N}(s)}(B^*) = \{ \Delta \in \mathbb{R}^{m \times n} : \operatorname{supp}(\Delta) \subset \operatorname{supp}(B^*) \}.$$

200

A conceptual alternating minimization scheme.

Initialize $A^0 \in \mathcal{M}(r)$, $B^0 \in \mathcal{N}(s)$. Set k := 0 and iterate: 1. $A^{k+1} \approx \arg \min_{A \in \mathcal{M}(r)} \frac{1}{2} ||A + B^k - Z||^2 + \frac{\mu}{2} ||A||^2$. 2. $B^{k+1} \approx \arg \min_{B \in \mathcal{N}(s)} \frac{1}{2} ||A^{k+1} + B - Z||^2$.

Theorem (sufficient descrease + stationarity \Rightarrow convergence)

Let $\{(A^k, B^k)\}$ be generated as above. Suppose that there exists $\delta > 0$, $\varepsilon_a^k \downarrow 0$, and $\varepsilon_b^k \downarrow 0$ such that for all k:

$$\begin{split} f(A^{k+1}, B^k) &\leq f(A^k, B^k) - \delta \|A^{k+1} - A^k\|^2, \\ f(A^{k+1}, B^{k+1}) &\leq f(A^{k+1}, B^k) - \delta \|B^{k+1} - B^k\|^2, \\ \langle \Delta, (1+\mu)A^{k+1} + B^k - Z \rangle &\geq -\varepsilon_a^k \|\Delta\|, \quad \text{for any } \Delta \in T_{\mathcal{M}(r)}(A^{k+1}), \\ \langle \Delta, A^{k+1} + B^{k+1} - Z \rangle &\geq -\varepsilon_b^k \|\Delta\|, \quad \text{for any } \Delta \in T_{\mathcal{N}(s)}(B^{k+1}). \end{split}$$

Then any non-degenerate limit point (A^*, B^*) , i.e. rank $(A^*) = r$ and $||B^*||_0 = s$, satisfies the first-order optimality condition.

- ► The global solution P_{N(s)}(Z A^{k+1}) (as metric projection) can be efficiently calculated from "sorting".
- The global solution may not necessarily fulfill the sufficient descrease condition.
- ► Whenever necessary, *safeguard* by a local solution:

$$B_{ij}^{k+1} = \begin{cases} (Z - A^{k+1})_{ij}, & \text{if } B_{ij}^k \neq 0, \\ 0, & \text{otherwise.} \end{cases}$$

Riem-RPCP (9/19)

► Given non-degeneracy of B^{k+1}, i.e. ||B^{k+1}||₀ = s, the exact stationarity holds.

Low-rank matrix subproblem: a Riemannian perspective.

► Global solution $P_{\mathcal{M}(r)}(\frac{1}{1+\mu}(Z-B^k))$ as metric projection:

available due to Eckart-Young theorem; i.e.

$$\frac{1}{1+\mu}(Z-B^k) = \sum_{j=1}^n \sigma_j u_j v_j^\top \implies P_{\mathcal{M}(r)}(\frac{1}{1+\mu}(Z-B^k)) = \sum_{j=1}^r \sigma_j u_j v_j^\top.$$

▶ but requires SVD in full dimension ~→ expensive for large-scale problems (e.g. m, n ≥ 2000).

- Alternatively resolved by a single *Riemannian optimization* step on matrix manifold.
- Riemannian optimization applied to low-rank matrix/tensor problems; see [Simonsson and Eldén, '10], [Savas and Lim, '10], [Vandereycken, '13], ...
- Our goal: The subproblem solver should activate the convergence criteria, i.e. sufficient descrease + stationarity.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ

Riemannian optimization: an overview.

- References: [Smith, '93], [Edelman, Arias, and Smith, '98], [Absil, Mahony, and Sepulchre, '08], ...
- Why Riemannian optimization?
 - ► Local homeomorphism is computationally infeasible/expensive.

- Intrinsically low dimensionality of the underlying manifold.
- Further dimension reduction via quotient manifold.
- Typical Riemannian manifolds in applications:
 - finite-dimensional (matrix manifold): Stiefel manifold, Grassmann manifold, <u>fixed-rank matrix manifold</u>, ...
 - ► infinite-dimensional: shape/curve spaces, ...

Riemannian optimization: a conceptual algorithm.

At the current iterate:

- 1. Build a quadratic model in the tangent space using Riemannian gradient and <u>Riemannian Hessian</u>.
- 2. Based on the quadratic model, build a tangential search path.
- 3. Perform backtracking path search via <u>retraction</u> to determine the step size.

Riem-RPCP (12/19)

4. Generate the next iterate.

Riemannian gradient and Hessian.

$$\blacktriangleright \ \bar{\mathcal{M}}(r) := \{A : \operatorname{rank}(A) = r\}; \ f_A^k : A \in \bar{\mathcal{M}}(r) \mapsto f(A, B^k).$$

► Riemannian gradient, $\operatorname{grad} f_A^k(A) \in T_{\bar{\mathcal{M}}(r)}(A)$, is defined s.t. $\langle \operatorname{grad} f_A^k(A), \Delta \rangle = Df_A^k(A)[\Delta], \forall \Delta \in T_{\bar{\mathcal{M}}(r)}(A).$

$$\operatorname{grad} f_A^k(A) = P_{T_{\bar{\mathcal{M}}(r)}(A)}(\nabla f_A^k(A)).$$

► Riemannian Hessian, Hessf^k_A(A) : T_{M̄(r)}(A) → T_{M̄(r)}(A), is defined s.t. Hessf^k_A(A)[Δ] = ∇_Δgradf^k_A(A), ∀Δ ∈ T_{M̄}(A).

$$\begin{aligned} \operatorname{Hess} f_A^k(A)[\Delta] &= (I - UU^{\top}) \nabla f_A^k(A) (I - VV^{\top}) \Delta^{\top} U \Sigma^{-1} V^{\top} \\ &+ U \Sigma^{-1} V^{\top} \Delta^{\top} (I - UU^{\top}) \nabla f_A^k(A) (I - VV^{\top}) \\ &+ (1 + \mu) \Delta. \end{aligned}$$

See, e.g., [Vandereycken, '12].

イロト イポト イヨト イヨト

Dogleg search path and projective retraction.

► "Dogleg" path Δ^k(τ^k) as approximation of optimal trajectory of tangential trust-region subproblem (left figure):

$$\begin{array}{l} \min \ f_A^k(A^k) + \langle g^k, \Delta \rangle + \frac{1}{2} \langle \Delta, H^k[\Delta] \rangle \\ \text{s.t. } \Delta \in T_{\bar{\mathcal{M}}(r)}(A^k), \ \|\Delta\| \leq \sigma. \end{array}$$

► Metric projection as retraction (right figure): retract_{*M*(r)}($A^k, \Delta^k(\tau^k)$) = $P_{M(r)}(A^k + \Delta^k(\tau^k))$.

Computationally efficient: "reduced" SVD on 2r-by-2r matrix!

Given $A^k \in \overline{\mathcal{M}}(r), \ B^k \in \mathcal{N}(s)$:

- 1. Compute $g^k,~H^k,$ and build the dogleg search path $\Delta^k(\tau^k)$ in $T_{\bar{\mathcal{M}}(r)}(A^k).$
- 2. Whenever non-positive definiteness of H^k is detected, replace the dogleg search path by the line search path along steepest descent direction, i.e. $\Delta(\tau^k) = -\tau^k g^k$.
- 3. Perform backtracking path/line search; i.e. find the largest step size $\tau^k \in \{2, 3/2, 1, 1/2, 1/4, 1/8, ...\}$ s.t. the sufficient descrease condition is satisfied:

 $f_A^k(A^k) - f_A^k(P_{\bar{\mathcal{M}}(r)}(A^k + \Delta^k(\tau^k))) \ge \delta \|A^k - P_{\bar{\mathcal{M}}(r)}(A^k + \Delta^k(\tau^k))\|^2.$

4. Return
$$A^{k+1} = f^k_A(P_{\bar{\mathcal{M}}(r)}(A^k + \Delta^k(\tau^k))).$$

・ロト ・回ト ・ヨト ・ヨト ・ヨ

Low-rank matrix subproblem: convergence theory.

- Backtracking path search:
 - ► The sufficient descrease condition can always be fulfilled after finitely many trails on \(\tau^k\).
 - Any accumulation point of $\{A^k\}$ is stationary.
- ▶ Further assume $\operatorname{Hess} f(A^*, B^*) \Big|_{\mu=0} \succ 0$ at a non-degenerate accumulation point (A^*, B^*) . Then
 - ► Tangent-space transversality holds, i.e. $T_{\bar{\mathcal{M}}(r)}(A^*) \cap T_{\mathcal{N}(s)}(B^*) = \{0\}.$
 - $$\begin{split} & \blacktriangleright \mbox{ Contractivity of } P_{T_{\bar{\mathcal{M}}(r)}(A^*)} \circ P_{T_{\mathcal{N}(s)}(B^*)} \colon \exists \kappa \in [0,1) \mbox{ s.t.} \\ & \| (P_{T_{\bar{\mathcal{M}}(r)}(A^*)} \circ P_{T_{\mathcal{N}(s)}(B^*)})(\Delta) \| \leq \kappa \|\Delta\|. \end{split}$$
 - q-linear convergence of $\{A^k\}$ towards stationarity:

$$\limsup_{k \to \infty} \frac{\|A^{k+1} - A^*\|}{\|A^k - A^*\|} \le \kappa.$$

Numerical implementation.

- Trimming \rightsquigarrow Adaptive tuning of rank r^{k+1} and cardinality s^{k+1} based on the current iterate (A^k, B^k) .
 - ▶ k-means clustering on (nonzero) singular values of A^k in logarithmic scale.
 - ▶ hard thresholding on entries of B^k.
- *q*-linear convergence confirmed numerically:

물 제 문 제

Comparison with augmented Lagrangian method (m = n = 2000).

E

DQC

tao.wu@uni-graz.at

- Problem settings:
 - ► A sequence of 200 frames taken from a surveillance video at an airport.
 - Each frame is a gray image of resolution 144×176 .
 - Stack 3D-array into a 25344×200 matrix.
- Results:
 - ► CPU time: AMS ~→ 39.4s; ALM ~→ 124.4s.
 - ► Visual comparison.

A B K A B K