Robust Principal Component Pursuit via Alternating Minimization Scheme on Matrix Manifolds

Tao Wu

Institute for Mathematics and Scientific Computing Karl-Franzens-University of Graz

joint work with Prof. Michael Hintermüller

Low-rank paradigm.

Low-rank matrices arise in one way or another:

- low-degree statistical processes
\rightsquigarrow e.g. collaborative filtering, latent semantic indexing.
- regularization on complex objects
\rightsquigarrow e.g. manifold learning, metric learning.
- approximation of compact operators
\rightsquigarrow e.g. proper orthogonal decomposition.

Fig.: Collaborative filtering (courtesy of wikipedia.org).

Robust principal component pursuit.

- Sparse component corresponds to pattern-irrelevant outliers.
- Robustifies classical principal component analysis.
- Carries important information in certain applications; e.g. moving objects in surveillance video.
- Robust principal component pursuit:

- Introduced in [Candés, Li, Ma, and Wright, '11], [Chandrasekaran, Sanghavi, Parrilo, and Willsky, '11].

Convex-relaxation approach.

- A popular (convex) variational model:

$$
\begin{gathered}
\min
\end{gathered}\|A\|_{\text {nuclear }}+\lambda\|B\|_{\ell^{1}}
$$

- Considered in [Candés, Li, Ma, and Wright, '11], [Chandrasekaran, Sanghavi, Parrilo, and Willsky, '11], ...
- $\operatorname{rank}(A)$ relaxed by nuclear-norm; $\|B\|_{0}$ relaxed by ℓ^{1}-norm.
- Numerical solvers: proximal gradient method, augmented Lagrangian method, ...
\rightsquigarrow Efficiency is constrained by SVD in full dimension at each iteration.

Manifold constrained least-squares model.

- Our variational model:

$$
\begin{aligned}
\min & \frac{1}{2}\|A+B-Z\|^{2} \\
\text { s.t. } & A \in \mathcal{M}(r):=\left\{A \in \mathbb{R}^{m \times n}: \operatorname{rank}(A) \leq r\right\} \\
& B \in \mathcal{N}(s):=\left\{B \in \mathbb{R}^{m \times n}:\|B\|_{0} \leq s\right\}
\end{aligned}
$$

- Our goal is to develop an algorithm such that:
- globally converges to a stationary point (often a local minimizer).
- provides exact decomposition with high probability for noiseless data.
- outperforms solvers based on convex-relaxation approach, especially in large scales.

Existence of solution and optimality condition.

- A little quadratic regularization $(0<\mu \ll 1)$ is included for the (theoretical) sake of existence of a solution; i.e.

$$
\begin{aligned}
\min & f(A, B):=\frac{1}{2}\|A+B-Z\|^{2}+\frac{\mu}{2}\|A\|^{2} \\
\text { s.t. } & (A, B) \in \mathcal{M}(r) \times \mathcal{N}(s)
\end{aligned}
$$

In numerics, choosing $\mu=0$ seems fine.

- Stationarity condition as variational inequalities:

$$
\begin{aligned}
& \begin{cases}\left\langle\Delta,(1+\mu) A^{*}+B^{*}-Z\right\rangle \geq 0, & \text { for any } \Delta \in T_{\mathcal{M}(r)}\left(A^{*}\right), \\
\left\langle\Delta, A^{*}+B^{*}-Z\right\rangle \geq 0, & \text { for any } \Delta \in T_{\mathcal{N}(s)}\left(B^{*}\right) .\end{cases} \\
& T_{\mathcal{M}(r)}\left(A^{*}\right) \text { and } T_{\mathcal{N}(s)}\left(B^{*}\right) \text { refer to tangent cones. }
\end{aligned}
$$

Constraints of Riemannian manifolds.

- $\mathcal{M}(r)$ is Riemannian manifold around A^{*} if $\operatorname{rank}\left(A^{*}\right)=r$; $\mathcal{N}(s)$ is Riemannian manifold around B^{*} if $\left\|B^{*}\right\|_{0}=s$.
- Optimality condition reduces to:

$$
\left\{\begin{array}{l}
P_{T_{\mathcal{M}(r)}\left(A^{*}\right)}\left((1+\mu) A^{*}+B^{*}-Z\right)=0, \\
P_{T_{\mathcal{N}(s)}\left(B^{*}\right)}\left(A^{*}+B^{*}-Z\right)=0
\end{array}\right.
$$

$P_{T_{\mathcal{M}(r)}\left(A^{*}\right)}$ and $P_{T_{\mathcal{N}(s)}\left(B^{*}\right)}$ are orthogonal projections onto subspaces.

- Tangent space formulae:

$$
\begin{aligned}
T_{\mathcal{M}(r)}\left(A^{*}\right)= & \left\{U M V^{\top}+U_{p} V^{\top}+U V_{p}^{\top}: A^{*}=U \Sigma V^{\top}\right. \text { as compact SVD, } \\
& \left.M \in \mathbb{R}^{r \times r}, U_{p} \in \mathbb{R}^{m \times r}, U_{p}^{\top} U=0, V_{p} \in \mathbb{R}^{n \times r}, V_{p}^{\top} V=0\right\}, \\
T_{\mathcal{N}(s)}\left(B^{*}\right)= & \left\{\Delta \in \mathbb{R}^{m \times n}: \operatorname{supp}(\Delta) \subset \operatorname{supp}\left(B^{*}\right)\right\}
\end{aligned}
$$

A conceptual alternating minimization scheme.

Initialize $A^{0} \in \mathcal{M}(r), B^{0} \in \mathcal{N}(s)$. Set $k:=0$ and iterate:

1. $A^{k+1} \approx \arg \min _{A \in \mathcal{M}(r)} \frac{1}{2}\left\|A+B^{k}-Z\right\|^{2}+\frac{\mu}{2}\|A\|^{2}$.
2. $B^{k+1} \approx \arg \min _{B \in \mathcal{N}(s)} \frac{1}{2}\left\|A^{k+1}+B-Z\right\|^{2}$.

Theorem (sufficient descrease + stationarity \Rightarrow convergence)

Let $\left\{\left(A^{k}, B^{k}\right)\right\}$ be generated as above. Suppose that there exists $\delta>0, \varepsilon_{a}^{k} \downarrow 0$, and $\varepsilon_{b}^{k} \downarrow 0$ such that for all k :

$$
\begin{aligned}
& f\left(A^{k+1}, B^{k}\right) \leq f\left(A^{k}, B^{k}\right)-\delta\left\|A^{k+1}-A^{k}\right\|^{2}, \\
& f\left(A^{k+1}, B^{k+1}\right) \leq f\left(A^{k+1}, B^{k}\right)-\delta\left\|B^{k+1}-B^{k}\right\|^{2}, \\
& \left\langle\Delta,(1+\mu) A^{k+1}+B^{k}-Z\right\rangle \geq-\varepsilon_{a}^{k}\|\Delta\|, \quad \text { for any } \Delta \in T_{\mathcal{M}(r)}\left(A^{k+1}\right), \\
& \left\langle\Delta, A^{k+1}+B^{k+1}-Z\right\rangle \geq-\varepsilon_{b}^{k}\|\Delta\|, \quad \text { for any } \Delta \in T_{\mathcal{N}(s)}\left(B^{k+1}\right) .
\end{aligned}
$$

Then any non-degenerate limit point $\left(A^{*}, B^{*}\right)$, i.e. $\operatorname{rank}\left(A^{*}\right)=r$ and $\left\|B^{*}\right\|_{0}=s$, satisfies the first-order optimality condition.

Sparse matrix subproblem.

- The global solution $P_{\mathcal{N}(s)}\left(Z-A^{k+1}\right)$ (as metric projection) can be efficiently calculated from "sorting".
- The global solution may not necessarily fulfill the sufficient descrease condition.
- Whenever necessary, safeguard by a local solution:

$$
B_{i j}^{k+1}= \begin{cases}\left(Z-A^{k+1}\right)_{i j}, & \text { if } B_{i j}^{k} \neq 0 \\ 0, & \text { otherwise }\end{cases}
$$

- Given non-degeneracy of B^{k+1}, i.e. $\left\|B^{k+1}\right\|_{0}=s$, the exact stationarity holds.

Low-rank matrix subproblem: a Riemannian perspective.

- Global solution $P_{\mathcal{M}(r)}\left(\frac{1}{1+\mu}\left(Z-B^{k}\right)\right)$ as metric projection:
- available due to Eckart-Young theorem; i.e.

$$
\frac{1}{1+\mu}\left(Z-B^{k}\right)=\sum_{j=1}^{n} \sigma_{j} u_{j} v_{j}^{\top} \Rightarrow P_{\mathcal{M}(r)}\left(\frac{1}{1+\mu}\left(Z-B^{k}\right)\right)=\sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{\top} .
$$

- but requires SVD in full dimension \rightsquigarrow expensive for large-scale problems (e.g. $m, n \geq 2000$).
- Alternatively resolved by a single Riemannian optimization step on matrix manifold.
- Riemannian optimization applied to low-rank matrix/tensor problems; see [Simonsson and Eldén, '10], [Savas and Lim, '10], [Vandereycken, '13], ...
- Our goal: The subproblem solver should activate the convergence criteria, i.e. sufficient descrease + stationarity.

Riemannian optimization: an overview.

- References: [Smith, '93], [Edelman, Arias, and Smith, '98], [Absil, Mahony, and Sepulchre, '08], ...
- Why Riemannian optimization?
- Local homeomorphism is computationally infeasible/expensive.
- Intrinsically low dimensionality of the underlying manifold.
- Further dimension reduction via quotient manifold.
- Typical Riemannian manifolds in applications:
- finite-dimensional (matrix manifold): Stiefel manifold, Grassmann manifold, fixed-rank matrix manifold, ...
- infinite-dimensional: shape/curve spaces, ...

Riemannian optimization: a conceptual algorithm.

At the current iterate:

1. Build a quadratic model in the tangent space using Riemannian gradient and Riemannian Hessian.
2. Based on the quadratic model, build a tangential search path.
3. Perform backtracking path search via retraction to determine the step size.
4. Generate the next iterate.

Riemannian gradient and Hessian.

- $\overline{\mathcal{M}}(r):=\{A: \operatorname{rank}(A)=r\} ; f_{A}^{k}: A \in \overline{\mathcal{M}}(r) \mapsto f\left(A, B^{k}\right)$.
- Riemannian gradient, $\operatorname{grad} f_{A}^{k}(A) \in T_{\overline{\mathcal{M}}(r)}(A)$, is defined s.t. $\left\langle\operatorname{grad} f_{A}^{k}(A), \Delta\right\rangle=D f_{A}^{k}(A)[\Delta], \forall \Delta \in T_{\overline{\mathcal{M}}(r)}(A)$.

$$
\operatorname{grad} f_{A}^{k}(A)=P_{T_{\overline{\mathcal{M}}(r)}(A)}\left(\nabla f_{A}^{k}(A)\right)
$$

- Riemannian Hessian, $\operatorname{Hess} f_{A}^{k}(A): T_{\overline{\mathcal{M}}(r)}(A) \rightarrow T_{\overline{\mathcal{M}}(r)}(A)$, is defined s.t. $\operatorname{Hess} f_{A}^{k}(A)[\Delta]=\nabla_{\Delta} \operatorname{grad} f_{A}^{k}(A), \forall \Delta \in T_{\overline{\mathcal{M}}}(A)$.

$$
\begin{aligned}
\operatorname{Hess} f_{A}^{k}(A)[\Delta]=(& \left.I-U U^{\top}\right) \nabla f_{A}^{k}(A)\left(I-V V^{\top}\right) \Delta^{\top} U \Sigma^{-1} V^{\top} \\
& +U \Sigma^{-1} V^{\top} \Delta^{\top}\left(I-U U^{\top}\right) \nabla f_{A}^{k}(A)\left(I-V V^{\top}\right) \\
& +(1+\mu) \Delta
\end{aligned}
$$

See, e.g., [Vandereycken, '12].

Dogleg search path and projective retraction.

- "Dogleg" path $\Delta^{k}\left(\tau^{k}\right)$ as approximation of optimal trajectory of tangential trust-region subproblem (left figure):

$$
\begin{aligned}
& \min f_{A}^{k}\left(A^{k}\right)+\left\langle g^{k}, \Delta\right\rangle+\frac{1}{2}\left\langle\Delta, H^{k}[\Delta]\right\rangle \\
& \text { s.t. } \Delta \in T_{\overline{\mathcal{M}}(r)}\left(A^{k}\right),\|\Delta\| \leq \sigma
\end{aligned}
$$

- Metric projection as retraction (right figure):

$$
\operatorname{retract}_{\overline{\mathcal{M}}(r)}\left(A^{k}, \Delta^{k}\left(\tau^{k}\right)\right)=P_{\overline{\mathcal{M}}(r)}\left(A^{k}+\Delta^{k}\left(\tau^{k}\right)\right)
$$

Computationally efficient: "reduced" SVD on $2 r$-by- $2 r$ matrix!

Low-rank matrix subproblem: projected dogleg step.

Given $A^{k} \in \overline{\mathcal{M}}(r), B^{k} \in \mathcal{N}(s)$:

1. Compute g^{k}, H^{k}, and build the dogleg search path $\Delta^{k}\left(\tau^{k}\right)$ in $T_{\overline{\mathcal{M}}(r)}\left(A^{k}\right)$.
2. Whenever non-positive definiteness of H^{k} is detected, replace the dogleg search path by the line search path along steepest descent direction, i.e. $\Delta\left(\tau^{k}\right)=-\tau^{k} g^{k}$.
3. Perform backtracking path/line search; i.e. find the largest step size $\tau^{k} \in\{2,3 / 2,1,1 / 2,1 / 4,1 / 8, \ldots\}$ s.t. the sufficient descrease condition is satisfied:
$f_{A}^{k}\left(A^{k}\right)-f_{A}^{k}\left(P_{\overline{\mathcal{M}}(r)}\left(A^{k}+\Delta^{k}\left(\tau^{k}\right)\right)\right) \geq \delta\left\|A^{k}-P_{\overline{\mathcal{M}}(r)}\left(A^{k}+\Delta^{k}\left(\tau^{k}\right)\right)\right\|^{2}$.
4. Return $A^{k+1}=f_{A}^{k}\left(P_{\overline{\mathcal{M}}(r)}\left(A^{k}+\Delta^{k}\left(\tau^{k}\right)\right)\right)$.

Low-rank matrix subproblem: convergence theory.

- Backtracking path search:
- The sufficient descrease condition can always be fulfilled after finitely many trails on τ^{k}.
- Any accumulation point of $\left\{A^{k}\right\}$ is stationary.
- Further assume $\left.\operatorname{Hess} f\left(A^{*}, B^{*}\right)\right|_{\mu=0} \succ 0$ at a non-degenerate accumulation point $\left(A^{*}, B^{*}\right)$. Then
- Tangent-space transversality holds, i.e.

$$
T_{\overline{\mathcal{M}}(r)}\left(A^{*}\right) \cap T_{\mathcal{N}(s)}\left(B^{*}\right)=\{0\} .
$$

- Contractivity of $P_{T_{\overline{\mathcal{M}}(r)}\left(A^{*}\right)} \circ P_{T_{\mathcal{N}(s)}\left(B^{*}\right)}: \exists \kappa \in[0,1)$ s.t.

$$
\left\|\left(P_{T_{\overline{\mathcal{M}}(r)}\left(A^{*}\right)} \circ P_{T_{\mathcal{N}(s)}\left(B^{*}\right)}\right)(\Delta)\right\| \leq \kappa\|\Delta\| .
$$

- q-linear convergence of $\left\{A^{k}\right\}$ towards stationarity:

$$
\limsup _{k \rightarrow \infty} \frac{\left\|A^{k+1}-A^{*}\right\|}{\left\|A^{k}-A^{*}\right\|} \leq \kappa .
$$

Numerical implementation.

- Trimming \rightsquigarrow Adaptive tuning of rank r^{k+1} and cardinality s^{k+1} based on the current iterate $\left(A^{k}, B^{k}\right)$.
- k-means clustering on (nonzero) singular values of A^{k} in logarithmic scale.
- hard thresholding on entries of B^{k}.
- q-linear convergence confirmed numerically:

(a) Convergence of $\left\{A^{k}\right\}$.

(b) Convergence of $\left\{B^{k}\right\}$.

Comparison with augmented Lagrangian method ($m=n=2000$).

(a) Relative error of $\left\{A^{k}\right\}$.

(c) Phase transition of $\left\{A^{k}\right\}$.

(b) Relative error of $\left\{B^{k}\right\}$.

(d) Phase transition of $\left\{B^{k}\right\}$.

Application to surveillance video.

- Problem settings:
- A sequence of 200 frames taken from a surveillance video at an airport.
- Each frame is a gray image of resolution 144×176.
- Stack 3D-array into a 25344×200 matrix.
- Results:
- CPU time: AMS $\rightsquigarrow 39.4 s$; ALM $\rightsquigarrow 124.4 s$.
- Visual comparison.

