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A PDE-Constrained Generalized Nash Equilibrium
Problem with Pointwise Control and State Constraints

M. Hintermüller∗and T. Surowiec†

Abstract

A generalized Nash equilibrium problem (GNEP) is formulated in which, in addition to
pointwise constraints on both the control and state variables, the feasible sets are partially
governed by the solutions of a linear elliptic partial differential equation. The decisions
(optimal controls) of the players arise in their competitors optimization problems via the
righthand side of the partial differential equation. The existence of a (pure strategy) Nash
equilibrium for the GNEP is demonstrated via a relaxation argument under the presence
of a constraint qualification. A numerical method based on a non-linear Gauss-Seidel
iteration is presented and numerical results are provided.

1 Introduction

Given the wealth of physical, biological, economic, and financial phenomena that can be mod-
eled by solutions of partial differential equations, it is only natural that they should arise as
constraints in many practical optimization problems. Moreover, many real world problems in-
volve the interactions of multiple decision makers, each of whom acts according to their own
preferences in a non-cooperative manner. It is for this reason that N -person, non-cooperative
games in which the strategy sets are partially governed by the solutions of partial differential
equations are a natural subject of study. To the best of our knowledge, despite the relevance
of such models, there appears to be no treatment in the literature of problems of the type
considered in this paper.

The particular class of equilibrium problems chosen for this paper contain what we believe
to be essential components of an optimization problem whose feasible set is partially governed
by the solution of a partial differential equation (PDE). Though the class considered here is
simple in structure from a finite dimensional perspective, the function space setting introduces
additional difficulties, such as the existence of Lagrange multipliers. These aspects, along
with the potentially large scale of the discretized models, add to the already nontrivial task of
studying generalized Nash equilibrium problems (GNEPs). In this respect, this paper is meant
to serve as a foundation on which future investigations of GNEPs in function space may be
built.

∗Department of Mathematics, Humboldt University of Berlin, Germany and Department of Mathematics
and Scientific Computing, Karl-Franzens-University of Graz, Austria (hint@math.hu-berlin.de).
†Department of Mathematics, Humboldt University of Berlin, Germany (surowiec@math.hu-berlin.de).
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The paper is structured as follows. In Section 2, we introduce the equilibrium problem
and demonstrate the existence of a Nash equilibrium. In Section 3, we develop an algorithm in
function space for finding generalized Nash equilibria. This method is then tested and discussed
in Section 4, after a suitable discretization.

We will use a standard notation throughout the paper and we refer the reader to [1] for
details about Lebesgue and Sobolev spaces, to [12, 27] for regularity theory of solutions of
partial differential equations, and for any further notions of functional analysis to [28]. Much
of the standard theory of PDE-constrained optimization can be found in [17] and [25].

2 A GNEP in Function Space

Throughout the text, we let Ω ⊂ Rd, d = 1, 2, or 3, be open and bounded. We use “ a.e.Ω ” to
represent the phrase “almost everywhere on Ω”. The spaces of all functions u for which |u|2 is
Lebesgue integrable will be denoted by L2(Ω), whereas W 1,2

0 (Ω) = H1
0 (Ω) represents the Sobolev

space of all L2(Ω) functions y such that |∇y|2 is Lebesgue integrable, where ∇y represents the
weak derivative of y, and for which y|∂Ω = 0 holds. Note that ∇y(x) ∈ Rd, in which case
|∇y| represents the pointwise Euclidean norm on Rd. The dual space of H1

0 (Ω) will be denoted
by H−1(Ω). Due to the assumed boundedness of Ω, we may define the norm on H1

0 (Ω) by
||y||H1

0 (Ω) := ||∇y||L2(Ω). The Sobolev spaces Wm,p
0 (Ω), where m ∈ Z and 1 ≤ p ≤ +∞, are

defined analogously to H1
0 (Ω) with their respective dual spaces denoted by W−m,p′

0 (Ω), where
p′ ∈ R+ ∪ {+∞} such that 1/p + 1/p′ = 1. For a subset A ⊂ Ω, we use the symbols m(A)
and χA to represent the Lebesgue measure and the characteristic function, respectively, and
we let −∆ = −div · ∇ be the standard Laplacian. The following data assumptions are used
throughout:

• The boundary ∂Ω ⊂ Rd−1 is regular enough such that if f ∈ L2(Ω), then the (unique)
solution u : Ω→ R of the Poisson equation with homogeneous Dirichlet boundary condi-
tions and righthand side f can be continuously embedded into the Sobolev space W 1,r

0 (Ω),
with r > d, if d > 1, and r = d, if d = 1.

• N ≥ 2, N ∈ N.

• ai, bi ∈ L2(Ω) with ai < bi, a.e.Ω, for all i = 1, . . . , N .

• ψ ∈ W 1,r(Ω) with ψ|∂Ω < 0, a.e.Ω, r > d, if d > 1, r = d, otherwise.

• yid ∈ L2(Ω), for all i = 1, . . . , N .

• αi > 0, for all i = 1, . . . , N .

• Bi ⊂ Ω, m(Bi ∩Bj) = 0, for all i, j = 1, . . . , N , i 6= j.

• f ∈ L2(Ω).

As a notational convention, we define the product spaces L2(Ω)
N

:= ΠN
i=1 L

2(Ω), H1
0 (Ω)

N
:=

ΠN
i=1H

1
0 (Ω), and, for u ∈ L2(Ω)

N
, v ∈ L2(Ω), we let (v, u−i) represent the vector field in L2(Ω)

N

obtained by replacing ui in u by v.
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The choice of boundary ∂Ω allows us to work with problems for which Ω has a non-smooth
boundary and is convex as well as for cases in which ∂Ω is locally homeomorphic to the graph of
a Lipschitz continuous function without the convexity requirement on Ω. In the first case, a well-
known result from Kadlec, [18], shows that solutions of the Poisson equation with homogeneous
Dirichlet boundary conditions is in W 2,2(Ω)∩H1

0 (Ω), whereas a famous result from Nečas, [20],
shows that such a solution in the second case, i.e., ∂Ω Lipschitz and Ω non-convex, is in the
fractional Sobolev space Wm,2

0 (Ω), with m ∈ [1, 3/2). In both cases, the Sobolev embedding
theorem allows the solution to be embedded into W 1,r

0 (Ω) with r as required (see [1] and
Theorems 1.4.4.1, 2.2.2.3, 3.2.1.2 in [12]). Furthermore, the choice of r in relation to d allows
us again to apply the Sobolev embedding theorem to show that W 1,r

0 (Ω) ↪→ C(Ω) continuously.
Given these data assumptions, we consider an N -player game in which each player i has a

desired state yid and cost of control αi

2
|| · ||2L2(Ω). Each player i is assigned a subset Bi of Ω on

which their control ui can affect the state of the system via the righthand side of a linear elliptic
partial differential equation. The players seek to minimize both the distance of the equilibrium
state to their respective desired states in the L2(Ω)-norm as well as their overall costs. This
must all be done in such a way that the control lies pointwise almost everywhere between the
prescribed bounds ai and bi and such that the equilibrium state satisfies the obstacle condition
“y ≥ ψ, a.e.Ω.” In other words, each player i seeks to solve the following optimization problem
in which the decisions of its competitors, denoted throughout by u−i ∈ L2(Ω)

N−1
, arise as

exogenous parameters:

min 1
2
||y − yid||2L2(Ω) + αi

2
||ui||2L2(Ω) over (ui, y) ∈ L2(Ω)×H1

0 (Ω)

subject to (s.t.)
−∆y = χBi

ui +
∑n

k=1
k 6=i

χBk
uk + f, ai ≤ ui ≤ bi, a.e.Ω, y ≥ ψ, a.e.Ω.

(1)

We refer to a point (u, y) ∈ L2(Ω)
N ×H1

0 (Ω) such that (ui, y) ∈ L2(Ω)×H1
0 (Ω) is feasible

for problem (1) for all i = 1, . . . , N as a feasible strategy. For simplicity, we often use

Ui :=
{
v ∈ L2(Ω) |ai ≤ v ≤ bi, a.e.Ω

}
.

We define solutions (equilibria) for this game in a standard sense.

Definition 2.1 (Nash Equilibrium). A feasible strategy (u, y) is referred to as a Nash equi-
librium provided the following condition holds for all i = 1 . . . , N :

1

2
||y − yid||2L2(Ω) +

αi
2
||ui||2L2(Ω) ≤

1

2
||y′ − yid||2L2(Ω) +

αi
2
||u′i||2L2(Ω),

∀u′ ∈ Ui, ∀y′ ≥ ψ, a.e.Ω : −∆y′ = χBi
u′i +

N∑
k=1
k 6=i

χBk
uk + f. (2)

In other words, no player can reduce the value of their objective functional by unilaterally
changing their decision.

As the constraint sets of each player i depend on the decisions of its competitors, this
type of problem is often referred to as a generalized Nash equilibrium problem (GNEP). Some
alternate names for this problem class are, to name only a few, pseudo-games, social equilibrium
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problems, and abstract economies. This category of games has been investigated since Debreu
[5] and Arrow and Debreau [2] in the 1950s. A significant amount of work over the last two
decades in the finite dimensional context has been completed, as can be seen in the recent
survey paper by Facchinei and Kanzow [7].

GNEPs are notoriously difficult to solve numerically as they essentially require the solution
of a quasi-variational inequality. To see this, recall that since the Laplace operator −∆ is an
isometric isomorphism from H−1(Ω) to H1

0 (Ω), and since L2(Ω) ↪→ H−1(Ω), we can write y as
a function linearly dependent on the righthand side of the PDE in (1). We denote this solution
operator by

y(u) = y(ui, u−i) := (−∆)−1(χBi
ui +

n∑
k=1
k 6=i

χBk
uk + f).

Since L2(Ω) is compactly embedded into H−1(Ω) and (−∆)−1 : H−1(Ω) → H1
0 (Ω), y is com-

pletely continuous from L2(Ω) → H1
0 (Ω). This can then by used to rewrite the GNEP as the

game in which the component problems are given by

min 1
2
||y(ui, u−i)− yid||2L2(Ω) + αi

2
||ui||2L2(Ω) over ui ∈ L2(Ω)

s.t.
ai ≤ ui ≤ bi, a.e.Ω, y(ui, u−i) ≥ ψ, a.e.Ω.

(3)

Now let Γi : L2(Ω)
N−1 ⇒ L2(Ω) be the multifunction defined by

Γi(u−i) :=
{
v ∈ L2(Ω) |ui ∈ Ui, y(ui, u−i) ≥ ψ, a.e.Ω.

}
.

It is easy to see that Γi has closed convex values. Therefore, for any fixed u−i, one can derive
the first-order necessary and sufficient optimality condition for the ith problem (in the form of
a variational inequality):
Find ui ∈ Γi(u−i):

(αiui, v − ui)L2(Ω) + (yui
(ui, u−i)

∗(y(ui, u−i)− yid), v − ui)L2(Ω) ≥ 0,∀v ∈ Γ(u−i) (4)

Here, the adjoint operator yui
(·, u−i)∗ at ui is given by χBi

(−∆)−1.
By coupling together each of the variational inequalities (4), one obtains a quasi-variational

inequality formulation of the GNEP (3). Then due to convexity, we see that a feasible strategy

u ∈ L2(Ω)
N

for (3) is a Nash equilibrium if and only if it solves the quasi-variational inequality.
There are two main difficulties that must be surmounted in order not only to demonstrate the

existence of a generalized Nash equilibrium for the GNEP (1), but also, for the development of
an efficient numerical method. First, the classical existence theory for N -player noncooperative
games, based on the application of Kakutani’s fixed point theorem, is developed in such a
way that the decisions of each opposing player may only perturb their competitors’ utility
functions and not their strategy sets. Second, the derivation of multiplier-based necessary and
sufficient optimality conditions for each nonlinear program that comprises (1) is significantly
more difficult than in the finite dimensional setting. The ability to derive KKT-type optimality
conditions is essential for the development of a numerical method as we shall see in Section
3. For these two reasons, we define a class of parameter dependent Nash equilibrium problems
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(NEPs) by using a smooth, convex penalty function for the pointwise constraint on the state
variable y. This leads to the component problems given by

min 1
2
||y(ui, u−i)− yid||2L2(Ω) + αi

2
||ui||2L2(Ω) + γ

2
||(ψ − y(ui, u−i))+||2L2(Ω) over ui ∈ L2(Ω)

s.t. ai ≤ ui ≤ bi, a.e.Ω.
(5)

Here, (·)+ = max(0, ·), in the pointwise almost-everywhere sense. We refer to the γ-dependent
NEPs by the notation NEPγ and for convenience, we refer to NEPγ by (5), despite the slight
abuse of notation. Note that the idea to penalize the shared constraints in finite dimensional
GNEPs was first introduced by Fukushima and Pang in [22], see also [8].

Our first result deals with the existence of Nash equilibria for NEPγ (5). We first recall a
famous result of Ky Fan/Kakutani [10] as formulated in [26].

Theorem 2.2. Let S be a compact convex set in a real locally convex topological space X and let
ψ : S ⇒ S such that ψ(x) ⊂ S is convex and compact for all x ∈ S. If xn →X x and yn ∈ ψ(xn)
such that yn →X y implies y ∈ ψ(x), then there exists an x∗ ∈ S such that x∗ ∈ ψ(x∗).

Theorem 2.3 (Existence of a Nash Equilibrium for NEPγ). For all γ > 0, the associated
NEPγ (5) has a Nash equilibrium.

Proof. We need to adapt (5) to the setting of Theorem 2.2. To begin, we define the Banach
spaces Xi for i = 1, . . . , N by Xi := (L2(Ω), τweak), i.e., Xi is L2(Ω) endowed with the weak
topology τweak. We then let X := ΠN

i=1Xi be the real locally convex topological space required
in Theorem 2.2 and set Si := cl {Ui}Xi

. Due to the equivalence of weak and strong closure for

convex sets in reflexive Banach spaces, Si = Ui. Accordingly, we define S ⊂ X by S := ΠN
i=1Si.

The weak compactness of closed convex subsets in reflexive Banach spaces implies that S is
convex and compact in X. Using these spaces and subsets, we define the best response functions
ψγi : X → Xi, i = 1, . . . , N :

ψγi (u) :=

{
vi ∈ Si

∣∣∣∣12 ||y(vi, u−i)− yid||2L2(Ω) +
αi
2
||vi||2L2(Ω) +

γ

2
||(ψ − y(vi, u−i))+||2L2(Ω) =

inf
wi∈Si

1

2
||y(wi, u−i)− yid||2L2(Ω) +

αi
2
||wi||2L2(Ω) +

γ

2
||(ψ − y(wi, u−i))+||2L2(Ω)

}
along with the multifunction ψγ : S ⇒ S given by ψγ(u) := ψγ1 (u)× · · · × ψγN(u), u ∈ S.

Now let un → u in X and vn ∈ ψγ(un) such that vn → v in X. By definition this means
uni → ui, v

n
i → vi weakly in L2(Ω) for each i = 1, . . . , N . Moreover, vn ∈ ψγ(un) implies that

for each i = 1, . . . , N the following holds

1

2
||y(vni , u

n
−i)− yid||2L2(Ω) +

αi
2
||vni ||2L2(Ω) +

γ

2
||(ψ − y(vni , u

n
−i))+||2L2(Ω) ≤

1

2
||y(wi, u

n
−i)− yid||2L2(Ω) +

αi
2
||wi||2L2(Ω) +

γ

2
||(ψ − y(wi, u

n
−i))+||2L2(Ω), ∀wi ∈ Si.

Since y(·, un−i) is completely continuous from L2(Ω)
N

to H1
0 (Ω) and the embedding H1

0 (Ω) ↪→
L2(Ω) is continuous, y(·, un−i) is continuous from X to H1

0 (Ω), and therefore, to L2(Ω). In
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addition, we know that || · ||2L2(Ω) is weakly lower semicontinous on L2(Ω) and thus, lower

semicontinuous on Xi. Since the mapping (ψ − ·)+ is convex, the composition with || · ||2L2(Ω)

is also lower semicontinuous on X. Passing to the limit inferior in the previous inequality, we
obtain

1

2
||y(vi, u−i)− yid||2L2(Ω) +

αi
2
||vi||2L2(Ω) +

γ

2
||(ψ − y(vi, u−i))+||2L2(Ω) ≤

1

2
||y(wi, u−i)− yid||2L2(Ω) +

αi
2
||wi||2L2(Ω) +

γ

2
||(ψ − y(wi, u−i))+||2L2(Ω), ∀wi ∈ Si.

It follows that v ∈ ψγ(u). Then by Theorem 2.2, there exists some u∗ ∈ S such that u∗ ∈ ψγ(u∗).
In other words, there exists a u∗ ∈ S such that for all i = 1, . . . , N

1

2
||y(u∗i , u

∗
−i)− yid||2L2(Ω) +

αi
2
||u∗i ||2L2(Ω) +

γ

2
||(ψ − y(u∗i , u

∗
−i))+||2L2(Ω) ≤

1

2
||y(wi, u

∗
−i)− yid||2L2(Ω) +

αi
2
||wi||2L2(Ω) +

γ

2
||(ψ − y(wi, u

∗
−i))+||2L2(Ω), ∀wi ∈ Si,

This concludes the proof.

In order to demonstrate that the GNEP (3) has a Nash equilibrium, we will require the
fulfillment of a constraint qualification.

Definition 2.4 (Strict Uniform Feasible Responses). We will say that the GNEP satisfies
the strict uniform feasible response constraint qualification (SUFR), if there exists an ε > 0,
for all i = 1, . . . , N :

∀u−i ∈ U−i, ∃ui ∈ Ui : y(ui, u−i) ≥ ψ + ε, a.e.Ω.

One could interpret SUFR to require that each player has a feasible response to any strategy
by its competitors such that the resulting state fulfills its constraint strictly uniformly. In the
first part of the proof of Theorem 2.5, we will see that for the convergence of a sequence
of equilibria {uγ}γ to a feasible strategy of GNEP it suffices for SUFR to hold with ε = 0.
However, for the convergence to a Nash equilibrium, ε > 0 is required.

Theorem 2.5 (Consistency of the Relaxed Problems). If the GNEP (1) satisfies the
SUFR, then there exists a sequence of penalty parameters γ → +∞ and an associated sequence
of Nash equilibria {uγ} for the NEPγ’s (5) such that for all i = 1, . . . , N , uγi ⇀L2(Ω) u

∗
i as

γ → +∞, where u∗ is a Nash equilibrium for the GNEP.

Proof. Let U := ΠN
i=1Ui and fix an arbitrary γ > 0. According to Theorem 2.3, each NEPγ has

a Nash equilibrium uγ ∈ U . By definition, ai ≤ uγi ≤ bi, a.e.Ω. Therefore, the sequence/path

of equilibria {uγ}γ>0 is uniformly bounded in L2(Ω)
N

. As U is weakly closed and L2(Ω)
N

a
Hilbert space, there exists a subsequence, denoted by γ′, and some element u∗ ∈ U such that
uγ
′
⇀ u∗ in L2(Ω)

N
.

According to the SUFR, there exists an ε > 0 and a sequence
{
vγ
′} ⊂ U such that

y(vγ
′

i , u
γ′

−i) ≥ ψ + ε, a.e.Ω. As in the previous argument, we can deduce the uniform bound-

edness of
{
vγ
′}
γ′>0

in L2(Ω)
N

. Thus, there exists a constant M ≥ 0, independent of γ′, such
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that

1

2
||y(uγ

′

i , u
γ′

−i)− yid||2L2(Ω) +
αi
2
||uγ

′

i ||2L2(Ω) ≤

1

2
||y(uγ

′

i , u
γ′

−i)− yid||2L2(Ω) +
αi
2
||uγ

′

i ||2L2(Ω) +
γ′

2
||(ψ − y(uγ

′

i , u
γ′

−i))+||2L2(Ω) ≤
1

2
||y(vγ

′

i , u
γ′

−i)− yid||2L2(Ω) +
αi
2
||vγ

′

i ||2L2(Ω) ≤M.

Using the weak lower semicontinuity of the L2(Ω)-norm, it follows that

1

2
||y(u∗i , u

∗
−i)− yid||2L2(Ω) +

αi
2
||u∗i ||2L2(Ω) ≤ lim inf

γ′→+∞

[
1

2
||y(uγ

′

i , u
γ′

−i)− yid||2L2(Ω) +
αi
2
||uγ

′

i ||2L2(Ω)

]
.

Therefore, γ′

2
||(ψ − y(uγ

′

i , u
γ′

−i))+||2L2(Ω) is bounded as γ′ → +∞. But this can only hold if

||(ψ − y(uγ
′

i , u
γ′

−i))+||2L2(Ω) → 0. Due to the complete continuity of the solution operator y

from L2(Ω)
N

to H1
0 (Ω) and the continuity of the embedding H1

0 (Ω) ↪→ L2(Ω), we also have

||(ψ − y(uγ
′

i , u
γ′

−i))+||2L2(Ω) → ||(ψ − y(u∗i , u
∗
−i))+||2L2(Ω). Thus, u∗ ∈ U such that y(u∗i , u

∗
−i) ≥

ψ, a.e.Ω. In other words, there exists a subsequence of equilibria of the NEPγ that converges
weakly to a feasible strategy for the GNEP (1). Our next step is to demonstrate that u∗ is also
a generalized Nash equilibrium.

Fix an arbitrary i ∈ {1, . . . , N}, take vi ∈ Ui such that y(vi, u
∗
−i) ≥ ψ, a.e.Ω, and

{
un−i
}
⊂

U−i such that un−i ⇀ u∗−i in L2(Ω)
N−1

. Using these functions, we construct a sequence {vni } ⊂ Ui
such that vni → vi in L2(Ω).

According to the SUFR condition, there exists a constant ε > 0 and, for each n, a point
vn,0i ∈ Ui such that y(vn,0i , un−i) ≥ ψ+ ε, a.e.Ω. Clearly,

{
vn,0i

}
is bounded in L2(Ω). Since Ui is

convex, the points vni (λ) = λvn,0i + (1− λ)vi ∈ Ui for all λ ∈ (0, 1). Due to the linearity of the
solution operator y, it holds for each λ ∈ (0, 1) that

y(vni (λ), un−i) = y(λvn,0i + (1− λ)vi, u
n
−i)

= λy(vn,0i , un−i) + (1− λ)y(vi, u
n
−i)

≥ λ(ψ + ε) + (1− λ)y(vi, u
n
−i).

As discussed at the beginning of this section, the assumed regularity of ∂Ω, with r > d,
d ∈ {2, 3}, and r = d, d = 1, yields y(vi, ·) : L2(Ω)

N−1 → W 1,r
0 (Ω), which allows us to embed

solutions of the state equation into the space of continuous functions over Ω. This renders the
solution operator y(vi, ·) continuous from L2(Ω)

N−1 → C(Ω). It follows from the convergence
of y(vi, u

n
−i)→ y(vi, u

∗
−i) in C(Ω) that there exists n0 ∈ N such that y(vi, u

n
−i) ≥ ψ− 1/2n on Ω

for all n ≥ n0. By defining λn := (1/2n) /(ε+ 1/2n) , we obtain a null sequence, whose elements
all lie in the interval (0, 1), and for which y(vni (λn), un−i) ≥ ψ, a.e.Ω. Then since

||vni (λn)− vi||L2(Ω) = ||λnvn,0i + (1− λn)vi − vi||L2(Ω)

= |λn|||vn,0i − vi||L2(Ω)

≤ |λn|(||vn,0i ||2L2(Ω) + ||vi||L2(Ω)),

7



it follows that vni (λn) → vi in L2(Ω). This implies then that any element vi ∈ Ui such that
y(vi, u

∗
−i) ≥ ψ, a.e.Ω can be obtained by such a sequence {vni (λn)}∞n=1.

Let γ′ → +∞ be as in the above and define Xi :=
{
vi ∈ Ui

∣∣y(vi, u
∗
−i) ≥ ψ, a.e.Ω

}
. Note

that Xi is non-empty due to the SUFR condition. Since for all such γ′, uγ
′
is a Nash equilibrium

for NEPγ′ , it holds that

1

2
||y(uγ

′

i , u
γ′

−i)− yid||2L2(Ω) +
αi
2
||uγ

′

i ||2L2(Ω) +
γ′

2
||(ψ − y(uγ

′

i , u
γ′

−i))+||2L2(Ω) ≤

1

2
||y(vi, u

γ′

−i)− yid||2L2(Ω) +
αi
2
||vi||2L2(Ω) +

γ′

2
||(ψ − y(vi, u

γ′

−i))+||2L2(Ω), ∀vi ∈ Xi,

Now, for any vi ∈ Xi, we can construct a strongly converging sequence vγ
′

i analogously to vni (λn),

such that vγ
′

i →L2(Ω) vi. Upon substitution of this sequence into the previous inequality, passing
to the limit inferior over γ′ yields the following inequality for all i = 1, . . . , N :

1

2
||y(u∗i , u

∗
−i)− yid||2L2(Ω) +

αi
2
||u∗i ||2L2(Ω) ≤

1

2
||y(vi, u

∗
−i)− yid||2L2(Ω) +

αi
2
||vi||2L2(Ω), ∀vi ∈ Xi

as was to be shown.

Now that we have shown the existence of a Nash equilibrium for the GNEP (3), we derive
first order optimality conditions, which will be needed in the coming sections for the develop-
ment of an implementable solution method.

Proposition 2.6 (Necessary and Sufficient Optimality Conditions NEPγ). For any
γ > 0, a feasible strategy uγ is a Nash equilibrium for NEPγ (5) if and only if there exists a
yγ ∈ H1

0 (Ω) and for all i = 1, . . . , N , a pγi ∈ H1
0 (Ω) such that

uγi =
1

αi
χBi

pγi − (
1

αi
χBi

pγi − bi)+ + (−(
1

αi
χBi

pγi − ai))+, (6)

−∆yγ = χBi
uγi +

N∑
k=1
k 6=i

χBk
uγk + f, (7)

−∆pγi = yid − yγ + γ(ψ − yγ)+. (8)

Proof. By applying the argument used for (4) to the current setting, we can derive first-order
necessary and sufficient optimality conditions for a Nash equilibrium uγ of the form: Find
uγ ∈ U such that for all i = 1, . . . , N

(αiu
γ
i , v−u

γ
i )L2(Ω) +(yui

(uγi , u
γ
−i)
∗(y(uγi , u

γ
−i)−yid−γ(ψ−y(uγi , u

γ
−i))+), v−uγi )L2(Ω) ≥ 0,∀v ∈ Ui.

By letting pγi = (−∆)−1(y(uγi , u
γ
−i)− yid−γ(ψ− y(uγi , u

γ
−i))+), we obtain the equivalent coupled

system for each i = 1, . . . , N :

(αiu
γ
i − χBi

pγi , v − u
γ
i )L2(Ω) ≥ 0,∀v ∈ Ui

The nonsmooth equation (6) arises from the equivalence between the variational inequality and
the projection of 1

αi
χBi

pγi onto Ui, (cf. [19, 25]), whereas (7) and (8) follow from the definitions
of pγ and yγ.
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The following constraint qualification is based on one developed in [24], see also [16, 21].

Definition 2.7 (A Uniform Range Space Condition). We say that the GNEP satisfies the
uniform range space constraint qualification (URS) with respect to the control and state spaces
L2(Ω),W 1,r

0 (Ω), respectively, with 1 ≤ r ≤ +∞, if the following holds for all i = 1, . . . , N :
There exists a δi > 0 and a bounded set

Mi ⊂
{

(v, z) ∈ L2(Ω)×W 1,r
0 (Ω) |v ∈ Ui, z ≥ ψ, a.e.Ω

}
for all u−i ∈ U−i such that

Bδi(0) ⊂

−∆y − χBi
ui −

N∑
k=1
k 6=i

χBk
uk − f

∣∣∣∣∣∣∣ (ui, y) ∈Mi


where Bδi(0) is the open ball of radius δi in W−1,r(Ω).

Whereas the SUFR constraint qualification is concerned mainly with the regularity of the
state constraint, the URS condition is needed to ensure the existence of an adjoint state for
the GNEP (3). Together the two conditions will be needed to guarantee the convergence of
stationary points which satisfy (6)-(8). Nevertheless, we show in the following lemma that the
SUFR condition in fact implies the URS condition. Note that M(Ω) represents the space of
all bounded Borel measures. The dual of which is the space C(Ω) of all continuous functions.

Lemma 2.8 (SUFR ⇒ URS). Under the standing data assumptions, suppose that the GNEP
(3) satisfies the SUFR condition. Then the URS condition holds with respect to the control and
state spaces L2(Ω) and W 1,r

0 (Ω), where r > d, if d > 1, and r = d, if d = 1.

Proof. Based on the data assumptions, there exists a constant C > 0 such that for all y ∈
W 1,r

0 (Ω), ||y||W 1,r
0 (Ω) ≥ C||y||C(Ω). In addition, we know that the inverse operator (−∆)−1 is

bounded in the operator norm || · ||op from W−1,r(Ω) to W 1,r
0 (Ω). Suppose then that δ > 0 with

δ ≤ Cε

2||(−∆)−1||op
,

where the positive constant ε is taken from the definition of the SUFR condition.
Fix an arbitrary feasible strategy u for the GNEP (3). By the SUFR condition and regularity

assumptions on ∂Ω, there exists a y ∈ W 1,r
0 (Ω) and uδi ∈ Ui such that

−∆y − χBi
uδi −

∑
k=1
k 6=i

χBk
uk − f = 0 and y ≥ ψ + ε, a.e.Ω.

Now let wδ ∈ W−1,r(Ω) such that ||wδ||W−1,r(Ω) < δ and yδ ∈ W 1,r
0 (Ω) such that −∆yδ = wδ.

Then

C||yδ||C(Ω) ≤ ||yδ||W 1,r
0 (Ω) = ||(−∆)−1(wδ)||W 1,r

0 (Ω) ≤ ||(−∆)−1||op||wδ||W−1,r(Ω) <
Cε

2
.
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Therefore, −ε/2 ≤ yδ ≤ ε/2 for all x ∈ Ω, from which it follows that y+yδ ≥ ψ+ε/2 ≥ ψ, a.e.Ω.
Finally, we observe that

−∆(y + yδ)− χBi
uδi −

∑
k=1
k 6=i

χBk
uk − f = −∆yδ = wδ

and

||yδ + y||W 1,r
0 (Ω) ≤ Cε/2 + ||y||W 1,r

0 (Ω) = Cε/2 + ||(−∆)−1(χBi
uδ +

N∑
k=1
k 6=i

χBk
uk + f)||W 1,r

0 (Ω) ≤

Cε/2 + C ′||(−∆)−1||op(V ol(Bi)||uδ||L2(Ω) +
N∑
k=1
k 6=i

V ol(Bk)||uk||L2(Ω) + ||f ||L2(Ω)),

where C ′ > 0 is the constant arising from the (continuous) embedding W−1,r(Ω) ↪→ L2(Ω). In
light of the boundedness of the sets Ui, i = 1, . . . , N , the assertion follows.

Theorem 2.9 (Convergence of Stationary Points). Suppose the GNEP (3) satisfies the

SUFR condition. Then there exist sequences γn → +∞, {un} ⊂ L2(Ω)
N

, {yn} ⊂ W 1,r
0 (Ω), and

{pn} ⊂ W 1,s
0 (Ω)N along with u∗ ∈ L2(Ω)

N
, y∗ ∈ W 1,r

0 (Ω), p∗ ∈ W 1,s
0 (Ω)N , and λ∗ ∈ M(Ω)

where, for all i = 1, . . . , N :

uni →L2(Ω) u
∗
i , yn →W 1,r

0 (Ω) y
∗, pni ⇀W 1,s

0 (Ω) p
∗
i , γn(ψ − yn)+ ⇀M(Ω) λ

∗

such that (uni , y
n, pni ) satisfies (6)-(8) and

u∗i =
1

αi
χBi

p∗i − (
1

αi
χBi

p∗ − bi)+ + (−(
1

αi
χBi

p∗ − ai))+ (9)

−∆y∗ = χBi
u∗i +

N∑
k=1
k 6=i

χBk
u∗k + f (10)

−∆p∗i = yid − y∗ + λ∗, (11)

〈λ∗, ϕ〉M(Ω),C(Ω) ≥ 0,∀ϕ ∈ C(Ω) : ϕ ≥ 0, y∗ ≥ ψ, a.e.Ω, 〈λ∗, y∗ − ψ〉M(Ω),C(Ω) = 0. (12)

Proof. According the Theorem 2.5, there exists a sequence γn → +∞ along with a sequence
{un} ⊂ L2(Ω)

N
of Nash equilibria for the NEPγn that converges weakly to a Nash equilibrium

u∗ for the GNEP (3) in the sense that for each i, uni ⇀L2(Ω) u
∗
i . It follows then from Proposition

2.6 that there exists a yn ∈ H1
0 (Ω) and, for each i ∈ {1, . . . , N}, a pni ∈ H1

0 (Ω) such that the
relations (6)-(8) hold at (uni , y

n, pni ) with γ = γn. Given the assumptions of ∂Ω, the sequences
{yn} and {pni }n are contained in W 1,r

0 (Ω), for all i = 1, . . . , N . We begin by demonstrating the
assertions on the sequences of adjoint states {pni }.
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Let (ui, y) ∈ Mi, where Mi is the bounded subset of L2(Ω)×W 1,r
0 (Ω) given by the URS

condition. Multiplying (8) by yn − y, we obtain

〈−∆pni , y
n − y〉H−1,H1

0
− γn

∫
Ω

(ψ − yn)+(yn − y)dx =

∫
Ω

(yid − yn)(yn − y)dx

⇔ 〈−∆pni , y
n − y〉H−1,H1

0
− γn

∫
Ω

(ψ − yn)+(yn − ψ + ψ − y)dx =

∫
Ω

(yid − yn)(yn − y)dx

⇔ 〈−∆pni , y
n − y〉H−1,H1

0
+ γn

∫
Ω

(ψ − yn)2
+ = γn

∫
Ω

(ψ − yn)+(ψ − y)dx+

∫
Ω

(yid − yn)(yn − y)dx

Then since ψ − y ≤ 0, a.e.Ω, it must hold that

〈−∆pni , y
n − y〉H−1,H1

0
≤ 〈−∆pni , y

n − y〉H−1,H1
0

+ γn

∫
ω

(ψ − yn)2
+ ≤

∫
Ω

(yid − yn)(yn − y)dx.

(13)

Clearly, yn − y ∈ W 1,r
0 (Ω), which in turn implies that −∆(yn − y) ∈ W−1,r(Ω). It follows

then that 〈−∆pni , y
n − y〉H−1,H1

0
= 〈pni ,−∆(yn − y)〉W 1,s

0 ,W−1,r . Since r > 2, W 1,r
0 (Ω) ↪→ L2(Ω)

continuously. Thus, every L2(Ω)-function ϕ defines a bounded linear functional on W 1,r
0 (Ω) via

(ϕ, ·)L2(Ω). This allows us to make the following calculation

〈pni ,−∆(yn − y)〉W 1,s
0 ,W−1,r =

〈pni ,−∆yn − χBi
ui −

N∑
k=1
k 6=i

χBk
unk − f + ∆y + χBi

ui +
N∑
k=1
k 6=i

χBk
unk + f〉W 1,s

0 ,W−1,r =

〈pni , χBi
(uni − ui) + ∆y + χBi

ui +
N∑
k=1
k 6=i

χBk
unk + f〉W 1,s

0 ,W−1,r =

(pni , χBi
(uni − ui))L2(Ω) + 〈pni ,∆y + χBi

ui +
N∑
k=1
k 6=i

χBk
unk + f〉W 1,s

0 ,W−1,r . (14)

Next, we show that the term (pni , χBi
(uni − ui))L2(Ω) is bounded. Using (6), we deduce the

existence of multipliers λ
n

i , λ
n
i ∈ L2(Ω) such that

λ
n

i ≥ 0, a.e.Ω, (λ
n

i , u
n
i − bi)L2(Ω) = 0, λni ≥ 0, a.e.Ω, (λni , ai − ui)L2(Ω) = 0.

and χBi
pni = αiu

n
i + λ

n

i − λni . But then

(pni , χBi
(uni − ui))L2(Ω) = (χBi

pni , u
n
i − ui)L2(Ω)

= (αiu
n
i + λ

n

i − λni , uni − ui)L2(Ω)

= (αiu
n
i , u

n
i − ui)L2(Ω) + (λ

n

i , u
n
i − bi + bi − ui)L2(Ω)

− (λni , u
n
i − ai + ai − ui)L2(Ω)

= (αiu
n
i , u

n
i − ui)L2(Ω) + (λ

n

i , bi − ui)L2(Ω) − (λni , ai − ui)L2(Ω)

≥ (αiu
n
i , u

n
i − ui)L2(Ω). (15)
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Combining (13)-(15), we obtain the inequality

〈pni ,∆y + χBi
ui +

N∑
k=1
k 6=i

χBk
unk + f〉W 1,s

0 ,W−1,r ≤ (αiu
n
i , ui − uni )L2(Ω) +

∫
Ω

(yid − yn)(yn − y)dx

≤ |αi|||uni ||L2(Ω)||ui − uni ||L2(Ω) + ||yid − yn||L2(Ω)||yn − y||L2(Ω). (16)

Since (ui, y) ∈ Mi was arbitrarily chosen and Mi is bounded, taking the supremum over both
sides of (16) implies there exists a constant C > 0 such that

sup
ϕ∈W−1,r(Ω)
||ϕ||W−1,r(Ω)=1

〈pni , ϕ〉W 1,s
0 ,W−1,r ≤ δC.

It follows that {pni }n ⊂ W 1,s
0 (Ω) is bounded. Given 1 < r < +∞, W 1,s

0 (Ω) is a reflexive
Banach space. Therefore, there exists a subsequence of {pni }n, denoted still by n, and an
element p∗i ∈ W 1,s

0 (Ω) such that pni ⇀W 1,s
0 (Ω) p

∗
i . By the Rellich-Kondrachev theorem, the

embedding W 1,s
0 (Ω) ↪→ L2(Ω) is compact, in which case, there exists a further subsequence

of {pni }n, denoted still by n, such that pni →L2(Ω) p
∗
i . As the max(0, ·)-operator is Lipschitz

continuous from L2(Ω) to L2(Ω), the strong convergence of pni to p∗i implies that uni →L2(Ω) u
∗
i

for each i = 1, . . . , N . Furthermore, we know that the solution operator y(·) of the state
equation is (completely) continuous from L2(Ω) to W 1,r

0 (Ω), from which can can deduce the
strong convergence of the sequence yn := y(un) in W 1,r

0 (Ω) to y∗. These implications lead to
the equations (9) and (10).

Next, we turn our attention to the sequence λn := γn(ψ−yn)+. By the previous arguments,
we have from (8) that {λn} is bounded in W−1,s(Ω). Moreover, the SUFR condition yields the
existence of a constant ε > 0 and a (bounded) sequence of controls {ũni } ⊂ Ui such that the
sequence {ỹn} defined by ỹn := y(ũni , u

n
−i) satisfies ỹn − ψ ≥ ε, a.e.Ω for all n ≥ 1. Since ỹn

must also solve the state equation, it enjoys the increased regularity of yn, i.e., ỹn ∈ W 1,r
0 (Ω).

Multiplying (8) by ỹn yields the relation∫
Ω

λnỹ
n = 〈−∆pni , ỹ

n〉W−1,s,W 1,r
0

+ (yn − yid, ỹn)L2(Ω).

Using the continuity of the embedding W 1,r
0 (Ω) ↪→ L2(Ω), the boundedness of the sequences

{ũni } and
{
un−i
}

, and the definition of the solution operator y(·), we can deduce the existence
of constants C,C ′ > 0 such that

||ỹn||L2(Ω) ≤ C||ỹn||W 1,r
0

= C||(−∆)−1(χBi
ũni +

n∑
k=1
k 6=i

χBk
unk + f)||W 1,r

0
≤

C||(−∆)−1||L(L2(Ω),W 1,r
0 )(Vol(Bi)||ũni ||L2(Ω) +

N∑
k=1
k 6=i

Vol(Bk)||unk ||L2(Ω) + ||f ||L2(Ω)) ≤ C ′.

Therefore, there exists a constant C ′′ > 0, independent of n, such that∫
Ω

λnỹ
ndx ≤ |

∫
Ω

λnỹ
ndx| = |〈λn, ỹn〉W−1,s,W 1,r

0
| ≤ ||λn||W−1,s||ỹn||W 1,r

0
≤ C ′′. (17)
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Moreover, we have∫
Ω

λnỹ
ndx =

∫
Ω

λn(ỹn − ψ + ψ)dx =

∫
Ω

λn(ỹn − ψ)dx+

∫
Ω

λnψdx.

By substitution into (17), it follows that∫
Ω

λn(ỹn − ψ)dx ≤ C ′′ −
∫

Ω

λnψdx

Defining the subset An := {x ∈ Ω |ψ − yn > 0}, we then deduce∫
Ω

λnψdx =

∫
An

λnψdx >

∫
An

λny
ndx =

∫
Ω

λny
ndx = 〈λn, yn〉W−1,s,W 1,r

0
.

Thus,

0 ≤ ε

∫
Ω

λndx ≤
∫

Ω

λn(ỹn − ψ)dx ≤ C ′′ −
∫

Ω

λnψdx < C ′′ − 〈λn, yn〉W−1,s,W 1,r
0

≤ C ′′ + |〈λn, yn〉W−1,s,W 1,r
0
| ≤ 2C ′′.

Using the SUFR condition and the pointwise almost-everywhere non-negativity of λn, it holds
that

0 ≤
∫

Ω

λndx = ||λn||L1 ≤ 2ε−1C ′′,

from which it follows that the sequence {λn} is bounded in L1(Ω). Therefore, there exists a
subsequence of λn, denoted still by n and an element λ∗ ∈ M(Ω) such that {λn} converges in
the weak topology σ(M(Ω), C(Ω)) to λ∗ (see e.g., Theorem IV.6.2 in [6] or Corollary 2.4.3 in
[3]). The limiting adjoint equation (11) thus follows.

It remains to verify the complementarity relations (12). The feasibility of y∗ follows from
the fact that yn →W 1,r

0 (Ω) y
∗ implies yn−ψ →L1(Ω) y

∗−ψ. Hence, there exists a subsequence of

{yn − ψ} that converges pointwise almost everywhere to y∗ − ψ, in which case, y∗ ≥ ψ, a.e.Ω.
Now let ϕ ∈ C(Ω) such that ϕ ≥ 0 on Ω. Then 0 ≤ (λn, ϕ)L2(Ω) = 〈λn, ϕ〉M(Ω),C(Ω). Passing to

the limit in n, yields 〈λ∗, ϕ〉M(Ω),C(Ω) ≥ 0. Since both W 1,r
0 (Ω) ↪→ C(Ω) and W 2,2(Ω) ↪→ C(Ω)

are continuous and 0 ≥ (λn, y
n − ψ)L2(Ω) = 〈λn, yn − ψ〉M(Ω),C(Ω), 〈λ∗, y∗ − ψ〉M(Ω),C(Ω) ≤ 0

holds. By the feasibility of y∗, the latter holds as an equality.

This concludes our theoretical study of the GNEP. Before continuing, we note that one could
easily extend some of these arguments to include bilateral constraints on the state and/or more
general (linear) differential operators than −∆, provided the solutions are regular enough.
One could also consider more control constraints, assuming they remain convex and bounded,
however the simple reformulation of the variational inequality used in the previous proposition
may no longer be available.
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3 The Algorithm

Due to the constructive nature of Theorem 2.5 and 2.9, we can develop an infinite dimensional
solution algorithm for the GNEP (3). The algorithm works by approximating a Nash equilib-
rium for (3) by Nash equilibria obtained for each NEPγ along some sequence of constants {γ}
with γ → +∞. We describe this outer loop in Algorithm 1. It follows from Theorem 2.9 that the
iterates (uγ, yγ, pγ) of Algorithm 1 converge to a point (u∗, y∗, p∗) in L2(Ω)×H1

0 (Ω)×H1
0 (Ω) as

γ → +∞ where u∗ is a Nash equilibrium for (3) and for which there exists a λ∗ ∈ L2(Ω)
N

such
that (u∗, y∗, p∗, λ∗) satisfies (9)-(11). Note that the data needed for Algorithm 1 also includes
the model data, e.g., αi, y

i
d, f , ai, bi, etc.

Algorithm 1
Data: γ0 > 0 N ∈ N.

1: Choose (u0, y0, p0) ∈ L2(Ω)
N ×H1

0 (Ω)×H1
0 (Ω)

N
and set k := 0.

2: repeat.
3: Solve the coupled optimality conditions derived from (6)-(8) with γ = γ0 to
obtain (uk+1, yk+1, pk+1) using initial values (uk, yk, pk) for the solution algorithm.
4: Choose γk+1 > γk.
5: Set k := k + 1.
6: until some stopping criterion is fulfilled.

In order to find an equilibrium for each γk in Algorithm 1, we propose that one solves the
coupled system of necessary and sufficient first-order optimality conditions (6)-(8) derived in
Proposition 2.6. The solution of this system can be done in two ways: an all-at-once approach
or a non-linear Gauss-Seidel iteration. In this paper, we develop a solver for the “inner loop”
in Algorithm 1 based on a non-linear Gauss-Seidel iteration in which the ith optimality system
(6)-(8) is solved with uk−i fixed. Each of these subproblems is solved via a nonsmooth Newton
step. In the sequel, we discuss the details of the Newton step.

In the following discussion, fix i ∈ {1, . . . , N}, γ > 0, and let uγ be an abitrarily fixed
feasible strategy for NEPγ. Note that for any such uγ, the ith system (6)-(8) can be reduced to
a problem in yγ and pγi :

−∆yγ = χBi
(

1

αi
pγi − (

1

αi
pγi − bi)+) + (−(

1

αi
pγi − ai))+ +

N∑
k=1
k 6=i

χBk
uγk + f,

−∆pγi = yid − yγ + γ(ψ − yγ)+.

Using these two nonsmooth equations, we define the mapping
F γ
i : L2(Ω)

N−1×H1
0 (Ω)×H1

0 (Ω)→ H−1(Ω)×H−1(Ω) by

F γ
i (uγ−i, z, q) :=(

−∆z − χBi
( 1
αi
q − ( 1

αi
q − bi)+ + (−( 1

αi
q − ai))+)−

∑N
k=1
k 6=i

χBk
uγk − f.

−∆q + z − yid − γ(ψ − z)+

)
(18)

Our goal in each subproblem iteration is to find (ȳγ, p̄γi ) ∈ H1
0 (Ω)×H1

0 (Ω) such that

F γ
i (ūγ−i, ȳ

γ, p̄γi ) = 0. (19)
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Once this is done, we set ūγi = 1
αi
p̄γi − ( 1

αi
p̄γi − bi)+ +(−( 1

αi
p̄γi −ai))+. The Gauss-Seidel iteration

then updates uγ by replacing uγi with ūγi and proceeds to the next nonsmooth equation (19).
As F γ

i contains the nonsmooth operators max(0, ·), a generalized derivative concept is needed
in order to define a Newton step In the following definition, taken from [4] and [13], let X, Y
be Banach spaces, D ⊂ X an open subset of X, and F : D → Y .

Definition 3.1. The mapping F : D ⊂ X → Y is said to be Newton-differentiable on the open
subset U ⊂ D, if there exists a family of mappings G : U → L(X, Y ) such that

lim
h→0

1

||h||X
||F (x+ h)− F (x)−G(x+ h)h||Y = 0,

for every x ∈ U .

One typically refers to G as the Newton derivative for F on U . A well-known result from
[13], shows that

Gδ(y)(x) =


1 if y(x) > 0
0 if y(x) < 0
δ if y(x) = 0

(20)

for every y ∈ X and δ ∈ R is a Newton-derivative of the max(0, ·), provided one has max(0, ·) :
Lp(Ω) → Lq(Ω) with 1 ≤ q < p ≤ ∞. Suppose now that we wish to solve the equation
F (x) = 0. If a Newton-derivative of F is available, then a generalized Newton step can be
derived. For completeness, we provide the following result, which can be found in [4], as well
as [13].

Theorem 3.2. Suppose that F (x∗) = 0 and that F is Newton-differentiable on an open neigh-
borhood U of x∗ with Newton derivative G. If G(x) is nonsingular for all x ∈ U and the set{
||G(x)−1||L(Y,X) : x ∈ U

}
is bounded, then the semismooth Netwon iteration

xk+1 = xk −G(xk)−1F (xk) (21)

converges superlinearly to x∗, provided ||x0 − x∗||X is sufficiently small.

At this point, we have enough tools to develop a semismooth Newton algorithm for solv-
ing (19). Suppose (z, q) ∈ H1

0 (Ω)×H1
0 (Ω) is the current iterate. We define the following

approximations of the active sets:

Aai :=

{
x ∈ Ω

∣∣∣∣ai(x)− 1

αi
q(x) > 0

}
, Abi :=

{
x ∈ Ω

∣∣∣∣ 1

αi
q(x)− bi(x) > 0

}
,

Ay := {x ∈ Ω |ψ(x)− z(x) > 0} .

Additionally, we define approximations for the inactive sets by

Ii := Ω \ (Aai ∪ Abi), Ji := Ω \ Ay.

In the following, we let (δy, δp) denote the difference between the current iterate (z, q) and
previous iterate (y, p) in the Newton step. Then by using G0 in (20) as the Newton-derivative
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of the max(0, ·) operator, one can easily show that (21) (applied to (19)) is equivalent to solving
the following system in (δy, δp):

−∆δy − χBi∩Iiδp = ∆y + χBi∩Aa
i
a+ χBi∩Ab

i
b+

N∑
k=1
k 6=i

χBk
uk + f,

−∆δp− δy − γχAyδy = ∆p+ yid − y + γ(ψ − y)+

and then setting z = y+ δy and q = p+ δp. This indicates, as was expected from the results in
[13], that the nonsmooth Newton step is equivalent to a primal-dual active set strategy. This
fact indicates that the Newton iteration may stopped when the previous active sets are equal
to the current active sets.

According the Theorem 3.2, the semismooth Newton method is merely locally convergent.
Though there exist a number of sophisticated globalization schemes [9, 11, 23], see also [14] for
a function space treatment of these issues, we chose to implement an Armijo-type line search
and thus update our steps by y+ = y+ τδy, and p+ = p+ τδp, where τ is step size. Despite the
fact that no descent is guaranteed along such a “path”, we observed satisfying results. Future
work might include the implementation of a more properly globalized Newton step. To see that
each F γ

i is in fact Newton differentiable, we refer the reader to the proof of Proposition 5.5 in
[14], which can be easily adapted to our setting.

These new considerations lead to the inner loop algorithm Algorithm 2.

Algorithm 2
Data: γ > 0 N ∈ N.

1: Choose (u0, y0, p0) ∈ L2(Ω)
N ×H1

0 (Ω)×H1
0 (Ω) and set l := 0.

2: repeat.
3: for i = 1, . . . , N .
4: Using a semismooth Newton step, solve F γ

i (ul−i, z, q) = 0 in (z, q)
5: Set v = 1

αi
q − ( 1

αi
q − bi)+ + (−( 1

αi
q − ai))+.

6: Set (ul+1
i , yl+1, pl+1

i ) = (v, z, q).
7: Set ul = (ul+1

i , ul−i) and yl = yl+1.
7: end.

5: Set l := l + 1.
6: until some stopping criterion is fulfilled.

The convergence of Algorithm 2 requires the convergence of a non-linear Gauss-Seidel step.
Though such iterations may be either slow or prone to cycles, we observed good behaviour
in our numerical experiments. A theoretical treatment of this question will be the subject of
future work.

4 Numerical Experiments

Throughout this section, we let N = 4 and Ω = (0, 1)×(0, 1). In order to discretize the problem,
we considered a uniform grid with mesh size h, and we discretized the Laplacian −∆ by finite
differences using a standard 5-point stencil. The examples were solved up to h = 1/512. Note
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that a mesh size of h = 1/512 corresponds to generalized Nash equilibrium problems with over
three million free variables (counting the state, adjoint state, and control). To the best of our
knowledge, these are the largest GNEPs solved to date. Using the variable ν defined by,

ν :=

∑N
i=1 ||u

k+1
i − uki ||L2(Ω)∑N

i=1 ||u
k+1
i − u0

i ||L2(Ω)

,

we set updated γ whenever ν ≤ 1e − 06 by setting γk+1 = 2γk. The nonsmooth Newton
iterations stopped when the active sets for iteration k were equal to k− 1. One topic of future
research will be to develop a path-following strategy for the γ-updates as developed in [15],
in order to avoid unnecessary/costly iterations. Due to its dependency on the accuracy and
convergence properties of the innermost loop, i.e., the nonsmooth Newton solver, the issue of
finding a proper starting point for Algorithm 1 is of great importance. In our experiments, we
calculated a starting value for the problem by first setting (u, y, p) = (0, 0, 0) and then obtained
(u0, y0, p0) by running one loop of the Gauss-Seidel iteration Algorithm 2. Though this can be
a rather computationally intesive step, it provided us with a vector of feasible controls u0

−i.

Example 4.1. For this example, we let

B̃1 =

]
1

8
,
7

8

[
×
]

1

8
,
7

8

[
, B̃2 =

]
2

8
,
6

8

[
×
]

2

8
,
6

8

[
, B̃3 =

]
3

8
,
5

8

[
×
]

3

8
,
5

8

[
,

and define
B1 = Ω \ B̃1, B2 = B̃1 \ B̃2B3 = B̃2 \ B̃3, B4 = B̃3,

where the complement is taken in Ω. We used the desired states

y1
d(x1,x2) = 1e3 max(0, 4(0.25−max(|x1 − 0.25|, |x2 − 0.25|))),
y2
d(x1,x2) = 1e3 max(0, 4(0.25−max(|x1 − 0.75|, |x2 − 0.25|))),
y3
d(x1,x2) = 1e3 max(0, 4(0.25−max(|x1 − 0.25|, |x2 − 0.75|))),
y4
d(x1,x2) = 1e3 max(0, 4(0.25−max(|x1 − 0.75|, |x2 − 0.75|))).

for (x1,x2) ∈ Ω and defined the obstacle ψ by

ψ(x1,x2) = cos(2
√

(x2
1 − 0.5)2 + (x2

2 − 0.5)2)− 0.7.

By letting A := [0.35, 0.65]× [0.35, 0.65] ⊂ R2, we defined the fixed righthand side f by

f = −χA(∆ψ + 5).

Note that this choice of ψ is smooth and clearly satisfies ψ|∂Ω < 0. Therefore, ψ fulfills the
requirements used throught the theoretical portions of this paper. Finally, we let ai = 0 and
bi = 5, for i = 1, . . . , 4. For simplicity, we chose αi = 1 for all i = 1, . . . , 4. Further experiments
with asymmetric costs and bounds yielded similar results.

The behaviour of the algorithm over various mesh sizes can be seen in Tables 1 and 2. Note
that the maxima, minimia, and average values in Table 2 are to be understood in the following
sense: the symbol Max (Min) represents the maximum (minimum) number of iterations over
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Figure 1: A Nash equilibrium (u∗1, u
∗
2, u
∗
3, u
∗
4) (l-r) for Exp 4.1.

Figure 2: Active sets at equilibrium: u∗i = bi (white), u∗i = ai (black) for Exp 4.1.

all Gauss-Seidel iterations over all four players, whereas Avg represents the average of the
average number of iterations over all players per Gauss-Seidel iteration per γ. We note that
both the Gauss-Seidel iterations as well as the nonsmooth Newton steps exhibited a strong
mesh independence, see Table 1, We assumed that the discretization error dominated the
regularization error and chose therefore, to stop the outer loop (Gauss-Seidel) iterations, once
γ−1 ≤ h2. Finally, we note that in Figure 1, the equilibrium controls are plotted such that the
portions where ui = 0 have been removed.

Example Mesh Width h
4.1 1/32 1/64 1/128 1/256 1/512

2000 0 3 3 3 3
4000 1 1 1 1
8000 1 1 1

γ 16000 1 1 1
32000 1 1
64000 1 1

1.28e+05 1
2.56e+05 1

Table 1: Total Gauss-Seidel iterations per γ for various mesh widths h
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Example Mesh Width h
4.1 1/32 1/64 1/128 1/256 1/512

2000 2/1/1.75 3/1/1.67 3/1/1.67 3/1/2.58 4/3/3.17
4000 3/1/1.5 3/1/1.5 3/1/2.5 4/3/3.25
8000 3/1/1.5 3/1/2.5 4/3/3.25

γ 16000 3/1/1.5 3/1/2.5 4/3/3.25
32000 3/1/2.5 4/3/3.25
64000 3/1/2.5 4/3/3.25

1.28e+05 4/3/3.25
2.56e+05 4/3/3.25

Table 2: Max/Min/Avg nonsmooth Newton iterations per γ for various mesh widths h

Example Mesh Width h
4.2 1/32 1/64 1/128 1/256 1/512

2000 0 1 2 2 2
4000 1 1 1 1
8000 1 1 1

γ 16000 1 1 1
32000 1 1
64000 1 1

1.28e+05 1
2.56e+05 1

Table 3: Total Gauss-Seidel iterations per γ for various mesh widths h

Example 4.2. Perhaps one of the major difficulties that can arise when solving GNEPs is a non-
trivial biactive set, i.e., when at iteration k, the set

{
x ∈ Ω | yk(x) = ψ(x)

}
∩{x ∈ Ω |λn(x) = 0}

has positive Lebesgue measure. In this example, we consider exactly such a case. Let ψ be as
in Example 4.1 and define the subsets

B1 =

]
0,

1

2

[
×
]
0,

1

2

[
, B2 =

]
1

2
, 1

[
×
]
0,

1

2

[
, B3 =

]
0,

1

2

[
×
]

1

2
, 1

[
, B4 =

]
1

2
, 1

[
×
]

1

2
, 1

[
,

and

B̃1 =

]
1

4
,
1

2

[
×
]

1

4
,
1

2

[
, B̃2 =

]
1

2
,
3

4

[
×
]

1

4
,
1

2

[
, B̃3 =

]
1

4
,
1

2

[
×
]

1

2
,
3

4

[
, B̃4 =

]
1

2
,
3

4

[
×
]

1

2
,
3

4

[
.

Let A := B̃1 ∪ B̃2 ∪ B̃3 ∪ B̃4 and define the control bounds ai = 0, i = 1, . . . , 4 and

bi := χBi
− 1

2
χBi

, (i = 1, . . . , 4).

We define a common desired state, shared by all players, by

yid(x1,x2) = 5e2 min(max(0, ψ(x1,x2)), 0.2), (i = 1, . . . , 4),

and we set αi = 1.1e-3, for all i = 1, . . . , 4, and f = −∆(ψ)+ − 1/2χA − χΩ\A.
The behaviour of the algorithm over various mesh sizes can be seen in Tables 3 and 4. As

before the Gauss-Seidel iterations exhibited no mesh dependence, see Table 1. In addition,
we see that the nonsmooth Newton steps behave without any noticable mesh dependence. In
Figure 3, we provide the equilibrium state; active, biactive, and inactive sets; and the multiplier
λ∗. The Nash equilibrium can be seen in Figure 4, as before, we have removed the parts of the
graphs at which the function values are zero to facilitate visibility.
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Figure 3: l: y∗ (dark) and ψ (light); m: active (white), biactive (grey), and inactive (black) sets; r: λ∗

Figure 4: A Nash equilibrium (u∗1, u
∗
2, u
∗
3, u
∗
4) (l-r) for Exp 4.2

Example Mesh Width h
4.2 1/32 1/64 1/128 1/256 1/512

2000 1/1/1 1/1/1 1/1/1 3/1/1.5 2/1/1.12
4000 1/1/1 1/1/1 3/1/2 1/1/1
8000 1/1/1 3/1/2 1/1/1

γ 16000 1/1/1 3/1/2 1/1/1
32000 3/1/2 1/1/1
64000 3/1/2 1/1/1

1.28e+05 1/1/1
2.56e+05 1/1/1

Table 4: Max/Min/Avg nonsmooth Newton iterations per γ for various mesh widths h
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