

Advanced Functional Analysis

Problem Sheet 8 Due date: January 29, 2016

Problem 8.1. Let $\Omega \subset \mathbb{R}^n$, $1 and <math>p' \in [1, \infty)$ such that 1 = 1/p + 1/p'. Show that the following are equivalent:

- $u \in W^{1,p}(\Omega)$
- $u \in L^p(\Omega)$ and $\left| \int_{\Omega} u \partial_i \varphi \right| \le C \|\varphi\|_{p'}$ for all $\varphi \in C^{\infty}_c(\Omega), \ 1 \le i \le n$

Does this also hold for p = 1?

Problem 8.2. Show that for general $\Omega \subset \mathbb{R}^n$, $C^{\infty}(\overline{\Omega})$ is not dense in $W^{1,p}(\Omega)$. (Hint: Consider $\Omega = \{(x, y) \in \mathbb{R}^2 | 0 < |x| < 1, 0 < y < 1\}$)

Problem 8.3. Show that a self-adjoint extension of a symmetric, densely defined, operator is not necessarily unique.

(Hint: Consider ∂_{xx} on $L^2([0, 2\pi])$ and appropriate boundary conditions.)