Advanced Functional Analysis

Problem Sheet 7 Due date: January 15, 2016

Problem 7.1. Let $\Omega \subset \mathbb{R}^n$ be open, $1 \leq p < \infty$. Show

- i) If $f \in L^p(\Omega, \mathbb{K})$, and $\eta : \mathbb{R}^n \to \mathbb{R}$ is a mollifier kernel, then $\eta_{\epsilon} * f \to f$ in $L^p(\Omega, \mathbb{K})$ for $\epsilon \to 0$.
- ii) If $f \in L^1_{loc}(\Omega, \mathbb{K})$ such that [f] = 0, then f = 0. Deduce that, if a distribution is regular, its representing function is unique.

(Hint: i) Use techniques from the lecture. ii) Exploit that, if f is not zero, it is strictly positive or negative a.e. on a compact set with non-zero measure.)

Problem 7.2. [Integration by parts] Let $\Omega \subset \mathbb{R}^n$ be open, $f, g \in C^k(\Omega, \mathbb{K})$ such that one of them has compact support in Ω . Show that

$$\int_{\Omega} D^{\alpha} f(x) g(x) \, \mathrm{d}x = (-1)^{|\alpha|} \int_{\Omega} f(x) D^{\alpha} g(x) \, \mathrm{d}x$$

for all $\alpha \in \mathbb{N}_0^n$ such that $|\alpha| = \sum_{i=1}^n \alpha_i \leq k$. Deduce that, if $h \in C^k(\Omega, \mathbb{K})$, $D^{\alpha}[h] = [D^{\alpha}h]$ for all $|\alpha| \leq k$.

(Hint: First consider the Fubini theorem to compute $\int_{\mathbb{R}^n} \partial_{x_i} f(x) \, dx$ for compactly supported f.)

Remember Green's formula: For $u, v \in C^1(\overline{\Omega})$ with Ω a bounded Lipschitz domain, we have

$$\int_{\Omega} \partial_{x_i} uv + \int_{\Omega} u \partial_{x_i} v = \int_{\partial \Omega} uv \nu_i$$

where $\nu = (\nu_1, \ldots, \nu_n)$ is the a.e. defined unit outward normal vector to $\partial\Omega$. (See for instance [Grisvard, Elliptic Problems in Nonsmooth Domains, Theorem 1.5.3.1] and [Necas, Les Methodes directes en theorie des equations elliptiques, Chapter 3, §1, Theorem 1.1] for a definition of Lipschitz domain and a proof in a more general setting.

Problem 7.3. [Fundamental solution for the Laplace operator] Define $f : \mathbb{R}^3 \to \mathbb{R}$ as $f(x) = \frac{1}{4\pi |x|}$ (with |x| the Euclidean norm) for $x \neq 0$ and 0 else. Show

- i) $\Delta f(x) = \sum_{i=1}^{3} \partial_{x_i x_i} f(x) = 0$ for all $x \neq 0$.
- ii) $f \in L^1_{loc}(\mathbb{R}^3)$ and $\Delta[f](\varphi) = -\varphi(0)$ for all $\varphi \in \mathcal{D}(\mathbb{R}^3)$, i.e., $\Delta[f]$ is the negative deltadistribution.
- iii) For $g \in C_c^{\infty}(\mathbb{R}^3)$, define u(x) = (g * f)(x). Show that $u \in C^{\infty}(\mathbb{R}^m)$ and

$$-\Delta u = g$$

Hint: for ii) you might use Greens formula on $\mathbb{R}^3 \setminus B_{\epsilon}(0)$ and consider the limit $\epsilon \to 0$.

Problem 7.4. Let $\Omega \subset \mathbb{R}^d$ be a bounded Lipschitz domain and $(\Omega_i)_{i=1}^n$ a sequence of bounded Lipschitz domains such that $\overline{\Omega} = \bigcup_{i=1}^n \overline{\Omega}_i$, $\Omega_i \cap \Omega_j = \emptyset$ if $i \neq j$. Let $v \in C(\overline{\Omega})$ be such that $v|_{\overline{\Omega}_i} \in C^1(\overline{\Omega}_i)$ for all *i*. Show that $D^{\alpha}[v]$ is a regular distribution for $|\alpha| \leq 1$ and determine its representing function.