Advanced Functional Analysis

Problem Sheet 4

Due date: November 20, 2015
This exercise sheet deals with the application of spectral theory to study ill-posed operator equations of the form: Given f, find u s.t. $K u=f$, where K is not continuously invertible, meaning that small errors on the "measurement" f might lead to arbitrary large deviations in the solution u. Such a situation occurs in many important physical problems and engineering applications, such as X-ray tomography, PET imaging or parameter identification for PDEs, where the ill-posedness posses severe difficulties in practical applications.

Problem 4.1. [Generalized inverse]. Let $T \in \mathcal{L}(X, Y)$ with X, Y Hilbert spaces. We are interested in a generalized approximate solution to $T x=y$:

- $\hat{x} \in X$ is called least squares solution of $T x=y$ if

$$
\|T \hat{x}-y\|=\inf \{\|T z-y\|: z \in X\}
$$

- $\hat{x} \in X$ is called best approximate solution of $T x=y$ if \hat{x} is a least squares solution and

$$
\|\hat{x}\|=\inf \{\|z\|: z \text { is a least squares solution of } T x=y\}
$$

We define the (Moore-Penrose) generalized inverse of T as

$$
\begin{align*}
& T^{\dagger}: \mathcal{D}\left(T^{\dagger}\right) \rightarrow X \tag{1}\\
& \quad y \mapsto T^{\dagger} y=x^{\dagger} \text { the best approximate solution of } T x=y \tag{2}
\end{align*}
$$

with $\mathcal{D}\left(T^{\dagger}\right):=\operatorname{rg}(T)+\operatorname{rg}(T)^{\perp}$ the domain of T^{\dagger}.
i) Show that T^{\dagger} is well and densely defined, linear and has a closed graph.
ii) Deduce that T^{\dagger} is continuous if and only if T has closed range.
iii) Show that $T^{\dagger} y \in \operatorname{ker}(T)^{\perp}$ for $y \in \mathcal{D}\left(T^{\dagger}\right)$.
iv) Show that, with $x^{\dagger}=T^{\dagger} y, T^{*} T x^{\dagger}=T^{*} y$ and hence, $x^{\dagger}=\left(T^{*} T\right)^{-1} T^{*} y$ if $T^{*} T$ is invertible.
v) Note that $T\left(T^{\dagger} y\right)=y$ if $y \in \operatorname{rg}(T)$ and $T^{\dagger}=T^{-1}$ if T is bijective.

Problem 4.2. Let $K \in \mathcal{L}(X, Y)$ be compact, with X, Y Hilbert spaces. We write K according to the lecture as

$$
K x=\sum_{i \in N} \sigma_{n}\left(x, v_{n}\right) u_{n}
$$

with $N \subset \mathbb{N}$ a countable index set, $\left(u_{n}\right)_{n}$ and $\left(v_{n}\right)_{n}$ orthonormal systems and $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq 0$ the singular values of K. Show
i) If $\operatorname{dim}(\operatorname{rg}(K))=\infty$, then K^{\dagger} is unbounded.
ii) $y \in \mathcal{D}\left(K^{\dagger}\right) \Leftrightarrow \sum_{\substack{n \in N \\ \sigma_{n} \neq 0}} \frac{\left|\left(y, u_{n}\right)\right|^{2}}{\sigma_{n}^{2}}<\infty$.
iii) For $y \in \mathcal{D}\left(K^{\dagger}\right), K^{\dagger} y=\sum_{\substack{n \in N \\ \sigma_{n} \neq 0}} \frac{\left(y, u_{n}\right)}{\sigma_{n}} v_{n}$.

Problem 4.3. Consider the one-dimensional heat equation: Given $u_{0} \in \mathcal{C}([0, \pi])$ (compatible with the boundary conditions), find $u \in\left\{v \in C([0, \pi] \times[0,1]): \partial_{x} v, \partial_{x x}^{2} v, \partial_{t} v \in C((0, \pi) \times(0, T])\right\}$ such that

$$
\begin{aligned}
\partial_{t} u(x, t) & =\partial_{x x}^{2} u(x, t), x \in(0, \pi), t \in(0, T] \\
u(0, t) & =u(\pi, t)=0, t \in(0, T] \\
u(x, 0) & =u_{0}(x), x \in[0, \pi]
\end{aligned}
$$

By separation of variables we get that the unique solution as above can be written as

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-n^{2} t} \varphi_{n}(x)
$$

with $\varphi_{n}(x)=\sqrt{\frac{2}{\pi}} \sin (n x)$ and $c_{n}=\int_{0}^{\pi} u_{0}(\tau) \varphi_{n}(\tau) \mathrm{d} \tau$. We are interested in obtaining the initial temperature v_{0} from the final temperature $f(x)=u(x, 1)$.
i) Show that this problem can be written as solving $K u_{0}=f$ with $K: L^{2}([0, \pi]) \rightarrow L^{2}([0, \pi])$ a compact, self-adjoint operator.
ii) Determine the eigenvalues and eigenvectors of K
iii) Show that the problem is severely-ill-posed: Determine when $f \in \mathcal{D}\left(K^{\dagger}\right)$ and show that already an error of about 10^{-8} in $\left(f, \varphi_{5}\right)$ (the fifth Fourier coefficient of the data) can lead to an error larger than 10^{3} in the solution.

