Advanced Functional Analysis

Problem Sheet 2

Due date: October 23, 2015
Remark: From the Alaoglu theorem shown in the basic course on functional analysis (or by a direct proof) one can deduce (by equivalence of weak and weak* convergence) that every bounded sequence in a reflexive normed space has a weakly convergent subsequence. We assume this to be given.
Problem 2.1. Let X, Y be Banach spaces, $T \in \mathcal{L}(X, Y)$. Consider

$$
\text { (P) } \quad: \Leftrightarrow \quad \forall\left(x_{n}\right)_{n} \text { in } X: x_{n} \rightharpoonup x \text { weakly } \Rightarrow T x_{n} \rightarrow T x \text { strongly. }
$$

Show
i) If $T \in \mathcal{K}(X, Y)$, then (P) holds.
ii) If X is reflexive and (P) holds, then $T \in \mathcal{K}(X, Y)$.
iii) Provide an example where (P) holds but T is not a compact operator. (Hint: You might need that $\left.\left(\ell^{1}\right)^{*} \cong \ell^{\infty}\right)$

Problem 2.2. [The approximation problem]. Let X, Y be Banach spaces. Show

- For any linear continuous projection P on Y it holds that either $P=0$ or $\|P\| \geq 1$.
- If Y is a Hilbert space and P is a continuous, linear, orthogonal projection on Y (i.e. $\operatorname{rg}(P)$ is orthogonal to $\operatorname{ker}(P)$), then $\|P\|=1$ (or $P=0$).
- Show that, if Y is a Hilbert space, then for every $T \in \mathcal{K}(X, Y)$ there exists a sequence of finite rank operators from X to Y converging to T with respect to the operator norm.

Problem 2.3. Show

i) If H is a Hilbert space and $T \in \mathcal{L}(H)$ is such that $T^{*} T=T T^{*}$ (i.e., is a normal operator), then $r(T)=\|T\|$.
ii) Provide an example (e.g. in \mathbb{R}^{2}) of an operator such that $r(T)=0$ but $\|T\|=1$.
iii) Provide an example (e.g. in \mathbb{R}^{3}) of an operator such that $\sigma(T)=\{0\}$ but $r(T)=1$.

Problem 2.4. On the \mathbb{R}-Hilbert space $\ell^{2}=\left\{\left(x_{i}\right)_{i \in \mathbb{N}} \mid x_{i} \in \mathbb{R},\|x\|_{\ell^{2}}^{2}:=\sum_{i} x_{i}^{2}<\infty\right\}$, define the operators

$$
S_{r} x=\left(0, x_{1}, x_{2}, \ldots\right)
$$

and

$$
S_{l} x=\left(x_{2}, x_{3}, x_{4}, \ldots\right)
$$

mapping again to ℓ^{2} for $x=\left(x_{1}, x_{2}, \ldots\right)$.
i) Determine $\left\|S_{r}\right\|,\left\|S_{l}\right\|, S_{r}^{*}, S_{l}^{*}$. Does S_{r} or S_{l} belong to $\mathcal{K}\left(\ell^{2}\right)$?
ii) Determine the spectrum and the resolvent set of S_{r} and S_{l}.
iii) Determine the decomposition of $\sigma\left(S_{r}\right)$ and $\sigma\left(S_{l}\right)$ into the point, continuous and residual spectrum and determine the Eigenspaces corresponding to all Eigenvalues.

