

## Problem Sheet 2 Due date: October 23, 2015

*Remark:* From the Alaoglu theorem shown in the basic course on functional analysis (or by a direct proof) one can deduce (by equivalence of weak and weak\* convergence) that every bounded sequence in a reflexive normed space has a weakly convergent subsequence. We assume this to be given.

**Problem 2.1.** Let X, Y be Banach spaces,  $T \in \mathcal{L}(X, Y)$ . Consider

(P) : $\Leftrightarrow \forall (x_n)_n \text{ in } X : x_n \rightharpoonup x \text{ weakly } \Rightarrow Tx_n \rightarrow Tx \text{ strongly.}$ 

Show

- i) If  $T \in \mathcal{K}(X, Y)$ , then (P) holds.
- ii) If X is reflexive and (P) holds, then  $T \in \mathcal{K}(X, Y)$ .
- iii) Provide an example where (P) holds but T is not a compact operator. (Hint: You might need that  $(\ell^1)^* \cong \ell^\infty$ )

**Problem 2.2.** [The approximation problem]. Let X, Y be Banach spaces. Show

- For any linear continuous projection P on Y it holds that either P = 0 or  $||P|| \ge 1$ .
- If Y is a Hilbert space and P is a continuous, linear, orthogonal projection on Y (i.e. rg(P) is orthogonal to ker(P)), then ||P|| = 1 (or P = 0).
- Show that, if Y is a Hilbert space, then for every  $T \in \mathcal{K}(X, Y)$  there exists a sequence of finite rank operators from X to Y converging to T with respect to the operator norm.

Problem 2.3. Show

- i) If H is a Hilbert space and  $T \in \mathcal{L}(H)$  is such that  $T^*T = TT^*$  (i.e., is a normal operator), then r(T) = ||T||.
- ii) Provide an example (e.g. in  $\mathbb{R}^2$ ) of an operator such that r(T) = 0 but ||T|| = 1.
- iii) Provide an example (e.g. in  $\mathbb{R}^3$ ) of an operator such that  $\sigma(T) = \{0\}$  but r(T) = 1.

**Problem 2.4.** On the  $\mathbb{R}$ -Hilbert space  $\ell^2 = \{(x_i)_{i \in \mathbb{N}} | x_i \in \mathbb{R}, \|x\|_{\ell^2}^2 := \sum_i x_i^2 < \infty\}$ , define the operators

$$S_r x = (0, x_1, x_2, \ldots)$$

and

$$S_l x = (x_2, x_3, x_4, \ldots)$$

mapping again to  $\ell^2$  for  $x = (x_1, x_2, \ldots)$ .

- i) Determine  $||S_r||$ ,  $||S_l||$ ,  $S_r^*$ ,  $S_l^*$ . Does  $S_r$  or  $S_l$  belong to  $\mathcal{K}(\ell^2)$ ?
- ii) Determine the spectrum and the resolvent set of  $S_r$  and  $S_l$ .
- iii) Determine the decomposition of  $\sigma(S_r)$  and  $\sigma(S_l)$  into the point, continuous and residual spectrum and determine the Eigenspaces corresponding to all Eigenvalues.