
Data Structures and High Performance

Computing

Syllabus for the TEMPUS-SEE PhD Course

Gundolf Haase∗

Institute for Mathematics and Scientific Computing
University of Graz

Dušan Tošić†

Faculty of Mathematics
University of Belgrade

Manfred Liebmann‡

Institute for Mathematics and Scientific Computing
University of Graz

Nov 7 – Dec 2, 2011 in Skopje, Macedonia

∗gundolf.haase@uni-graz.at
†dtosic@matf.bg.ac.yu
‡manfred.liebmann@uni-graz.at



1 Goals

This course will introduce into the field of High Performance Computing (HPC) in mathematical
areas. The students will acquire specialties of recent and future hardware concepts as well as
on supporting software standards. The course work will be organized such that all course topics
will be implemented on the appropriate hardware ranging from a single CPU via multiple CPUs
to clusters of CPUs and GPUs. The students will be able to adapt research specific code such
that they can take advantage of available computer resources. The three main goals of the course
consist of

I) Knowledge of the students on algorithms and data structures for HPC and active use of this
knowledge,

II) The students get in touch with HPC related concepts and architectures, and the students
are able to adopt new developments in this area,

III) Standard compiler and software support for parallel computer architectures is known and
used by the students for solving mathematical problems by means of HPC hardware.

Clearly, goals II) and III) require the adjustment of the lecture material with the new developments
in these areas.

Overall lecturing time: 60 units with 45 minutes

2 Prerequisites on the student side

1. Knowledge in numerical linear algebra

2. Programming skills in C and/or C++ and/or Java

3. English language skills.

3 Overview of the course modules

The course contains the topics Algorithms and Data Structures in relation with Computer Archi-
tectures and Tools in the HPC area und it is subdivided into three modules of 20 units each:

I) Algorithms and Data Structures
Lecturer: Prof.Dr. DI Gundolf Haase1, University of Graz, Austria.

II) HPC related Concepts and Architecture
Lecturer: Prof. Ph.D. Marjan Gusev2, University Sts Ciryl and Methodius, Skopje, Mace-
donia.

III) Compiler and Software support for parallel computer architectures
Lecturer: Mag.Dr. Manfred Liebmann3, University of Graz, Austria.

1http://www.uni-graz.at/˜haasegu
2http://twins.ii.edu.mk/marjan
3http://math.uni-graz.at

1

http://imsc.uni-graz.at/haasegu
http://twins.ii.edu.mk/marjan
http://math.uni-graz.at


Units Contents

20 Module I: Algorithms and Data Structures
2 Introduce vector, list, stack, queue, tree wrt. parallelism.
2 Complexity of algorithms wrt. data structure, e.g., accessing, sorting.
2 Hashing functions.
2 Realization in C/C++ (STL), C/Java.
4 Object oriented programming (C++, Java).
4 Data structures and performance: complexity, memory hierarchies, and cache aware

data structures.
4 Code examples on PCs taking into account cache, vector units of recent CPUs.

20 Module II: HPC related Concepts and Architectures
2 The von-Neumann Computer concept.

Flynn’s Taxiometry (SISD, SIMD, MISD, MIMD).
3 Topologies of computer/processor networks.
3 Concurrency and Correctness (data races, atomic operations, deadlock, live lock).
2 shared memory; semaphores/mutex; distributed memory; hybrid environments.
4 Partitioning; Communications; Synchronization; Data Dependencies; Granularity.
2 Limits and Coast of Parallel Programming.

Speedup, weak speedup, efficiency; Amdahl’s law; Gustavson’s law.
4 Review of recent Multi–core processors.

20 Module III: Compiler and Software support for parallel computer archi-
tectures

3 Concurrent and distributed programming based on C/C++/Java.
1 Parallel processing based on Open source tools.
4 Parallel processing based on OpenMP for shared memory systems.
5 Parallel processing based on MPI for distributed memory systems.
1 Grid and Cloud computing.
6 Recent parallel programming standards as OpenCL (CUDA).

4 Educational goals of the modules

4.1 Module I)

The students are able to chose the appropriate data structures and algorithms for given problem
descriptions with respect to complexity, memory requirements and hardware related issues. This
module contains exercises to each item such that the students develop practical skill of the above
topics in the chosen programming language. The ideas and concepts will be realized on a PC in
C++ or JAVA using available container classes (STL) from these programming languages. Special
emphasis will be given to performance of the structures on recent hardware.

4.2 Module II)

The contents of this block are presented partially by the students due to studying the given
literature and web material, especially for the last three items in this module. Exercises to data
partitioning and simple tasks as reduce operations and data exchange are presented to the students
and have to be performed by the students on various logical computer topologies.

4.3 Module III)

This module contains introductory lectures but mainly guided and independent work of the stu-
dents on the following parallel platforms. At least two of the following platforms should be
experienced by each student during the course:

2



• Multiple core workstation with shared memory using OpenMP.

• Distributed memory computer using MPI (OpenMPI).

• Many–core parallelization with GPUs (and Intel’s Larrabee if already available) on basis of
CUDA or OpenCL.

The students will be able to write their own mathematical code for the parallel platform chosen.

5 Literature

5.1 Module I)

Literature for algorithms and data structures [1] (supporting material4) in C++ [3] (supporting
material5) and Java [2, 11] (supporting material6).
Literature on memory hierarchies [8, §6] and cache [5, §5].

5.2 Module II)

A very good general book for this module is [9].
Literature on taxiometry and network topologies [5, §8], concurrency and correctness [6, §3.1].
Literature on distributed memory [5, §6] and recent multi–core processors provided by LLNL7.

5.3 Module III)

A good book for basics concepts of this module is [9].
The shared memory programming interface is described in OpenMP8 and the distributed mem-
ory interface MPI is available as book [10] and as web-reference in the OpenMPI9–implementation.
As literature for many–core programming we use [7] and the homepages for CUDA10 and OpenCL11.

References

[1] Michael T. Goodrich and Roberto Tamassia. Algorithm Design: Foundations, Analysis and
Internet Examples. Wiley, 2003.

[2] Michael T. Goodrich and Roberto Tamassia. Data Structures and Algorithms in Java. Wiley,
4 edition, 2006.

[3] Michael T. Goodrich, Roberto Tamassia, and David M. Mount. Data Structures and Algo-
rithms in C++. Wiley, 2003.

[4] S.J. Hartley. Concurrent Programming – the Java programming language. Oxford University
Press, 1998.

[5] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers, 3rd edition, 2003.

[6] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann,
2008.

4http://ww3.algorithmdesign.net/
5http://cpp.datastructures.net/
6http://ww0.java4.datastructures.net/
7https://computing.llnl.gov/tutorials
8http://openmp.org/wp
9http://www.open-mpi.org/

10http://developer.nvidia.com/object/gpucomputing.html
11http://developer.nvidia.com/object/opencl.html

3

http://mkp.com
http://ww3.algorithmdesign.net/
http://cpp.datastructures.net/
http://ww0.java4.datastructures.net/
https://computing.llnl.gov/tutorials
http://openmp.org/wp
http://www.open-mpi.org/
http://developer.nvidia.com/object/gpucomputing.html
http://developer.nvidia.com/object/opencl.html


[7] David Kirk and Wen mei Hwu. Programming Massively Parallel Processors: A Hands–on
Approach. Elsevier, 2010.

[8] Linda Null and Julia Lobour. The Essentials of Computer Organization and Architecture.
Jones and Bartlett, 2003.

[9] Thomas Rauber and Gudula Rünger. Parallel Programming: for Multicore and Cluster Sys-
tems. Springer, Berlin, 2010. ISBN 978–3642048173.

[10] M. Sair, D. Walker, and J.Dongarra. MPI: Complete Reference. The MIT Press, 1996.

[11] Laurence T. Yang and Minyi Guo. High-Perfomance Computing:Paradigm and Infrastructure.
Wiley, 2005.

6 Grading

The Grading bases on the performance of the students with respect to the following items:

A) Smaller exercises for homework will be regularly given for a deeper understanding of the
presented topics.

B) The students have to collect material on certain lecture related topic s and they have to
present the results of their online–searches.

C) The students have to finish one or two projects containing HPC related programming tasks
in each module.

D) A final exam at the end of the course, which will be comprehensive.

The final grade is obtained from items A)–D) using the following weights.

homework 10%
present 20%
projects 40%
final exam 30%

7 Prerequisites to the place of lecture

1. Beamer and black/white board for lecturer.

2. One PC with LINUX (and Windows) and a stable, fast internet connection for each student
during practical parts. Preferable, WLAN for the student laptops should be available in the
lecture rooms as well as in the student’s dormitory.

3. Access to a local cluster of PCs or compute server.

4. Access to parallel computers and GPU–server in Graz has to be possible, i.e., internet
connection for lecturers and students.

4


	Goals
	Prerequisites on the student side
	Overview of the course modules
	Educational goals of the modules
	Module I)
	Module II)
	Module III)

	Literature
	Module I)
	Module II)
	Module III)

	Grading
	Prerequisites to the place of lecture

