
LIBXSMM
Library for small matrix multiplications.

Intel High Performance and Throughput Computing (EMEA)
Hans Pabst, March 12th 2015

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Library for small matrix-matrix multiplications targeting Intel
Architecture (x86). The initial version of the library was targeting
the Intel Xeon Phi coprocessor (an instance of the Intel Many
Integrated Core Architecture "MIC") particularly by using KNC
intrinsic functions (called KNCni or IMCI). Today, the library
reaches the Many Integrated Core Architecture as well as other
hardware which is capable of executing Intel Advanced Vector
Extensions 512 (Intel AVX-512).

The library provides a sophisticated three-stage dispatch
mechanism which is also targeting other instruction set
extensions (beside of the Intrinsic code path), or falling back to
an external LAPACK/BLAS library.

2

Abstract

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Motivation

“Improving Performance for
Small Size Problems.”
Make informed tradeoffs and gain performance

3

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

DIRECT CALL feature: Intel MKL allows partial inlining of a small
set of library functions. This feature may improve performance of
computations with small matrices for a subset of configurations
because error checking and several intermediate function calls
can be skipped.

 Works for Intel and non-Intel compilers

 Works for C/C++ and Fortran

 Compile-time decision

4

Intel Math Kernel Library (Intel MKL)

Improve Performance for Small Size Problems.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

BLAS-conformant error checking vs. low overhead

 No error checking or ‘xerbla’ callback

Code dispatch vs. compile-time decision

 AVX, AVX2, no MIC code path

Subset of functions

 xGEMM

5

Intel MKL Version 11.2: Tradeoffs and
Limitations of the DIRECT CALL feature

Make informed tradeoffs and gain performance.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

 Inline unrolled implementation for below-threshold sizes using
non-Intel compilers or for very small problem sizes

 Inline low-level impl. in cases where the key arguments of the
MKL function call are compile-time constants (Intel® Compiler)

6

Intel MKL 11.2 DIRECT CALL Details

DIRECT CALL addresses Intel and non-Intel compilers.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Interface (C API)

• Simple interface for matrix-matrix multiplications (no full xGEMM)

• Dispatched matrix-matrix multiplication

• Separate non-dispatched code paths

• Amortized dispatch

Details

• Intrinsics based code path for Intel Xeon Phi Coprocessors

• Open Source Software (BSD 3-clause license)*

Plan

• Intel AVX-512 code path, transposes, and higher level code optimizations

• Highly optimized assembly code generation

7

LIBXSMM

* https://github.com/hfp/libxsmm

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

/** If non-zero function pointer is returned, call (*function)(M, N, K). */
libxsmm_smm_function libxsmm_smm_dispatch(int m, int n, int k);
libxsmm_dmm_function libxsmm_dmm_dispatch(int m, int n, int k);

/** Automatically dispatched matrix-matrix multiplication. */
void libxsmm_smm(int m, int n, int k,

const float* a, const float* b,
float* c);

void libxsmm_dmm(int m, int n, int k,
const double* a, const double* b,
double* c);

/** Non-dispatched matrix-matrix multiplication using inline code. */
void libxsmm_simm(int m, int n, int k,

const float* a, const float* b,
float* c);

void libxsmm_dimm(int m, int n, int k,
const double* a, const double* b,
double* c);

/** Matrix-matrix multiplication using BLAS. */
void libxsmm_sblasmm(int m, int n, int k,

const float* a, const float* b,
float* c);

void libxsmm_dblasmm(int m, int n, int k,
const double* a, const double* b,
double* c);

8

LIBXSMM: Interface (C API)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Usual mechanics

$ make ; make clean

$ make realclean

Column-major

$ make ROW_MAJOR=0

Specialization

$ make INDICES_M="2 4" INDICES_N="1" \

INDICES_K="$(echo $(seq 2 5))“

Generates the following index set:
(2,1,2), (2,1,3), (2,1,4), (2,1,5),

(4,1,2), (4,1,3), (4,1,4), (4,1,5)

9

LIBXSMM: Generating Code…

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

#include <libxsmm.h>

int main()
{
const int m = 23, n = 23, k = 23; /* some problem size */
double a[m*k], b[k*n], c[m*n]; /* initialize later */
libxsmm_dmm_function xmm = NULL; /* see below */

libxsmm_mm(m, n, k, a, b, c); /* auto-dispatched */
libxsmm_imm(m, n, k, a, b, c); /* inlined */
libxsmm_blasmm(m, n, k, a, b, c); /* BLAS */
libxsmm_dmm_23_23_23(a, b, c); /* specialized */

xmm = libxsmm_dmm_dispatch(23, 23, 23);
if (xmm) {
for (int i = 0; i < some; ++i) {
xmm(a, b, c); /* amortized */

}
}

}

10

LIBXSMM: Getting Started

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

LIBXSMM: Code Dispatch Details

11

• Dispatch levels are
accessible directly (for
customized dispatch)

• Level 2 and 3 may be
supplied by Intel MKL
DIRECT CALL

• Amortize dispatch cost for
mult. calls of same M, N, K

libxsmm_?mm_dispatch

• Specific kernel access e.g.,

libxsmm_dmm_4_4_4

Automatic code dispatch

1. Specialized routine

2. Inlined code

3. BLAS call

Dispatch-threshold for level 3
can be adjusted / tuned:

$ make THRESHOLD=$((24 * 24 * 24))

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Notes

• Code is just using Intrinsics but does not attempt to avoid
issues such as register spilling (inappropriate unrolling, etc.)

• A well-optimizing compiler may generate better code
compared even based on LIBXSMM’s inline code path

Performance

• Intel Xeon Phi Coprocessor: LIBXSMM typically reaches ~4 GFLOPS/s per
single core (may vary with actual M, N, K combination)

• Code is by no means "optimal" or "best-performing“

• (Upcoming AVX-512 assembly kernels may get above 90% of peak due to
favorable ISA [unaligned LD/ST] and microarchitectural code tuning.)

12

LIBXSMM: Intrinsics == Optimal?

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel collaterals

Xeon Phi Applications and Solutions Catalog
http://software.intel.com/xeonphicatalog

3rd Party Tools and Libraries
https://software.intel.com/en-us/articles/intel-and-third-party-tools-and-
libraries-available-with-support-for-intelr-xeon-phitm

Other

Performance engineering and code tuning (video/slide series)
http://user.cscs.ch/support/tutorials/2014/node_level_performance_engineering
_15_16_may_2014/index.html

Optimized matrix transposes
http://research.colfaxinternational.com/post/2013/04/25/Transposition-Xeon-
Phi.aspx

LIBXSMM home page
https://github.com/hfp/libxsmm

13

References

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

14

