
Open Source Software Development
Getting ready for Knights Landing!

Intel High Performance and Throughput Computing (EMEA)
Hans Pabst, March 12th 2015

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

After a short introduction on what to expect from Intel's next iteration of the
Many Integrated Core Architecture, the talk will portrait a selection of recent
work of Intel's High Performance and Throughput Computing Team in Europe.
Among the selected projects are LIBXSMM (library for multiplying batches of
small matrices as common in quantum dynamics applications), LIBXSTREAM
(library for stream programming), and pyMIC (module to offload computation in
a Python program to the Intel Xeon Phi coprocessor).

The tutorial part of the talk shows how to run and debug an application in the
Intel Software Development Emulator (Intel SDE). Compiling, running, and
debugging an application in the Intel SDE can be a useful step to exercise the
development tool chains such as the GNU Compiler Collection (GNU GCC) or
the Intel Compiler. The talk closes with some tricks and hints on how to
approach code modernization and further optimizations making an application
ready for lots of cores and wide vectors.

2

Abstract

Open Source Software Development –
Getting ready for Knights Landing!

https://github.com/hfp/libxsmm#libxsmm
https://github.com/hfp/libxstream#libxstream
https://github.com/01org/pyMIC
https://software.intel.com/en-us/articles/intel-software-development-emulator

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Open Source Software Development

“Getting ready for Knights
Landing!”
− Selection of work (Intel Intel High Performance and Throughput Computing team*)

− Introduction of the Intel AVX-512 Instruction Set Extension with focus on HPC

− Practical steps to prepare software for Knights Landing

3

* This is only focusing on our team, and cannot represent all of Intel’s Open Source Software Commitment.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel Knights Landing?

The 2nd iteration of Intel Many
Integrated Core Architecture

• Available today: Intel® Xeon
Phi™ Coprocessor (code-
named “Knights Corner”)

What’s publicly known? Just
have a look:

• https://software.intel.com/e
n-us/articles/what-
disclosures-has-intel-made-
about-knights-landing

Optimized for Highly Parallel Applications

Many cores, 512 bit vectors, and higher mem. bw.
Common languages, directives, libraries and tools

Most Commonly Used Parallel Processor*

Parallel, fast serial execution
Multicore and vectors

scalar

threaded

serial

vector

threaded

scalarvector

serial

4

https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

More than 100 applications are listed as available today or in flight

http://software.intel.com/XeonPhiCatalog

There is a growing catalog of applications…

6

http://software.intel.com/XeonPhiCatalog

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Examples of our 2014 work in the Open Source domain

• LIBXSMM – small matrix-matrix multiplications

• pyMIC – offload computation to Xeon Phi coprocessors

• LIBXSTREAM – streams, events, and offload functions

Introducing the AVX-512 Instruction Set Extension

Running an application using the Intel SDE

7

Agenda

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® AVX-512
Instruction Set Extension

8

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel Instruction Set Extension (1998-2010)

70 new
instructions

4 single-
precision
vector FP

scalar FP
instructions

cacheability
instructions

control &
conversion
instructions

media
extensions

144 new
instructions

2 double-
precision
vector FP

8/16/32/64
vector
integer

128-bit
integer

memory &
power
management

13 new
instructions

FP vector
calculation

x87 integer
conversion

128-bit
integer
unaligned
load

thread sync.

32 new
instructions

enhanced
packed
integer
calculation

47 new
instructions

packed
integer
calculation &
conversion

better
vectorization
by compiler

load with
streaming
hint

1998

Intel®

SSE

7 new
instructions

string (XML)
processing

POP-Count

CRC32

7 new
instructions

6 for
acceleration
of AES
algorithm

Plus carry-
less 64bt
multiply

2009

Intel®

AES

1999

Intel®

SSE2

2004

Intel®

SSE3

2006

Intel

SSSE3

2007

Intel®

SSE4.1

2008

Intel®

SSE4.2

9

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel Instruction Set Extension (after 2010)

10

Promotion of
128 bit FP
vector
instructions
to 256 bit

7 new
instructions

16 bit FP
support

RDRAND

…

Promotion of
integer
instruction to
256 bit

- FMA

- Gather

- TSX/RTM

Some 5 new
instruction to
enhance
support for
random
number
generation,
prefetching
and multi-
precision
arithmetic

2011

Intel®

AVX

2012

“AVX-1.5”

2013

Intel®

AVX-2

TBD

Intel®

AVX-512

2011

Intel® Initial
Many Core

Instructions

Hundreds of
new 512 bit
vector
instructions
only available
for MIC
architecture –
not
supported by
and not
compatible to
x86
architecture

2014

Broadwell
New In-

structions

Promotion of
vector
instructions
to 512 bits
and a lot
more

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

512-bit AVX-512
64 SP / 32 DP Flops/Cycle

(FMA)

256-bit AVX2
32 SP / 16 DP Flops/Cycle

(FMA)

AVX-512

512-bit FP/Integer

32 registers

8 mask registers

Embedded rounding

Embedded broadcast

Scalar/SSE/AVX “promotions”

HPC additions

Transcendental support

Gather/Scatter

AVX AVX2

256-bit basic FP

16 registers

NDS (and AVX128)

Improved blend

MASKMOV

Implicit unaligned

Float16 (IVB 2012)

256-bit FP FMA

256-bit integer

PERMD

Gather

SNB
2011

HSW
2013

Intel® AVX

256-bit AVX
16 SP / 8 DP Flops/Cycle

11

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512: More and Larger Registers

AVX / AVX-2: VADDPS YMM0, YMM3, [mem]

 Up to 16 AVX registers

 8 in 32-bit mode

 256-bit width

 8 x FP32

 4 x FP64

AVX-512: VADDPS ZMM0, ZMM24, [mem]

 Up to 32 AVX registers

 8 in 32-bit mode

 512-bit width

 16 x FP32

 8 x FP64

There is a lot more (instructions) needed in order
to effectively use the new real estate…

float32 A[N], B[N];

for(i=0; i<8; i++)
{

A[i] = A[i] + B[i];
}

float32 A[N], B[N];

for(i=0; i<16; i++)
{

A[i] = A[i] + B[i];
}

12

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512: Mask Registers

8 Mask registers of size 64-bits

• k1-k7 can be used for predication

• k0 always has value 0xFFFFFFFFFFFFFFFF

• k0 can be used as a destination or source for
mask manipulation operations

4 different mask granularities.
For instance, at 512b:

• Packed Integer Byte use mask bits [63:0]

• VPADDB zmm1 {k1}, zmm2, zmm3

• Packed Integer Word use mask bits [31:0]

• VPADDW zmm1 {k1}, zmm2, zmm3

• Packed IEEE FP32 and Integer Dword use mask
bits [15:0]

• VADDPS zmm1 {k1}, zmm2, zmm3

• Packed IEEE FP64 and Integer Qword use
mask bits [7:0]

• VADDPD zmm1 {k1}, zmm2, zmm3

Why Separate Mask Registers?

• Avoids using registers as vector of Booleans

• Separate control flow and data flow

• Boolean operations on logical predicates
consume less energy (separate functional unit)

• Tight encoding allows orthogonal operand

• All instructions support an extra mask operand

zmm1

zmm2

zmm3

k1

zmm1

a7 a6 a5 a4 a3 a2 a1 a0

b7 b6 b5 b4 b3 b2 b1 b0

b7+c7 a6 b5+c5b4+c4b3+c3b2+c2 a1 a0

+ + + + + + + +

1 0 1 1 1 1 0 0

c7 c6 c5 c4 c3 c2 c1 c0

VADDPD zmm1 {k1}, zmm2, zmm3

13

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512: Masking

VADDPS ZMM0 {k1}, ZMM3, [mem]

Mask bits are used to:

1. Suppress reading individual
elements as well as signaling
memory faults for masked
elements

2. Avoid signaling individual FP
faults per instruction

3. Avoid updating individual
destination elements or force
to zero (zeroing)

for (I in vector length)
{

if (no_masking or mask[I]) {
dest[I] = OP(src2, src3)

} else {
if (zeroing_masking)

dest[I] = 0
else

// dest[I] is preserved
}

}

Caveat: vector shuffles do no suppress memory fault exceptions since the

mask refers to the “output” not to the “input”.

14

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Embedded Broadcasts and Masking

• Conflict Detection Instructions

• Embedded Rounding Control

• Suppress All Exceptions (SAE)

• Compressed Displacement

• Bit Manipulation

• Shuffles

• …

15

AVX-512: More Features…

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel AVX-512: Hardware Support

 Future Intel® MIC architecture (code-
named KNL) and future Xeon
architecture share a large set of
instructions

 Subsets are represented by
individual feature flags (CPUID)

Future Xeon
Phi (KNL)

SSE*

AVX

AVX2*

AVX-512F

Future Xeon

SSE*

AVX

AVX2

AVX-512F

SNB

SSE*

AVX

HSW

SSE*

AVX

AVX2

NHM

SSE*

AVX-512CD AVX-512CD

AVX-512ER

AVX-512PR AVX-512BW

AVX-512DQ

AVX-512VL

MPX,SHA, …

C
o

m
m

o
n

 I
n

s
tr

u
c
ti
o

n
 S

e
t

16

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512: Instruction Subsets

 Comprehensive vector extension for HPC and enterprise

 All the key AVX-512 features: masking, broadcast…

 32-bit and 64-bit integer and floating-point instructions

 Promotion of many AVX and AVX2 instructions to AVX-512

 Many new instructions added to accelerate HPC workloads

AVX-512 F: 512-bit Foundation instructions common between MIC and Xeon

 Allow vectorization of loops with possible address conflict

AVX-512 CD (Conflict Detection instructions)

 fast (28 bit) FP instr. for exponential, reciprocal and Transcendentals (incl. RSQRT)

 New prefetch instructions: gather/scatter prefetches and PREFETCHWT1

AVX-512 extensions for exponential and prefetch operations

AVX-512F

AVX-512CD

AVX-512ER

AVX-512PR

17

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512: Other New Instructions

Set of instructions to implement checking a pointer against its bounds

Pointer Checker support in HW (today: SW-only solution)

Debug and security features

Intel® MPX – Intel Memory Protection Extension

 Fast implementation of cryptographic hashing algorithm as defined by NIST
FIPS PUB 180

Intel® SHA – Intel Secure Hash Algorithm

 needed for future memory technologies

Single Instruction – Flush a cache line

MPX

SHA

CLFLUSHOPT

Save and restore extended processor state XSAVE{S,C}

18

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512 F: new 512-bit vector ISA extension

 Common between Xeon and Xeon Phi (KNL)

AVX-512 CD Conflict detection instructions

 Will be available both for Xeon and Xeon Phi (KNL)

 Improves auto-vectorization

AVX-512 ER & PR

 28-bit Transcendentals and new prefetch instructions

 On Xeon Phi (KNL) only

AVX-512: Summary (F, CD, ER, PR)

19

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Instructions are accessible using Intrinsics (built-in functions)

• No need to supply any additional compiler flags

• Supported since Intel Compiler 14 and GCC 4.8

Compiler code generation

Intel C/C++ and Fortran Compiler (Version 15 and newer)

• KNL via “MIC-AVX512” (-xMIC-AVX512)

• Future Xeon via “CORE-AVX512” (-xCORE-AVX512)

GNU Compiler Collection (GCC 4.9)

• Subset support, all Intrinsics, and basic auto-vectorization
via -mavx512f, -mavx512pf, -mavx512er, and -mavx512cd

• Example for KNL: supply all flags from above (F/PF/ER/CD)

LLVM Compiler

• Full support (patch: https://groups.google.com/forum/)

20

AVX-512: How to use?

https://groups.google.com/forum/

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Reference manual for Intel® AVX-512 instructions

• http://software.intel.com/en-us/intel-isa-extensions

Other references

• http://software.intel.com/en-us/blogs/2013/avx-512-instructions

Discussion and critics

• http://software.intel.com/en-us/forums/topic/477541

• See www.agner.org

AVX-512: References

21

http://software.intel.com/en-us/intel-isa-extensions
http://software.intel.com/en-us/blogs/2013/avx-512-instructions
http://software.intel.com/en-us/forums/topic/477541
http://www.agner.org/

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® SDE and use cases (examples)
Intel® Software Development Emulator

23

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Run an application using an instruction set extension which is not
(yet) available in hardware.

• Correctness testing (exercising the compiler’s code generation)

• Prepare the build system (compiler flags)

• Debugging

Technology background

• Runs an application roughly an order of magnitude slower (compared to
the host system which is running the SDE)

• Not a performance tool (profiler) as it uses binary translation to the host’s
instruction set

24

Overview

$$ /path/to/sde/sde64 -knl -- /path/to/application

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Prerequisites

• Intel Cluster Studio XE (e.g., composer_xe_2015.1.133 or newer)

• Intel SDE (sde-external-7.15.0-2015-01-11-lin)

Notes

• Unfortunately the configure script attempts to run a program;
cross-compilation complicates the configure/build process

• Therefore the SDE must be used during configuration (and initial steps of
make; make can be interrupted and continued without the SDE)

25

Example: LIBINT Version 1.1.5

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Configuration

$ make realclean

$ env AR=xiar \

FC=ifort F77=ifort F90=ifort CXX=icpc CC=icc \

FCFLAGS="-O2 -xMIC-AVX512 -ipo" \

CFLAGS="-O2 -xMIC-AVX512 -ipo" \

CXXFLAGS="-O2 -xMIC-AVX512 -ipo" \

~/sde/sde64 -knl -- ./configure \

--with-cc-optflags="-O2 -xMIC-AVX512 -ipo" \

--with-cxx-optflags="-O2 -xMIC-AVX512 -ipo" \

--with-libint-max-am=5 --with-libderiv-max-am1=4 \

--prefix=$HOME/libint

Building LIBINT

$ make –j (initially: ~/sde/sde64 -knl -- make)

$ make install

26

Example: LIBINT (cont.)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Configuration

$ make clean (note: there is no “realclean”)

$ env AR=xiar \

FC=ifort F77=ifort F90=ifort CC=icc \

FCFLAGS="-O2 -xMIC-AVX512 -ipo" \

CFLAGS="-O2 -xMIC-AVX512 -ipo" \

~/sde/sde64 -knl -- ./configure \

--prefix=$HOME/libint

Building LIBXC

$ make –j

$ make install

27

Example: LIBXC Version 2.2.2

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Prerequisites

• Intel Cluster Studio XE (composer_xe_2015.1.133, impi-5.0.2.044)

• Intel SDE (sde-external-7.15.0-2015-01-11-lin)

• LIBINT (Version 1.1.5) and LIBXC (Version 2.2.2)

Source code

• git clone https://github.com/cp2k/cp2k.git

• git checkout intel

Edit arch file

• arch/Linux-x86-64-intel-mic.psmp: -xHost -xMIC-AVX512 -g

28

CP2K

https://github.com/cp2k/cp2k.git

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Building CP2K

$ make ARCH=Linux-x86-64-intel-host VERSION=sopt \

LIBINTROOT=~/libint LIBXCROOT=~/libxc

Running CP2K

$ ~/sde/sde64 -knl -- exe/Linux-x86-64-intel-

host/cp2k.sopt tests/LIBTEST/dbcsr_blocks_04.inp

Debugging

$ ~/sde/sde64 -knl -debug -- exe/Linux-x86-64-intel-

host/cp2k.sopt tests/LIBTEST/dbcsr_blocks_04.inp

29

CP2K (cont.)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

1. Run application with SDE’s “–debug” option; starts gdb-server
and prints command on how to connect using the gdb client

2. Open gdb (or try “gdb-ia” if Intel compiler suite is source’d)
but supply the /path/to/executable on command line
(ensures that debug symbols are loaded)

3. Paste command shown by SDE on how to connect to the
gdb-server (port), and continue (c) execution

Reference

https://software.intel.com/en-us/articles/debugging-applications-with-intel-sde

30

Steps for Debugging

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

What else?
Code Modernization

31

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

61

4

512-bit

352 GB/s

Intel® Xeon Phi™
x100 Product Family
formerly codenamed

Knights Corner

Intel® Xeon Phi™ x200
Product Family

codenamed

Knights Landing

Cores*

Threads/Core

Vector Width

Memory Bandwidth*

Future
Xeon

The world is going
parallel – stick
with sequential

code and you will
fall behind.

18

2

256-bit

68 GB/s

72

4

512-bit

~500 GB/s

tba

tba

512-bit

tba

Future

12

2

256-bit

59 GB/s

Intel® Xeon® Processor
E5-2600 v2 Product

Family formerly
codenamed

IvyBridge

Intel® Xeon®
Processor E5-2600
v3 Product Family

formerly
codenamed

Haswell

tba tba

…

Code Modernization using Intel® Xeon
Phi™ coprocessor(s)

32

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Preparing the build system (compiler flags) and linking Intel
Math Kernel Library (Intel MKL)

Potentially low-hanging fruits with using industry-standard interfaces
such as (Sca-)LAPACK/BLAS and FFTW3

• Evaluating parallel scalability (MPI and OpenMP) using higher
core-count systems (Xeon Phi, Xeon E5, and Xeon E7)

Initially this does not even ask for advanced profiling, just a wall clock…

• Generating and reviewing compiler vectorization reports

Intel Compiler Version 15 reports are much more readable/correlated

Hint: try upcoming version of Intel Advisor (vector reports, and more)

33

Code Modernization: Getting Started

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

34

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Backup
AVX-512

36

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Why True Masking?

Memory fault suppression

 Vectorize code without touching memory that
the correspondent scalar code would not
touch

 Typical examples are if-conditional statements or
loop remainders

 AVX is forced to use VMASKMOV* (risc)

MXCSR flag updates and fault handlers

 Avoid spurious floating-point exceptions
without having to inject neutral data

Zeroing/merging

 {z} bit syntax to EVEX z-bit - implies ‘zeroing’
– default is ‘merging’

 Use zeroing to avoid false dependencies in
OOO architecture

 Use merging to avoid extra blends in if-then-
else clauses (predication) for great code
density

float32 A[N], B[N], C[N];

for(i=0; i<16; i++)
{

if(B[i] != 0) {
A[i] = A[i] / B[i];

else {
A[i] = A[i] / C[i];

}
}

VMOVUPS zmm2, A

VCMPPS k1, zmm0, B

VDIVPS zmm1 {k1}{z}, zmm2, B

KNOT k2, k1

VDIVPS zmm1 {k2}, zmm2, C

VMOVUPS A, zmm1

38

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Embedded Broadcasts and Masking

VFMADD231PS zmm1, zmm2, C
{1to16}

 Scalars from memory are first class citizens

 Broadcast one scalar from memory into all
vector elements before operation

 Memory fault suppression avoids fetching
the scalar if no mask bit is set to 1

Other “tuples” supported

 Memory only touched if at least one
consumer lane needs the data

 For instance, when broadcast a tuple of 4
elements, the semantics check for every
element being really used

 e.g.: element 1 checks for mask bits 1, 5, 9,
13, …

float32 A[N], B[N], C;

for(i=0; i<8; i++)
{

if (A[i]!=0.0)
A[i] = A[i] + C*B[i];

}

VBROADCASTSS zmm1 {k1}, [rax]

VBROADCASTF64X2 zmm2 {k1}, [rax]

VBROADCASTF32X4 zmm3 {k1}, [rax]

VBROADCASTF32X8 zmm4, {k1}, [rax]

…

39

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Embedded Rounding Control :

• MXCSR.RC can be overridden on all FP instructions

• VADDPS ZMM1 {k1}, ZMM2, [mem] {116} {rne-sae}

• “Suspend All Exceptions”

• Always implied by using embedded RC

• NO MXCSR updates / exception reporting for any lane

• Changes to RC without SAE via LDMXCSR

• Not needed for most common case (truncating FP convert to int)

• Only available for reg-reg mode and 512b operands

Main application:

• Saving, modifying and restoring MXCSR is usually slow and cumbersome

• Being able to avoid suppressions and set the rounding-mode on a per instruction basis simplifies
development of high performance math software sequences (math libs)

• E.g.: avoid spurious overflow/underflow reporting in intermediate computations

• E.g: make sure that RM=rne regardless of the contents of MXCSR

AVX-512: Embedded Rounding Control
and Suppress All Exceptions (SAE)

40

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

VADDPS zmm1, zmm2, [rax+256]

 Observation is that displacement in generated vector code is a multiple of the actual operand size

 An obvious side effect of unrolling

 Unfortunately, regular IA 8-bit displacement format have limited scope for 512-bit vector sizes
(unrolling look-ahead of +/-2 at most)

 So we would end up using 32-bit displacement formats too often

AVX-512 disp8*N compressed displacement

 AVX-512 implicitly encodes a 8-bit displacement as a multiple of the actual size of the memory
operand

 VADDPD zmm1 {k1}, zmm2, [rax] memory size operand is 512bits

 VADDPD xmm1 {k1}, xmm2, [rax] memory size operand is 128bits

 VADDPD zmm1 {k1}, xmm2, [rax] {1toN} memory size operand is 64 bits

 Assembler/compiler reverts to 32-bit displacement when the real displacement is not a multiple

AVX-512: Compressed Displacement

41

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Motivation for Conflict Detection

Sparse computations are common in HPC, but hard to vectorize due to
race conditions

Consider the “histogram” problem:

index = vload &B[i] // Load 16 B[i]
old_val = vgather A, index // Grab A[B[i]]
new_val = vadd old_val, +1.0 // Compute new values
vscatter A, index, new_val // Update A[B[i]]

for(i=0; i<16; i++) { A[B[i]]++; }

• Code above is wrong if any values within B[i] are duplicated

− Only one update from the repeated index would be registered!

• A solution to the problem would be to avoid executing the sequence gather-op-

scatter with vector of indexes that contain conflicts

42

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

VPCONFLICT{D,Q}

• VPCONFLICT{D,Q} zmm1{k1}{z}, zmm2/B(mV)

• For every element in ZMM2, compare it against everybody and generate a
mask identifying the matches (but ignoring elements to the ‘left’ of the current
one –i.e. “newer”)

• Store every mask in every element destination in ZMM1

2 1 3 2 2 1 3 2 2 1 3 2 2 1 3 2zmm1

0001_1001_1001_1001

0000_0000_0001_1001

0000_0000_0100_0100

0000_0000_0000_0000

lsb

43

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Optimized Algorithm

for each 16 scalar iterations {

indices = vload &index_array[i]

vpconflictd comparisons, indices

vplzcntd tmp_lzcnt, comparisons

vpsubd perm_idx, all_31s, tmp_lzcnt

temp_values = do_first_iteration(); // gather + compute

vptestmd to_do {k0}, comparisons, all_ones // anything left?

while (to_do) {

vpbroadcastmd tmp, to_do

vptestnmd mask {to_do}, comparisons, tmp

vpermd tmp_values {mask}, perm_idx

tmp_values = do_work(mask); // just compute!

to_do ^= mask;

} while(to_do);

vscatter indices, A, tmp_values

}

Obtain recurrence
indices

Store
results Re-do conflicting

indices reusing
results directly from

the vector

44

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

New 2-Source Shuffles

2-Src Shuffles
VSHUF{PS,PD}

VPUNPCK{H,L}{DQ,QDQ}

VUNPCK{H,L}{PS,PD}

VPERM{I,D}2{D,Q,PS,PD}

VSHUF{F,I}32X4

H’ G’ F’ E’ D’ C’ B’ A’ H G F E D C B A
zmm2 zmm3

15 0 10 11 2 2 0 9
zmm1

H’ A C’ D’ C C A B’zmm1

Long standing customer request
• 16/32-entry table lookup (transcendental support)

• AOS SOA support, matrix transpose
• Variable VALIGN emulation

10 9 8 7 6 5 4 3 2 1 0…

45

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Expand & Compress

VEXPANDPS zmm0 {k2}, [rax]

Moves compressed (consecutive) elements in register or memory to sparse
elements in register (controlled by mask), with merging or zeroing

[rax]

YY7Y 4Y56 12Y3 0YYYzmm0
0010 1011 1101 1000k2 = 0x4DB1

0123456781415 …mem lsb

lsb

Allows vectorization of conditional loops
• Opposite operation (compress) not in AVX-512F
• Similar to FORTRAN pack/unpack intrinsics
• Provides mem fault suppression
• Faster than alternative gather/scatter

for(j=0, i=0; i<N; i++)

{

if(C[i] != 0.0)

B[i] = A[i] * C[j++];

}

46

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Bit Manipulation

Instruction Description

KUNPCKBW k1, k2, k3 Interleave bytes in k2 and k3

KSHIFT{L,R}W k1, k2, imm8 Shift bits left/right using imm8

VPROR{D,Q} zmm1 {k1}, zmm2, imm8 Rotate bits right using imm8

VPROL{D,Q} zmm1 {k1}, zmm2, imm8 Rotate bits left using imm8

VPRORV{D,Q} zmm1 {k1}, zmm2, zmm3/mem Rotate bits right w/ variable ctrl

VPROLV{D,Q} zmm1 {k1}, zmm2, zmm3/mem Rotate bits left w/ variable ctrl

Basic bit manipulation operations on mask and vector operands
• Useful to manipulate mask registers
• Have uses in cryptography algorithms

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Sample: VPTERNLOG – Ternary Logic
Instruction
Mimics a FPGA cell

 Take every bit of three sources to obtain a 3-bit index N

 Obtain Nth bit from imm8

Imm8[7:0]

Dest[i]

Src0[i]
Src1[i]

Src2[i]

Any arbitrary truth table of 3 values can be implemented

andor, andxor, vote, parity, bitwise-cmov, etc

each column in the right table corresponds to imm8

S1 S2 S3 ANDOR VOTE (S1)?S3:S2
0 0 0 0 0 0
0 0 1 1 0 1
0 1 0 0 0 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 1 1 1

VPTERNLOGD zmm0 {k2}, zmm15, zmm3/[rax], imm8

48

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Math Support

Instruction

VGETXEXP{PS,PD,SS,SD}

VGETMANT{PS,PD,SS,SD}

VRNDSCALE{PS,PD,SS,SD}

VSCALEF {PS,PD,SS,SD}

VFIXUPIMM{PS,PD,SS,SD}

VRCP14{PS,PD,SS,SD}

VRSQRT14{PS,PD,SS,SD}

VDIV{PS,PD,SS,SD}

VSQRT{PS,PD,SS,SD}

zmm1 {k1}, zmm2 Obtain exponent in FP format

zmm1 {k1}, zmm2 Obtain normalized mantissa

zmm1 {k1}, zmm2, imm8 Round to scaled integral number

zmm1 {k1}, zmm2, zmm3 X*2y , X <= getmant, Y <= getexp

zmm1, zmm2, zmm3, imm8 Patch output numbers based on inputs

zmm1 {k1}, zmm2 Approx. reciprocal() with rel. error 2-14

zmm1 {k1}, zmm2 Approx. rsqrt() with rel. error 2-14

zmm1 {k1}, zmm2, zmm3 IEEE division

zmm1 {k1}, zmm2 IEEE square root

30

Package to aid with Math library writing
• Good value upside in financial applications
• Available in PS, PD, SS and SD data types
• Great in combination with embedded RC

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512 ER & AVX-512 PR
Set of segment-specific instruction extensions

 Will be supported in all future Intel® MIC processors

 First appear on KNL (some have similarities in KNC)

Address two HPC customer requests

 Ability to maximize memory bandwidth

 Hardware prefetching is too restrictive

 Conventional software prefetching results in instructions overhead

 Flexible support for transcendental operations - accuracy versus speed

 Mostly division and square root

 Differentiating factor in HPC/TPT

50

