1

1 Preliminaries

1.1 MPI on OS-systems LINIX, SOLARIS, AIX, etc.

The Message Passing Interface covers about 140 functions, available in F77, C and C++.
Already 6 functions allow to write parallel codes. Most of the other functions are based on
these 6. We will be concerned with the following functions.

Basic functions MPI_Init
MPI_Finalize
MPI_Send
MPI_Recv
MPI_Comm _rank
MPI_Comm _size

additional functions MPI_Barrier
MPI_Bcast
MPI_Gather
MPI_Scatter
MPI_Reduce
MPI_Allreduce

1.2 Online help

MPI Homepage http://www.mcs.anl.gov/mpi/index.html
MPI Calls http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
LAM Implementierung http://www.lam-mpi.org

with ftp-download http://www.lam-mpi.org/download

1.3 Getting started on a pool of workstations

e Login at the Pool (computer myhost).

e Ensure that you can login from your machine at other ones by
rlogin yourhost

without being prompted for a passwd.
If a password is required - enter it, edit/create file .rhosts

vi “/.rhosts
by adding the line (here, foo names used)

myhost my_user_name



2

1.4 Installing the example code

Copy the files install and course.tar.gz into your working directory, and call ./install.

1.5 Getting started: LAM-MPI

O Define environmental variable archi (bash-shell) with one of the systems {LINUX, IRIX,
SOLARIS, AIX}.

export archi=LINUX

or add it in your $(HOME)/.bashrc file. Check with env|grep archi .

O Initialize the LAM-MPI
lamboot

This lets you run several processes on your machine (or on a predefined set of machines)
in parallel.

O If you have your own description file (like Ezample/mynode) of machines able to handle
your code, then you could start MPI by

lamboot -v mynode
This lets you run several processes on your machine (or on a predefined set of machines)

in parallel. If 1amboot reports an error message then try lamboot -vd mynode to get a
detailed report of the booting in progress.

1.6 Terminating LAM-MPI
O Kill all your MPI-processes which did not terminate regularly.

lamclean
00 Terminate your MPI session

wipe



3

2 Your first parallel code

Compile the program in Ezample/firstc (Ezample/firstf ) for archi = LINUX via
make .
Start the program !

The following MPI functions require a communicator as parameter. This communicator
describes the group of processes which are to be covered by the corresponding MPI func-
tion. By default, all processes are collected in MPI_COMM_WORLD which is one of the
constants supplied by MPI. We restrict the examples to those global operations. For this
purpose, create special MPI-type variable MPI_Comm icomm= MPI_.COMM_WORLD;
which is used as parameter !

Write Your first parallel program by implementing
MPI_Init and MPI_Finalize,

compile the program and start 4 processes
mpirun -c 4 -lamd first.LINUX

Implement the routines
MPI_Comm _rank and MPI_Comm size,

in order to determine the number of running processes and the local process id. Let the
master process (0) write the number of running processes. Start several processes.

Implement the routine

Greetings(myid,numprocs,icomm,)

given in greetings.c (greetings.f). Study the routines

MPI_Send and MPI_Recv !



4

3 Synchronized Communication

Write a routine

Send_ProcD(to,nin,xin,icomm)

which sends nin Double Precision numbers of the array zin to the process to . Note that
the receiving process to does in general not have any information about the length of the
data-package to be received.

Write a routine

Recv_ProcD(from,nout,xout,maxbuf,icomm)

corresponding to E5, which receives nout Double Precision numbers of the array zout
from the process from . A-priori, the receiving process does not have any information
about the length of the data to be received, i.e., nout is an output-parameter ! mazbuf
stands for the maximum length of the array zout.

Test the routines from E5 and E6 first, with two processes. Let process 1 send data and
process 0 receive them. Extend the test to several processes.

Combine E5 and E6 to a routine

ExchangeD (yourid,nin,xin,nout,xout,maxbuf,icomm),

which exchanges double precision data between the own process and another pro-
cess yourid. The remaining parameters are the same as in E5, E6. Test your routines
with 2 and more processes !



5

4 Global Operations

Let some Double Precision vector u be stored blockwise disjoint, i.e., distributed over all pro-
cesses s (s=0,..,P—1) such that u = (uf,...,ul)”.
Write a routine

DebugD (nin,xin,icomm)
that prints nin Double Precision numbers of the array zin. Start the program with
several processes.
= All processes will write their local vectors, i.e., one has to look carefully for the data
of process s.

Improve the routine DebugD such that process 0 reads the number (from terminal) of
that process which is to write it’s vector. Use

MPI_Bcast

to broadcast this information and let the processes react appropriately. If necessary use
MPI Barrier to synchronize the output.
E10| Exchange global minimum and maximum of the vector u ! Use

MPI_Gather, MPI_Scatter/ MPI_Bcast and ExchangeD.

How can you reduce the amount communication ?

Hint: Compute, first, local min./max. and afterwards let some process determine the
global quantities.

Alternatively, you can use MPI_Allreduce and the operations
MPI_Minloc/MPI_Maxloc.

Write a routine for computing the global scalar product

Skalar(n,x,y,icomm)

of two Double Precision vectors z and y of local length n. Use

MPI_Allreduce with the operation MPI_SUM.



6

5 Local data exchange

Let the unit square [0, 1]? be partitioned uniformly into procz x procy rectangles ©; numbered
row by row. The numbering of the subdomains coincides with the corresponding process-id’s
(ranks).

procxx(procy—1) procxxprocy—1
North
procc
West East
0 1 procx—1
South

The function

IniGeom(myid,procx,procy,neigh,color)

from ezample/accuc (example/accuf) generates the topological relations corresponding to the
domain decomposition defined above. These information are stored in the integer array
neigh(4). A check-board coloring is defined in color. Moreover, the function

IniCoord(myid,procx,procy,xl,xr,yb,yt)

can be used to generate the coordinates of the lower left corner (zl,yb) and the upper right
corner (zr,yt) of each subdomain.

Realize a local data exchange of a double precision number between each processor and all
of it’s neighbors (connected by a common edge). Use the routine ExchangeD from ES8.

Let each subdomain €; be uniformly discretized into nz * ny rectangles generating a trian-
gular mesh (nz, ny are the same for all subdomains !).
If we use linear f.e. test functions then each vertex the triangles represents one component of
the solution vector, e.g., the temperatur in this point, and we have nd := (nz + 1) x (ny + 1)
local unknowns within one subdomain. We propose a locally rowise ordering of the unknowns.
Note, that the global number of unknowns is N = (procz * nx + 1) * (procy * ny + 1) <
procz x procy x nd) .

GetBound(id,nx,ny,w,s)

copies the values of w corresponding to the boundary South(id=1), East (id=2), North (id=3),
West (id=4) into the auxiliary vector s. Vice versa, the function

AddBound(id,nx,ny,w,s)



Figure 1: 4 subdomains in local numbering with local discretization nz = ny = 4 and global
discretization N; = N, = 8.

adds the values of s to the components of w corresponding to the nodes on the boundary
South(id=1), East (id=2), North (id=3), West (id=4). These functions can be used for the
accumulation (summation) of values corresponding to the nodes on the interfaces between two
adjacent subdomains which is a typical and necessary operation.

Write a routine which accumulates a distributed Double Precision vector w. The call of
such a routine could look as follows

VecAccu(nx,ny,w,neigh,color,myid,icomm)

where w is both in- and output vector.



g

6 Iterative Solvers

As model problem, we consider the homogeneous Dirichlet boundary value problem
(u(z) =0 Vz € 09) for the Poisson equation in the unit square Q := (0,1)? in its weak
formulation:

Find u € H{(f) such that

/ V©u(z)Vv(z)dz = / f(z)v(z)dz Vv eH}Q) . (1)
Q Q
We use linear finite elements for the discretization and achieve the linear system of equations

K-u=f. (2)

6.1 w-Jacobi solver

Let us denote the diagonal of matrix K by D = diag(K). Now, we can formulate the w-Jacobi
iteration

W= wF e DL (fo K k), k=0,1,2,... . (3)

You will find a sequential version of the Jacobi solver in the directory Solution/jacseqc with
the following functions in addition to the functions from P 5.

GetMatrix(nx, ny, xl, xr, yb, yt, sk, id, ik, f)
in which matrix K and right hand side f are calculated using the function FunctF(x,y) for
describing f(z). Note, that only coordinates and element connectivities are related to the
rectangular domain - all other parts in this routine are written for general 2d-domains.
The Dirichlet boundary conditions are set in SetU(nx, ny, u). Alternatively, one could use
FunctU(x,y). These b.c. are applied in
ApplyDirichletBC(nx, ny, neigh, u, sk, id, ik, f)
via penalty method.
The solver itself is implemented in
JacobiSolve(nx, ny, sk, id, ik, f, u )
and uses
GetDiag(nx, ny, sk, id, d)

to get the diagonal from matrix K. Matrix-times-vector is realized in

CrsMult(iza, ize, w, u, id, ik, sk, alfa) .

A vector u can be saved in file named name by calling
SaveVector(name, u, nx, ny, xl, xr, yb, yt, ierr) ,
such that

gnuplot jac.dem
will give an impression of that vector.

Implement a parallel version of the sequential code !



9

6.2 Multigrid solver

Here, we will solve (2) by means of a multigrid iteration. You will find a sequential version
of the multigrid solver using a w-Jacobi iterations a smoother and, for simplicity, also as a
coarse grid solver in the directory Solution/mgseqc . The following functions are added to the
functions from previous sections.

AllocLevels(nlevels, nx, ny, pp, ierr)
allocates the memory for all levels and stores the pointers in variable pp which is a structure
PointerStruct. For details see mg.h . The matrices and right hand sides will be calculated in
IniLevels(xl, xr, yb, yt, nlevels, neigh, pp, ierr) .
FreeLevels(nlevels, pp, ierr)
frees the allocated memory at the end. Note, that we need for multigrid a different procedure
to apply the Dirichlet b.c.
ApplyDirichletBC1(nx, ny, neigh, u, sk, id, ik, f)
The multigrid solver
MGMSolver(pp, crtl, level, neigh)
uses crtl as predefined structure ControlStruct to control the multigrid cycle (mg.h). The
same holds for each mg-iteration
MGM(pp, crtl, level, neigh) .

The mg components smoothing, coarse grid solver, interpolation and restriction are defined in
JacobiSmooth(nx, ny, sk, id, ik, f, u, dd, aux, maxiter )
JacobiSolve2(nx, ny, sk, id, ik, f, u, dd, aux )

Interpolate(nx, ny, w, nxc, nyc, wc, neigh)

Restrict(nx, ny, w, nxc, nyc, we, neigh) .

A vector u on level level can be saved in file named name by calling
SaveVector(name, pp->u[level], pp->nx|[level], pp->ny][level],
u, nx, ny, xl, xr, yb, yt, ierr) ,
such that

gnuplot mgm.dem
will give an impression of that vector.

Implement a parallel version of the sequential code !



