
Task in Scientific Computing
Deadline: April 7, 2024, 11:59pm

Survival Training in Linux

1. Linux commands and wildcards

Reading at home: Introduction1 in wildcards, see also Wiki2. [3 pts]
Some commands and programming structures of the Bash3.
More info for a single command, e.g., find via man find .

(i) Generate one new directory containing two subdirectories with simple C++-codes of you
in these subdirectories.

� List all files with suffix .cpp in one of the subdirectories (wildcards).

� Return to the root directory.

� Change the access rights of the new directory and its subdirectories such that exclu-
sively its owner/user is allowed to read the contents.

Hint: mkdir, cd, ls, touch, gedit, pushd, popd, chmod

(ii) � List all files in your directory tree. Store that output in a file (redirect output).

� List all files in your directory tree with suffix .h.

� Set for files in your directory tree with suffix .cpp the timestamp to the current time.

Hint: find, >, find . . . -exec ...

(iii) What is listed by the command ls */*/*.[ch]* if you call it after subtask (i)?

(iv) Generate sorted list of all files in a directory by using ls with sorting according to

(a) file size,

(b) file name,

(c) modification time,

(d) reverse modification time (newest file at last).

(v) Untar the archive File4, via tar .

� List all the data in the archive file and store that list in a file.

� Determine how much disc space is used by the new directory.

� Determine how much disc space is used by the single subdirectories.

� Delete all .log, .o, main.GCC files as well as the html directories.

Hint: tar, du, find . . . -o . . . -exec ..., du

(vi) cd Kurs_C/Script/Beispiele

1http://ryanstutorials.net/linuxtutorial/wildcards.php
2https://en.wikibooks.org/wiki/A_Quick_Introduction_to_Unix/Wildcards
3http://arachnoid.com/linux/shell_programming.html
4http://imsc.uni-graz.at/haasegu/Lectures/SciComp/SS20/kurs.tar.gz

1

http://ryanstutorials.net/linuxtutorial/wildcards.php
https://en.wikibooks.org/wiki/A_Quick_Introduction_to_Unix/Wildcards
http://arachnoid.com/linux/shell_programming.html
http://imsc.uni-graz.at/haasegu/Lectures/SciComp/SS20/kurs.tar.gz

� Compile Ex433.cpp using g++

� Edit the file such that a compilation error will will appear and redirect that output
to a file out.txt.

� Redirect the output such that it will appear in terminal as well as in the file.

Hint: g++, &>, >&, 2>&1 |, tee, > out.txt 2>&1

2. Regular expressions

Reading at home: Tutorial5, wiki6, and interactive testing7 (Cheatsheet!) of regular expression. [2 pts]

(i) cd Kurs_C/Script/latex

� Find all tex-files containing the string Alternative

� Find all tex-files containing the strings lauf or Lauf, print the appropriate filenames
as well as row numbers where the strings have been found.

Hint: grep, fgrep

(ii) The same directory as above.

� Replace in p 7.tex all German words Funktion by function. Take into account capital
and lowercase.

� Delete from p 7.tex all comment lines (row starts with %) and store the result in
t7.tex.

� Compare both files using wc, diff, mgdiff.

Hint: grep, sed s/regex_in/regex_out/g ... (see sed8 and 20 examples9)

(iii) The same directory and file as above. Delete all comments until the end of the row. (∗)

(iv) The same file as above. Find all graphic file .eps or .eps.gz used in the file. (∗)

3. Shell scripts

Reading at home: Introduction10 and tutorial11 for bash scripts. [6 pts]

(i) Combine your solutions from tasks 1. and 2. into small bash scripts and run them.
Define variables in the script.
Use programming structures of the bash.

Hint: for, while, if

(ii) Store all files of a directory tree in an output file.

Look for certain file names in that output file, e.g., all files with suffix .cpp or .h .

Hint: ls, grep

5http://www.regular-expressions.info/
6https://en.wikipedia.org/wiki/Regular_expression
7http://regexr.com/
8http://www.grymoire.com/Unix/Sed.html
9https://www.theunixschool.com/2014/08/sed-examples-remove-delete-chars-from-line-file.html

10http://ryanstutorials.net/linuxtutorial/scripting.php
11https://linuxconfig.org/bash-scripting-tutorial

2

http://www.regular-expressions.info/
https://en.wikipedia.org/wiki/Regular_expression
http://regexr.com/
http://www.grymoire.com/Unix/Sed.html
https://www.theunixschool.com/2014/08/sed-examples-remove-delete-chars-from-line-file.html
http://ryanstutorials.net/linuxtutorial/scripting.php
https://linuxconfig.org/bash-scripting-tutorial

(iii) Find all files larger as 500kB that haven’t been used (accessed) for the last 3 months.

Hint: find12

(iv) Unpack the archive file13.

� Compare source files in bsp_16*/* from Codes regarding equality and and print
appropriate directories and files.

Hint: diff, see also meld when using a GUI.

� Check files bsp_16*/* in Codes with respect to certain key word (break,
continue, goto) and assign the credits/points automatically.

Hint: grep, || , && , eval

� Archive your directory automatically (update !?). Compress the archive afterwards.

Hint: tar, gzip, zip

(v) Convert strings in multiple files. Hint: sed

(vi) Unpack the archive file14.

� Rename files in directory gif, e.g., 021906.gif (mmddyy.gif) into 2006 02 19.gif
(yyyy mm dd.gif)

Hint: cut, mv

� Shrink all images in that directory and store them as png files.

Hint: convert

(vii) Write a shell script that calls your code (e.g., Goldbach) with different n = {10.000
100.000 400.000 1.000.000 2.000.000 10.000.000} vi command line parameters and
stores the timing for them. Visualize the graph (time(n)) automatically with appropriate
tools (gnuplot, octave).

4. Makefiles

Reading at home: Tutorial15 for Makefiles. [5 pts]

(i) Write a simple makefile for a C++-code of your own with at least two source files and
one header file.
Your makefile has to realize compiling and linking (as separate steps):

.cpp
compile−→ .o

link−→ code.
See the Quick Reference16.

(ii) Log the compiler output into file(s) such the compiler warnings etc. can be assigned to the
appropriate source file.

(iii) Take into account that header files might have a newer time stamp than source/object
files. All source files containing that header have to be recompiled.
Hint: grep, touch, g++ -M, g++ -MM -MP

(iv) Add new targets makefile:

12https://shapeshed.com/unix-find/
13http://imsc.uni-graz.at/haasegu/Lectures/SciComp/SS20/Codes.zip
14http://imsc.uni-graz.at/haasegu/Lectures/SciComp/SS20/gif.zip
15http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/
16http://www.gnu.org/software/make/manual/html_node/Quick-Reference.html#Quick-Reference

3

https://shapeshed.com/unix-find/
http://imsc.uni-graz.at/haasegu/Lectures/SciComp/SS20/Codes.zip
http://imsc.uni-graz.at/haasegu/Lectures/SciComp/SS20/gif.zip
http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/
http://www.gnu.org/software/make/manual/html_node/Quick-Reference.html#Quick-Reference

� Delete all automatically generated files.

� Test the code.

� Pack all needed files into an archive such that a make testing after unpacking that
archive performs compilation, linking, running and comparison to a reference output.

� Incorporate tools valgrind (memory checker) and gprof (profiler).

� Document your code with doxygen (make doc).

� Synchronize your code/archive with a server . . ., via git, scp, rsync, sitecopy

[whatever is available]

(v) Write a similar makefile for Kurs-C/Script that generates the pdf file, cleans and archives
it (generate html?).

5. git

� Add the following lines to your file ~/.bashrc

git

https://143.50.47.112:8443/

git config --global http.sslVerify false

git config --global user.email your_email@uni-graz.at

git config --global push.default simple

git config --global core.editor "vi"

and run source ~/.bashrc in the shell, or start simply a new shell.

� Check out the git-Repository [2 pts]
git clone https://<username>@143.50.47.112:8443/r/haase/lv/scicomp_21.git

and add Directory your familyname. Copy one of your shell scripts into your directory,
add/commit and push it into the global repository.

� Copy all your solutions from the tasks into your directory.
Remove all unnecessary file before you add/commit/push them - especially the binari-
es/object files.

� Do not delete the directories of your class mates.

� Add the targets push/pop to your makefile of a project.

Literatur

[BaLi12] Daniel Barrett and Kathrin Lichtenberg. Linux - kurz & gut. O’Reilly, 2012. E-
book17.

[Ko07] Achim Köhler. Der C/C++ Projektbegleiter. dpunkt verlag, 2007. Link18

[La14] Hans Petter Langtangen. A Primer on Scientific Programming with Python. Sprin-
ger, 2014. E-book19.

[Wi04] Arnold Willemer. Wie werde ich UNIX-Guru?. Galileo Computing, 2004. Open-
Book20

17http://search.obvsg.at/primo_library/libweb/action/search.do?vid=UGR
18https://www.dpunkt.de/buecher/2584/9783898644709-der-c-c%2B%2B-projektbegleiter-10848.html
19http://search.obvsg.at/primo_library/libweb/action/search.do?vid=UGR
20http://openbook.rheinwerk-verlag.de/unix_guru/

4

https://www.dpunkt.de/buecher/2584/9783898644709-der-c-c%2B%2B-projektbegleiter-10848.html
http://openbook.rheinwerk-verlag.de/unix_guru/
http://openbook.rheinwerk-verlag.de/unix_guru/
http://search.obvsg.at/primo_library/libweb/action/search.do?vid=UGR
http://search.obvsg.at/primo_library/libweb/action/search.do?vid=UGR

[Wo13] Christine Wolfinger. Keine Angst vor Linux/Unix : Ein Lehrbuch für Linux- und
Unix-Anwender. Springer, Berlin Heidelberg, 2013. E-book21.

G. Haase 5. März 2024, 10:47

21http://search.obvsg.at/primo_library/libweb/action/search.do?vid=UGR

5

http://search.obvsg.at/primo_library/libweb/action/search.do?vid=UGR

