
High Performance Computing (Master) in WS24

Exercise 4: distributed memory parallelization using MPI

Deadline: Jan 28, 2025, 16:00

Status: Wednesday 7th August, 2024, 15:13

Supervisor: Prof.Dr. G. Haase, gundolf.haase@uni-graz.at

1 Preliminaries

1.1 MPI

TheMessagePassing Interface has been introduced in the early 90–ties (i.e., after Rocky V)
and it is still the standard environment for distributed parallel computing. It covers about
140 functions, available in F77, C and C++. Already 6 functions allow to write parallel
codes. Most of the other functions are based on these 6. We will be mainly concerned
with the following functions.

Basic functions MPI Init
MPI Finalize
MPI Send
MPI Recv
MPI Comm rank
MPI Comm size

additional functions MPI Barrier
MPI Bcast
MPI Gather
MPI Scatter
MPI Reduce
MPI Allreduce

The current standard is MPI-3.1 although this basic course will use only a small subset of
its funtionality.

1.2 Online help

First of all the MPI Homepage and especially the overview of the MPI functions should
be consulted. We will refer frequently to these web pages during the course.

The desciption for MPI–functions in C and Fortran (nad Fortran 2008) can be found
here. The c++ bindings were deprecated.

We have to distinguish between the MPI standard and its implementations. The most
commenly used implementations are MPICH and OpenMPI (that is not OpenMP !!). All
three are available as packages under LINUX but only one of them should be used in order
to avoid confusion wrt. paths to executables, libraries and headers. We will refer to the
latter one, see the man pages of OpenMPI.

1.3 Getting started on a (pool of) LINUX-workstations/PCs

First, open a shell and type
mpirun

If MPI is not available then you have to install additional packages (in Ubuntu) via
sudo apt-get install openmpi-bin openmpi-doc libopenmpi-dev

or install it from the scrach (just for fun).

http://www.open-mpi.org/doc/current/man3/MPI_Init.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Finalize.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Send.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Recv.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Comm_rank.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Comm_size.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Barrier.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Bcast.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Gather.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Scatter.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Reduce.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Allreduce.3.php
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.open-mpi.org
https://www.open-mpi.org/doc/current
http://www.open-mpi.org/doc/current/
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report/node405.htm
http://www.mcs.anl.gov/research/projects/mpich2
http://www.open-mpi.org
http://www.open-mpi.org/doc/current

Check whether the ssh-deamon is running
ps -ax |grep sshd

If not you have to install it too.
In order to avoid the password request for each parallel process started (think of 64 parallel
processes) you have to create secure authentication keys for your account.

ssh-keygen

cp ~/.ssh/id_rsa.pub ~/.ssh/authorized_keys

chmod go-rwx ~/.ssh/authorized_keys

locally

ssh-add

remote

ssh-copy-id your_username@192.0.2.0

See also my hints.

1.4 Installing the example code

Copy and unpack the provided supporting material for the Jacobi template1 into a folder
and unpack it.

1http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/jacobi.template.zip

https://www.linode.com/docs/security/authentication/use-public-key-authentication-with-ssh/
http://imsc.uni-graz.at/haasegu/Lectures/RO-II/mpich.txt
http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/jacobi.template.zip

2 Your first parallel code

E1 Compile the program in template2 and set in the Makefile the variable COMPILER to (1 pts)
COMPILER=GCC_ . Adapt Makefile and ../GCC default.mk to your needs and paths.
Compile and link the code
make

Start the program with 4 processes
make run

or directly via
mpirun -np 4 ./main.GCC_ (ensure that you use the right mpirun)

If you ’mpirun ...’ report some error ”... not enough slots ..” then use the option
’–oversubscribe’, i.e., mpirun --oversubscribe -np 4 ./main.GCC_

The following MPI functions require a communicator as parameter. This communi-
cator describes the group of processes which are to be covered by the corresponding
MPI function. By default, all processes are collected in MPI COMM WORLD which
is one of the constants supplied by MPI for predefined datatypes, error classes, col-
lective operations etc.. We restrict the examples to those global operations. For
this purpose, create special MPI-type variable MPI Comm icomm= MPI COMM -
WORLD; which is used as parameter !

E2 Write Your first parallel program by implementing (1 pts)

MPI Init and MPI Finalize

compile the program and start 4 processes
mpirun -np 4 ./main.GCC_

E3 Determine the number of your parallel processes and the local process rank by using (1 pts)
the routines

MPI Comm rank and MPI Comm size .
Let the root process (0==rank) write the number of running processes. Start with
different numbers of processes.

E4 The file greetings.cpp3 includes a routine (1 pts)
Greetings(MPI Comm const &icomm)

that prints the names of the hosts your processes are running on. Call that routine
from your main program and change the routine such that the output is ordered
with respect to the process ranks. Study the routines

MPI Send and MPI Recv
with respect to tags and ranks.

2http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/first.template.zip

3http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/first.template/html/greetings_8cpp.html

http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/first.template.zip
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report/node96.htm
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report/node146.htm
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report/node28.htm
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report/node459.htm
http://www.open-mpi.org/doc/current/man3/MPI_Init.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Finalize.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Comm_rank.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Comm_size.3.php
http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/first.template/html/greetings_8cpp.html
http://www.open-mpi.org/doc/current/man3/MPI_Send.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Recv.3.php

3 Global Operations

Let some Double Precision vector x be stored blockwise disjoint, i.e., distributed over
all processes s (s=0,...,P−1) such that u = (xT0 , . . . , x

T
P−1)

T . See suggestions of function
interfaces4.

E5 Write a routine (1 pts)

DebugVector(xin, icomm)
that prints the Double Precision vector xin. Start the program with several processes.
=⇒ All processes will write their local vectors, i.e., one has to look carefully for the
data of process s.

Improve the routine DebugVector such that process 0 reads the number (from
terminal) of that process which should write its data next. Use

MPI Bcast

to broadcast this information and let the processes react appropriately. If necessary
use MPI Barrier to synchronize the output.

E6 Write a routine for computing the global scalar product (1 pts)

par scalar(x, y, icomm)

of two Double Precision vectors x and y of local length n. Use

MPI Allreduce with the operation MPI SUM.

E7 Determine and exchange global minimum and maximum of the vector x ! Use (1 pts)

MPI Gather , MPI Scatter , MPI Bcast and MPI Sendrecv .

How can you reduce the amount communication?
Hint: Compute, first, local min./max. and afterwards let some process determine
the global quantities.

Alternatively, you can use MPI Allreduce and the operationsMPI Minloc/MPI -
Maxloc.

E8 Each of your 4 MPI processes (numprocs := 4) owns a double precision vector x
with 20 elements initialized as (1 pts)

x[i] := myrank ∗ 100 + (i%5) ∗ 10 + i .

You have to exchange vector elements with MPI ranks r ∈ [0, 3] . All elements with
index i ∈ [r ∗ 5, (r + 1) ∗ 5− 1] have to be exchanged with rank r.
Check the resulting vector.

You could use a bunch of MPI Sendrecv calls but you better use the more general
function MPI Alltoall .
Try also the In-place option by using MPI IN PLACE with MPI Alltoall .

Have a look at the more general function MPI Alltoallv .

4http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/glob/html/globals_func.html

http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/glob/html/globals_func.html
http://www.open-mpi.org/doc/current/man3/MPI_Bcast.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Barrier.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Allreduce.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Gather.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Scatter.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Bcast.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Sendrecv.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Allreduce.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Reduce.3.php#sect10
http://www.open-mpi.org/doc/current/man3/MPI_Sendrecv.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Alltoall.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Alltoall.3.php
http://www.open-mpi.org/doc/current/man3/MPI_Alltoallv.3.php

4 Data exchange

Download the template5 containing the functions for the setting up the geometry and the
exchange of data between MPI processes.

For a start we use Matlab to describe manually the decomposition of a square into
sub-squares, see script square 4.m6. The resulting list of finite elements together with the
node coordinates is stored in square 4.txt7. The assignment of elements to a subdomain
(= MPI rank) r = 0, . . . , 3 is stored in file square 4 sd.txt8.

0 1

2 3

Figure 1: MPI rank per subdomain (left) and discretization (right).

Please note that both text files contain the original Matlab numbering starting with 1
which will be changed automatically to C-numbering (starting with 0) in the C++-
constructor of the mesh. The class ParMesh reads these files with its constructor

ParMesh const mesh(”square”,icomm);
for the provided files (only for 4 MPI processes!) and initializes also the MPI paralleliza-
tion for data exchange on the interfaces of the subdomains.

Object mesh contains basic communication routines and information as

• Number of MPI processes: int const numprocs = mesh.NumProcs();

• MPI rank of this process: int const myrank = mesh.MyRank();

• inner product: double ss = mesh.dscapr(xl,xl);

• Vector accumulation on interfaces: mesh.VecAccu(xl);

5http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/accu.template.zip

6http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/accu.template/html/square__4_8m_source.html

7http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/accu.template/square_4.txt

8http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/accu.template/square_4_sd.txt

http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/accu.template.zip
http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/accu.template/html/square__4_8m_source.html
http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/accu.template/square_4.txt
http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/accu.template/square_4_sd.txt
http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/accu.template/html/class_par_mesh.html
http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/accu.template/html/class_par_mesh.html#a73ee5bff1509de2f13cd9ca4fa2664c2
http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/accu.template/html/class_par_mesh.html#a9197c6fa9f0df0d3d687292a7c05a08f
http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/accu.template/html/class_par_mesh.html#aca4e12b1947480ccb88d35e75c9fc7d7
http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/accu.template/html/class_par_mesh.html#afa8a42a55d22d32f863b42f5c7d790dd
http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/accu.template/html/class_par_mesh.html#aadab9d086c74b6c954718061755c3545

E9 Check the vector accumulation mesh.VecAccu(...) with your own vector taking
into account that you know the interface coordinates. The coordinates can be ac-
cessed via mesh.GetCoords(); . (2 pts)
See also Figure 2 for a scheme of the available local node numbering.
Check also the inner product mesh.dscapr(...) .

E10 Write a Method VecAccu for class Parmesh that adds interface data of an integer
vector. (2 pts)

E11 Write a Method GlobalNnodes() for class Parmesh that determines the global num-
ber of nodes in the mesh. (2 pts)

E12 Write a Method Average for class Parmesh that averages (arithmetic mean) interface
data of a double precision vector instead of adding them. (2 pts)

E13 Generate other domains for parallel data exchange by copying square 4.m to a dif-
ferent name and describe your subdomains in a similar way. (2 pts)
Try also more/less than 4 subdomains and start your code appropriatly, see target
run in Makefile.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 2: 4 subdomains in local numbering.

http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/accu.template/html/class_mesh.html#a10acb83d952a77b70ec552ff63e00046
http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/accu.template/html/square__4_8m_source.html

5 Iterative Solvers

Download the Jacobi template9 containing the functions for matrix generation and se-
quential solvers or use your own version from the shared memory part of the course.

As model problem, we consider the homogeneous Dirichlet boundary value problem
(u(x) = 0 ∀x ∈ ∂Ω) for the Poisson equation in the unit square Ω := (0, 1)2 in its weak
formulation:

Find u ∈ H1
0(Ω) such that∫

Ω
∇Tu(x)∇v(x) dx =

∫
Ω
f(x)v(x) dx ∀v ∈ H1

0(Ω) . (1)

We use linear finite elements for the discretization and achieve the linear system of equa-
tions

K · u = f . (2)

5.1 Jacobi solver

Let us denote the diagonal of matrix K by D = diag(K). Now, we can formulate the
ω-Jacobi iteration

uk+1 = uk + ω ·D−1 · (f −K · uk) , k = 0, 1, 2, (3)

You will find a sequential version of the Jacobi solver in the directory jacobi.template ex-
tended with the parallel mesh and its functions provided already in the previous section 4.

Once you have an object mesh of class Parmesh the following matrix generation steps
require no communication:

• Allocation and patter determination of local sparse matrix:
FEM_Matrix SK(mesh);

• Calculation odf matrix entries (for Laplacian):
SK.CalculateLaplace(fv);

• Setting values for local vectors, depending e.g. on node coordinates:
mesh.SetValues(...)

• Incorporating boundary conditions (here, for Dirichlet):
SK.ApplyDirichletBC(...)

The only function remaining for MPI adaption is JacobiSolve(SK, fv, uv);

E14 Implement an MPI parallel version of the sequential code in JacobiSolve10 with
the interface (4 pts)

void JacobiSolve(ParMesh const & mesh, CRS_Matrix const &SK,

vector<double> const &f, vector<double> &u)

which requires the use of mesh.dscapr(...) and mesh.VecAccu(...). The latter
one is needed also in accumulation of the matrix diagonale.

9http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/jacobi.template.zip

10http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/jacobi.template/html/jacsolve_8h.html#a4b66d6c4de6f3c7b26bbf39d0f7054f0

http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/jacobi.template.zip
http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/par/jacobi.template/html/jacsolve_8h.html#a4b66d6c4de6f3c7b26bbf39d0f7054f0

This document will be extended by further advices, links, etc.

Wednesday 7th August, 2024

	Preliminaries
	MPI
	Online help
	Getting started on a (pool of) LINUX-workstations/PCs
	Installing the example code

	Your first parallel code
	Global Operations
	Data exchange
	Iterative Solvers
	Jacobi solver

