
High Performance Computing (Master) in WS24

Exercise 1: Rember your C++; Efficient implementations on one core.

Deadline: Oct 29, 2024, 23:55

Status: 7. August 2024, 15:10

Supervisor: Prof.Dr. G. Haase, gundolf.haase@uni-graz.at

(A) Mean values: [2 pts]

We consider three different means, namely the arithmetic mean, geometric mean and
the harmonic mean1.

a) Start with code (intro function2) and add a function that

– receives three integers in the input parameter list,

– evalulates the three means above, and

– returns these three values via parameter list to the main function.

b) Call the function from your main function and print the results therein.

c) The input data (1, 4, 16) results in the three means (7, 4, 2.28571).

d) The input data (2, 3, 5) results in the three means (3.33333, 3.10723, 2.90323).

e) Check the correctness for (1000, 4000, 16000), besides the limited accuracy of floa-
ting point numbers.

f) The same as a) but with one STL vector3 of arbitrary length containing the input
data.

Hints: #include <cmath>, pow, #include <vector>, vector

(B) Data-IO and vectors: [2 pts]

Read the data from ASCII file data 1.txt4 into an STL-vector5 and determine minumum,
maximum, mean values and deviation6 of your data. Write those values into an ASCII
file out 1.txt.

– See the example7 on file-IO and reimplement the relevant parts in your code.

– Use minimal data type (wrt. storage) for storing the vector elements.

– You may use the STL for the determination of minumum8, maximum. Use your
own function for arithmetic mean, geometric mean and harmonic mean as well as
for the standard deviation.

Hints: #include <cmath>, pow, #include <vector>, vector, #include <algorithm>

1https://en.wikipedia.org/wiki/Mean
2http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/seq/skalar_stl.zip
3http://www.cplusplus.com/reference/vector/vector/
4http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Examples/Data/data_1.txt
5http://www.cplusplus.com/reference/vector/vector/
6https://www.mathsisfun.com/data/standard-deviation.html
7http://imsc.uni-graz.at/haasegu/Lectures/Kurs-C/SS22/file_io.zip
8http://www.cplusplus.com/reference/algorithm/min_element/

https://en.wikipedia.org/wiki/Mean
http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/seq/skalar_stl.zip
http://www.cplusplus.com/reference/vector/vector/
http://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Examples/Data/data_1.txt
http://www.cplusplus.com/reference/vector/vector/
https://www.mathsisfun.com/data/standard-deviation.html
http://imsc.uni-graz.at/haasegu/Lectures/Kurs-C/SS22/file_io.zip
http://www.cplusplus.com/reference/algorithm/min_element/


(C) Summation of specified numbers: [2 pts]

Write a function with input parameter n that adds all those positive integers less or
equal n which are a multiples of 3 or of 5 (including or!).

– The easiest approach uses a for-loop.

– Test your function in the main function with various parameters:

∗ n = 15 results in 60.

∗ n = 1001 results in 234 168.

∗ n = 1432987 results in 479 139 074 204.

– Derive a formula for calculating the required sum without executing a loop. Im-
plement it in a second function and test it.

– Compare the run time of your two functions by using the chrono9 functions for
time measurement.
Run each function at least 1000 times to get some measurable timings.

Hints: cout, cin, endl, for, auto, std::chrono::high resolution clock::now(),
std::chrono::duration<double>, std::chrono::duration cast<...>(...)

(D) Kahan summation: [3 pts]

Numerical computation by floating point numbers in the computer cause roundoff errors
due to the limited precision available. Summing large and small numbers together might
result in a non neglectable final error.

The Kahan summation10 is one approach to compensate this error.

1. Start with the skalar product code (zip11). and extend it with a new function
Kahan skalar that performs the summation therein according to Kahan.

2. Calculate the sum

sn :=
n∑

k=1

1

k2

for increasing n and compare the difference of the results from the two functions.

– Use compiler option -O1, not option -O2 or higher for the Kahan skalar.

3. We know that sn → π2

6 for n → ∞.
Compare the two results with this value for n → ∞.

Hints: #include <cmath>, M PI

9http://www.cplusplus.com/reference/chrono/high_resolution_clock/now/
10https://en.wikipedia.org/wiki/Kahan_summation_algorithm
11https://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/seq/skalar_stl.zip

http://www.cplusplus.com/reference/chrono/high_resolution_clock/now/
https://en.wikipedia.org/wiki/Kahan_summation_algorithm
https://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/seq/skalar_stl.zip


(E) Vector versus list: [4 pts]

Assume a sorted container (vector12/list13) x of length n with ascending entries xk =
k + 1, k = 0, n− 1.
Let us generate random numbers ∈ [1, n] and place each new element into the container
such that the enlarged container is still sorted.

Write functions for a vector and for a list that insert n random numbers successively
into the given ordered container. The container is going to have length 2n finally.
Measure the time spent inside functions for various n.
Which container is faster and why!?

– Random numbers can be generated via the C++ random14 library, see the exam-
ple15 code.

– A container can be sorted by sort()16 which is not needed in this task.

– Finding the position to insert the new element into a sorted container can be done
either

∗ via algorithm find if()17 together with a lambda-function, or

∗ by using algorithm lower bound()18 (or upper bound()) which is simpler and
faster.

An iterator19 is returned indicating the position in the container.

– Inserting a new element at an arbitrary position into a container can be done using
the method insert()20.

– Checking whether a container is sorted can be done with algorithm is sorted()21.

– The timing can be performed either by chrono22 functions, or via the old C-timing
functions ctime23.

Hints: auto, std::chrono::system clock::now(), std::chrono::duration<double>,
std::chrono::duration cast<...>(...). clock(),

12http://www.cplusplus.com/reference/vector/vector/
13http://www.cplusplus.com/reference/list/list/
14http://www.cplusplus.com/reference/random/
15http://www.cplusplus.com/reference/random/linear_congruential_engine/operator()
16http://www.cplusplus.com/reference/algorithm/sort
17http://www.cplusplus.com/reference/algorithm/find_if/
18http://www.cplusplus.com/reference/algorithm/lower_bound/
19http://www.cplusplus.com/reference/iterator/
20http://www.cplusplus.com/reference/vector/vector/insert/
21http://www.cplusplus.com/reference/algorithm/is_sorted/?kw=is_sorted
22http://www.cplusplus.com/reference/chrono/system_clock/now/
23http://www.cplusplus.com/reference/ctime/clock/

http://www.cplusplus.com/reference/vector/vector/
http://www.cplusplus.com/reference/list/list/
http://www.cplusplus.com/reference/random/
http://www.cplusplus.com/reference/random/linear_congruential_engine/operator()
http://www.cplusplus.com/reference/random/linear_congruential_engine/operator()
http://www.cplusplus.com/reference/algorithm/sort
http://www.cplusplus.com/reference/algorithm/find_if/
http://www.cplusplus.com/reference/algorithm/lower_bound/
http://www.cplusplus.com/reference/iterator/
http://www.cplusplus.com/reference/vector/vector/insert/
http://www.cplusplus.com/reference/algorithm/is_sorted/?kw=is_sorted
http://www.cplusplus.com/reference/chrono/system_clock/now/
http://www.cplusplus.com/reference/ctime/clock/


(F) Goldbach’s conjecture: [4 pts]

Each even number larger than 3 can be written as sum of two primes (Goldbach’s
conjecture24), i.e., that holds also for all even numbers from [4, n] (n >= 4).

1. Incorporate the header mayer primes.h25 into your code. The modified code origi-
nates from Florian Mayer26 and generates all primes until n.

2. Write a function single goldbach(k) that counts for a natural number k the
number of possible decompositions with 2 primes for k and returns that number
to your main code (e.g., k = 694 has 19 decompositions).

3. Write a function count goldbach(n) that counts the number of possible decom-
positions for all even numbers in [4, n] and returns these data.
Determine in your main code that k with the most decompositions (n = 100.000
=⇒ k = 99.330).

4. Measure the run time of your function count goldbach(n) for n = {10.000
100.000 400.000 1.000.000 2.000.000 (10.000.000)}.
Use system clock27 from the chrono functions for timing.

* Write a function similar to the one in 3. but returning all decompositions for all
even numbers in the given range.

C++ hints: vector, max element, push back

(G) Dense Matrices Access: [4 pts]

We will have a look at the effect of access patterns of dense matrices and of a special
dense matrix structure on the run time of the matrix vector product.
We will use a 1D memory layout to store a n×n dense matrix. Start with example code
intro function densematrix28.

a) Write a class for the dense matrix that contains:

– A constructor with n (#rows) and m (#columns) as input parameters.
Initialize the matrix elements in this constructor via

Mi,j = f(xi) · f(xj)

with xk = 10k
nm−1 − 5 ∀k = 0, . . . , nm − 1 with nm = max(n,m) and the

Sigmoid29 function f(x) := (1 + exp(−x))−1.

– Implement a (const30!) Method Mult for multiplying this matrix with a vector
passed as input parameter, returning the resulting vector to your main code.
Use rowise access to the matrix elements.

24https://en.wikipedia.org/wiki/Goldbach’s_conjecture
25https://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Examples/goldbach/mayer_primes.h
26http://code.activestate.com/recipes/576559-fast-prime-generator
27http://www.cplusplus.com/reference/chrono/system_clock/now/
28https://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Examples/intro_vector_densematrix.zip
29https://en.wikipedia.org/wiki/Sigmoid_function
30https://isocpp.org/wiki/faq/const-correctness#const-member-fns

https://en.wikipedia.org/wiki/Goldbach's_conjecture
https://en.wikipedia.org/wiki/Goldbach's_conjecture
https://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Examples/goldbach/mayer_primes.h
http://code.activestate.com/recipes/576559-fast-prime-generator
http://www.cplusplus.com/reference/chrono/system_clock/now/
https://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Examples/intro_vector_densematrix.zip
https://en.wikipedia.org/wiki/Sigmoid_function
https://isocpp.org/wiki/faq/const-correctness#const-member-fns


– Write a (const) Method MultT that multiplies the transosed matrix with a
vector.
Do not transpose the matrix. You only have to change the rowise access from
the matrix above to a columnwise access.

b) Use your class and functions in the main function and check the results. Your main
function should look like (plus the output of vectors f1 and f2):

#include "mylib.h"

#include <iostream>

#include <cassert>

#include <vector>

using namespace std;

int main()

{

DenseMatrix const M(5,3); // Dense matrix, also initialized

vector<double> const u{{1,2,3}};

vector<double> f1 = M.Mult(u);

vector<double> const v{{-1,2,-3,4,-5}};

vector<double> f2 = M.MultT(v);

return 0;

}

c) Contruct a dense square matrix with n rows/columns, choose n ∈ [103, 104] depen-
ding on the amount of memory in your computer.
Measure the run time for Mult and for MultT with the same non-zero vector as
input parameter. Explain the difference in run time!
Our dense square matrix is symmetric by construction (why?), therefore the two
resulting vectors have to be equal. Check this!

// code snippet

#include <ctime>

...

{

...

int const NLOOPS=100; // the overall code should run approx. 10 sec.

...

double t1 = clock(); // start timer

vector<double> f1 = M.Mult(u);

for (int k=1; k<NLOOPS; ++k)

{

f1 = M.Mult(u);

}

t1 = (clock()-t1)/CLOCKS_PER_SEC/NLOOPS;

...

}

d) Write another class for a dense matrix which is defined as M = uT ∗ v with row
vectors u and v.

– Implement the same functionality as above with methods Mult and MultT but
taking advantage of the tensor product structure of the matrix.

– Initialize your matrix with u = v = sigmoid(xk) for k = 0, . . . , n, i.e., the
matrix will be symmetric.

– Perform the same run time tests and checks as above.

Hints: #include <cmath>, exp, #include <vector>, vector


