ComputerMathematik

2. Computerpraktikum zum Abgabetermin 4.11.2024, 23:59

Literatur

[Ueber05] C. Überhuber, S. Katzenbeisser and D. Praetorius. MATLAB 7: Eine Einführung. Springer-Verlag, Wien, 2005. E-book¹.

7. Erzeugen Sie einen **Zeilenvektor** $\boldsymbol{x} = \{x_i\}_{i=1}^6$ der Länge 6 mit den Einträgen $\{1\ 11.5\ 0\ 4.2\ 1.5\text{e-}3\ 5\}$ und, mittels der Doppelpunktnotation [Kernbichler $\S 3.4.2^2$], einen **Spaltenvektor** $\boldsymbol{y} = \{y_i\}_{i=1}^6$ mit den ersten 6 geraden Zahlen ab 4.

Berechnen Sie die **Zeilenvektoren** σ , ϱ , τ , z (allesamt mit der Länge 6) mittels elementweiser arithmetischen Operatoren für Vektoren [Ueber05, §5.3.7].

(a)
$$\sigma_i = x_i^{1.5}$$
 (sigma),

(b)
$$\varrho_i = \frac{x_i^2}{1 + 3\sigma_i}$$
 (rho),

(c)
$$\tau_i = e^{x_i} - \log(y_i)$$
 (tau),

- (d) $z_i = x_i \tan(y_i)$.
- (e) Geben Sie z_5 aus (Achtung: Matlab-Numerierung beginnt mit 1 !!).
- (f) Geben Sie $\varrho_1, \varrho_2, \varrho_4$ und τ_2, τ_4, τ_6 unter Nutzung jeweils eines Indexvektors aus.

und speichern Sie alle erzeugten Vektoren im File $bsp_7.mat$.

Verbessern Sie Übersichtlichkeit der Ausgabe durch Nutzung von disp.

Hinweise: mathematical functions,

elementweise Operatoren für Matrizen: " .* ", " ./ ", " .^ ", " .' "(transposed)

8. Lesen Sie das Datenfile aus Bsp. 7 ein.

Erzeugen Sie die folgenden Variablen:

- (a) Zeilenvektor xx als Aneinanderreihung der Vektoren σ, τ ,
- (b) Matrix A indem x, ϱ und z, in dieser Reihenfolge, die Zeilen der Matrix bilden,
- (c) Matrix B indem x und y die Spalten bilden,
- (d) Speichern Sie die 2. Spalte von A in einem Vektor und geben Sie diesen aus.
- (e) Löschen Sie die 3. Zeile in Matrix B.
- (f) Zeilenvektor yy (doppelter Länge) wobei alle Einträge von x an den Stellen mit geraden Indizes und alle Einträge von y an denen mit ungeradem Index gespeichert werden sollen [Script Kernbichler³ §3.6, p.20] d.h. der Vektor yy besteht aus den Einträgen $y_1, x_1, y_2, x_2, \ldots, y_k, x_k, \ldots, y_n, x_n$,

und geben Sie diese aus.

9. Generieren Sie die (Zeilen/Spalten?)-Vektoren

$$x = [-4, -2, 0, 2, 4];$$
 $y = [6, 3, 0, -3, -6];$ $z = [3, 4, 5]$

über die **Doppelpunktnotation** aus [Kernbichler⁴ §3.4.2] und kombinieren Sie diese Vektoren mittels der Matrixmultiplikation (*) paarweise so, daß das Ergebnis

- (a) ein Skalar s (1 × 1-Matrix) ist,
- (b) eine 5×5 -Matrix A ist,
- (c) eine 5×3 -Matrix B ist, und berechnen Sie
- (d) das Matrixprodukt $A \cdot B$,

 $^{^{1} \}verb|http://search.obvsg.at/primo_library/libweb/action/search.do?vid=UGR$

²http://itp.tugraz.at/LV/kernbich/AppSoft-1/Kapitel/appsoft1-kapitel-3.pdf

³http://itp.tugraz.at/LV/kernbich/AppSoft-1/Kapitel/appsoft1-kapitel-3.pdf

⁴http://itp.tugraz.at/LV/kernbich/AppSoft-1/Kapitel/appsoft1-kapitel-3.pdf

(e) die Matrix-Vektor-Produkte $A \cdot x$, $B \cdot z$, $x \cdot B$.

Achten Sie auf die Kompatibilität der Dimensionen bei Anwendung der Matrixoperationen, d.h., transponieren Sie nötigenfalls einen oder mehrere Vektoren.

10. Drücken Sie das lineare Gleichungssystem

$$2x-3y+w-2z = -4 x -z = -5 -2y+w-2z = -1 -3x+2y +z = 7$$

in der Form

$$A_{4\times 4} \cdot \mathbf{x}_{4\times 1} = \mathbf{f}_{4\times 1}$$
 aus.

Lösen Sie das lineare Gleichungssystem

- (a) einmal mittels der entsprechenden Matlab-Operation für Matrizen ($, \$ "), auch Backslash-Operator genannt, nach dem Vektor \mathbf{x} auf, und
- (b) andererseits durch Invertieren der Matrix (inv) und anschließende Multiplikation mit der rechten Seite, d.h., $x=A^{-1}\cdot f$.
 - * Sie können die inverse Matrix auch durch das Lösen mit mehreren rechten Seiten (=spaltenweise Einheitsvektoren) ausrechnen. Probieren Sie dazu A_gj = A\eye(size(A)) aus und stellen Sie eine Verbindung zum Gauß-Jordan-Algorithmus her.

Überprüfen Sie Ihre Ergebnisse (Probe)!

Der Ergebnisvektor x enthält nur ganzzahlige Elemente $(\sum_{k=1}^{4} x_k = 3)$.

- 11. Laden Sie das Datenfile *bsp_11_input.mat*⁵ herunter (nicht im Browser öffnen!) und bestimmen Sie die Dimensionen der darin enthaltenen Matrix Zufall mittels der Matlab-Fkt. size.
 - (a) Greifen Sie auf die 4. Spalte von Zufall zu und speichern Sie diese in einem Spaltenvektor M_a.
 - (b) Greifen Sie auf die 10. Zeile von Zufall und speichern Sie diese in einem Zeilenvektor M.b.
 - (c) Greifen Sie auf die Zeilen 2, 4, 13, 4, 9, 1 von Zufall zu via Indexvektor zu und erzeugen Sie daraus die entsprechende 6×23 Matrix M_c .
 - (d) Fassen Sie die Matrixelemente von Zufall mit ungeraden Zeilen- und geraden Spaltenindizes in einer Matrix M_d zusammen.
 - (e) Bilden Sie die Teilmatrix M_e wenn Sie in Zufall nur die letzten drei Zeilen berücksichtigen und dabei auf die Spalten in umgekehrter Reihenfolge zugreifen. Nutzen Sie hierzu das Schlüsselwort end und die Doppelpunktnotation.
 - (f) Speichern Sie obige fünf Variablen, und nur diese, in dem Datenfile $bsp_11.mat$. Achten Sie auf die korrekte Schreibweise (Groß-/Kleinbuchstaben) Ihrer Variablen.

Kommentieren Sie Ihr Skriptfile und geben Sie die Ergebnisse so aus, daß diese den Teilaufgaben leicht zugeordnet werden können.

Benutzen Sie für die Indexbereiche die **Doppelpunktnotation** wann immer möglich.

Abgabe der Lösungen:

Die Abgabe der Lösungen (*.m-Files und Grafiken) muß über Kreuzlliste⁶ erfolgen.

Die Filenamen **müssen** dem Schema bsp_nummer, gefolgt von der Filextension, entsprechen. Andere Filebezeichner zählen nicht als abgegebene Files.

Abzugebende Files (auch als ein zip-File möglich):

⁵http://imsc.uni-graz.at/haasegu/Lectures/CompMath/WS_24/bsp_11_input.mat

⁶http://imsc.uni-graz.at/haasegu/Lectures/CompMath/Modus_WS.html

bsp_8.m bsp_9.m bsp_10.m

bsp_11.m, bsp_11.mat