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The Spiral of Theodorus

Detlef Gronau

1. INTRODUCTION. Philip J. Davis’s lively book on spirals [2] considers these
curves generally but has its main focus on the beautiful spiral of Theodorus (named
after Theodorus of Cyrene, circa 470–399 B.C.). The discrete points of this spiral can
be represented in the Gaussian plane by z0 = 1 and zn+1 = (1 + i/

√
n + 1) · zn for

n = 0, 1, 2, . . . , where i = √−1 (see [2, p. 33]). There are infinitely many possibil-
ities for connecting these points by a continuous curve. This is the old problem of
“interpolating” a discrete function, defined say on the nonnegative integers, by a func-
tion that is defined on the nonnegative reals. It was, for example, Euler’s motivation for
introducing the gamma function as the interpolating function of the factorials (see [4]).

Davis [2] raised the question: Is there a “natural” way to draw a nice curve through
the “Theodorus points” that looks spiral-like. But first we ask, as Davis did: How can
one characterize such a spiral-like curve?

2. SPIRALS. Spirals are very popular and therefore there is a vast literature treating
them. In addition to the Davis book, we mention three references on this topic. The
book of Lawrence [10] gives a concise overview on special curves, including spirals.
Heitzer [5] is full of pictures of spirals in mathematics and nature. Gray [3] describes
curves and surfaces, including spirals, and provides formulas that are additionally for-
mulated in the language of MATHEMATICA.

Figure 1. The spiral of Cornu, Archimedes’ spiral, and the logarithmic spiral.

There are several different “definitions” of spirals in the plane. Roughly speaking, a
spiral is a curve in the plane around a center point that, with a proper choice of coordi-
nates, can be placed at the origin. In [5, p. 12] we find among others the characteriza-
tion: a spiral is a curve in the plane for which the distance between a point of the curve
and its center is a monotonic function of the argument of the rotating ray connecting
the point with the center. This means that, if we introduce polar coordinates (r, ϕ) in
the plane, then a spiral is given by an equation r = f (ϕ), where f is a monotonic real
function. This definition, in general, proved rather unsatisfactory. Thus the clothoid
or spiral of Cornu (Figure 1; for the parametric representation see [10, p. 190]) does
not fit this definition. Other spirals, for example the spiral of Archimedes (its defin-
ing equation is r = aϕ for a real constant a), the logarithmic spiral (r = k exp(aϕ),
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where a and k are real constants), and also our spiral of Theodorus are covered by this
definition. Another characterization of spirals appears in [6] (see Remark 4).

In analogy with Euler’s infinite product for the gamma function, Davis [2, pp. 37–
38] proposes the product

T (x) =
∞∏

k=1

1 + i/
√

k

1 + i/
√

x + k
(−1 < x < ∞) (1)

as the parametric representation for an appropriate interpolating curve for the discrete
spiral of Theodorus, i.e., T (n) = zn for n = 0, 1, 2, . . . (see Figure 2). The infinite
product (1) is convergent (very slowly), for each term has an asymptotic representation

1 + i/
√

k

1 + i/
√

x + k
= 1 + O(k−3/2)

(see [2, p. 38]).

17

Figure 2. The discrete spiral and its interpolating curve defined by (1).

3. THE DIFFERENCE EQUATION. The function T , which Davis calls the
Theodorus function, is a particular solution of the difference equation

f (x + 1) =
(

1 + i√
x + 1

)
· f (x) (−1 < x < ∞), f (0) = 1. (2)

Equation (2) is a linear first order difference equation for the real- or complex-valued
unknown function f . Equations of this type and their nondiscrete solutions arise
very often in the literature (see for example [7], [8], [9] [11]). In particular the func-
tional equation of the gamma function is of this type: �(x + 1) = x · �(x). The
gamma function is a kind of normal solution to its equation (Nörlund [11] calls it the
“Hauptlösung”), characterized in the famous Bohr-Mollerup theorem by a logarith-
mic convexity condition (see, for instance, the nice exposition of Rudin [12]). In this
connection F. John [7] considered monotonic solutions of linear first order difference
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equations to be “normal” solutions, but his methods were different from those used
in what follows. One should also mention W. Krull’s papers [8] and [9], which Krull
himself calls “marginal notes” on the gamma function.

Davis asked for a characterization of the Theodorus function T among the various
solutions of (2), similar to the characterization of the gamma function. We provide
such a characterization here.

4. CHARACTERIZATIONS. An elementary characterization of the function T is
the following.

Lemma. The unique solution f of (2) satisfying the additional condition that

lim
n→∞

f (x + n)

f (n)
= 1 (3)

for x in (0, 1) is the Theodorus function.

Proof. For any solution of (2) and for arbitrary x in (−1,∞) and n in N we have

f (x + n) = f (x) ·
n∏

k=1

(
1 + i/

√
x + k

)
. (4)

Let f be a solution of (2) satisfying condition (3). Note that (3) holds automatically
for x = 0 and x = 1. First we show that, if (3) holds for x in (0, 1), then this condition
is also valid for all x in (−1,∞).

If x > 1, we can write x = m + y with y in [0, 1) and m in N and we infer from (4)
that

f (x + n)

f (n)
= f (y + n)

f (n)
·

m∏
k=1

(
1 + i/

√
y + n + k

)
.

Each term of this product converges to 1 as n → ∞, hence f (x + n)/ f (n) does as
well.

If −1 < x < 0, we have

f (x + n)

f (n)
= f (x + 1 + n)

f (n)
·
(

1 + i/
√

x + 1 + n
)−1

,

which also converges to 1 as n → ∞ since x + 1 belongs to (0, 1). Thus (3) holds for
all x in (−1,∞).

Finally we have

f (x + n)

f (n)
= f (x)

f (0)
·

n∏
k=1

1 + i/
√

x + k

1 + i/
√

k

for each x in (−1,∞). Because the limits of both sides of this equality exist as n → ∞
and because f (0) = 1, we arrive at the representation (1) for all x in (−1,∞).

The main result in this article gives a characterization of the Theodorus function
via monotonicity criteria. We call a function f increasing or decreasing if x < y im-
plies f (x) ≤ f (y) or f (x) ≥ f (y), respectively. The function f is said to be strictly
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increasing or strictly decreasing, respectively, if the related inequalities are strict. We
call a function monotonic, if it is either increasing or decreasing on its domain of
definition (but not necessarily strictly increasing or strictly decreasing).

Theorem 1. If f is a solution of (2) on (−1,∞) such that | f (x)| is monotonic and
arg( f (x)) is monotonic and continuous, then f is the Theodorus function.

Proof. We write equation (2) in polar coordinates. First we have

1 + i√
x + 1

= a(x) · eib(x)

with

a(x) =
∣∣∣∣1 + i√

x + 1

∣∣∣∣ =
√

x + 2

x + 1
, b(x) = π/2 − arctan

√
x + 1. (5)

Thus (2) becomes

f (x + 1) = a(x) · eib(x) · f (x) (−1 < x < ∞).

Set f (x) = ψ(x) · eiϕ(x) with real-valued functions ψ and ϕ on (−1,∞). This gives

ψ(x + 1) · eiϕ(x+1) = a(x) · ψ(x) · ei(ϕ(x)+b(x)),

hence we obtain the two equations

ψ(x + 1) = a(x) · ψ(x) (6)

and

eiϕ(x+1) = ei(ϕ(x)+b(x)).

The latter is equivalent to

ϕ(x + 1) = ϕ(x)+ b(x)+ 2πκ(x), (7)

where κ : (−1,∞) → Z.

Equation (6). The initial condition f (0) = 1 implies that ψ(0) = 1. We show that
ψ(x) = √

x + 1, which is obviously a strictly increasing solution of (6), is the unique
monotonic solution of (6) with ψ(0) = 1. For this we consider an arbitrary monotonic
solution ψ of (6) on (−1,∞). For given x in (−1,∞) and n in N we have

ψ(x + n) =
√

x + n + 1

x + 1
· ψ(x),

so ψ(n) = √
n + 1. Thus ψ has to be increasing. Let m be the smallest integer greater

than or equal to x . Then by the monotonicity of ψ we have

1 = ψ(n)

ψ(n)
≤ ψ(n + x)

ψ(n)
≤ ψ(n + m)

ψ(n)
=

√
n + m + 1

n + 1
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in the case x ≥ 0. Since the right-hand term tends to 1 as n → ∞, we conclude that

lim
n→∞

ψ(n + x)

ψ(n)
= 1. (8)

An argument similar to the one in the proof of the lemma demonstrates that (8) holds
as well when x lies in (−1, 0).

Now

ψ(x + n)

ψ(n)
=

√
x + n + 1

n + 1
· 1√

x + 1
· ψ(x).

Taking the limit of both sides of this equation as n → ∞, we obtain ψ(x) = √
x + 1,

this for each x in (−1,∞).

Equation (7). We are interested in the monotonic, continuous solutions ϕ of (7). Note
that b(x) = π/2 − arctan

(√
x + 1

)
takes values in (0, π/2), b(−1) = π/2, and b(x)

decreases to 0 as x → ∞. Equation (7) and the continuity of b and ϕ imply that the
integer-valued function κ is likewise continuous, hence it must be constant.

The initial condition f (0) = 1 implies that ϕ(0) is a multiple of 2π . Since κ is
constant and the solutions of (7) are determined up to an additive constant, we may
assume without loss of generality that κ(x) = 0 for all x in (−1,∞) and ϕ(0) = 0.

In other words, ϕ is a solution of the equation

ϕ(x + 1) = ϕ(x)+ b(x) (−1 < x < ∞), (9)

with ϕ(0) = 0. We proceed in a manner similar to what we did earlier. It is clear
from (9) and the hypotheses of Theorem 1 that ϕ has to be increasing. For x in (0, 1)
and n in N we infer from the monotonicity of ϕ that

0 ≤ ϕ(n + x)− ϕ(n) ≤ ϕ(n + 1)− ϕ(n) = b(n).

Since b(n) → 0 as n → ∞, we find as before that

lim
n→∞

[
ϕ(n + x)− ϕ(n)

] = 0

for all x in (−1,∞). We make use of the formula

ϕ(x + n)− ϕ(n) = ϕ(x)− ϕ(0)+
n−1∑
k=0

[
b(x + k)− b(k)

]
. (10)

From the expansion

arctan z = π/2 − 1/z + 1/3z3 − 1/5z5 + · · ·
for z > 1 it follows that

b(x + k)− b(k) = arctan
√

k − arctan
√

x + k

= 1√
x + k

− 1√
k

+ O(k−3/2)

= O(k−3/2).
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Thus the series
∑∞

k=0[b(x + k)− b(k)] converges, and we get

ϕ(x) = lim
n→∞

n−1∑
k=0

[
b(k)− b(x + k)

] =
∞∑

k=1

[
arctan

√
x + k − arctan

√
k
]
.

The upshot of this discussion is that

f (x) = √
x + 1 · ei

∑∞
k=1[arctan

√
x+k−arctan

√
k] (11)

furnishes the unique solution of (2) on (−1,∞) that satisfies the monotonicity hy-
potheses of Theorem 1. Since this f also satisfies (3), it follows from the lemma that
f = T , i.e., (11) and (1) represent the same function.

The continuity assumptions in Theorem 1 can be weakened in the following way:

Theorem 2. If f is a solution of (2) on (−1,∞) such that | f (x)| and arg( f (x)) are
monotonic and arg( f (n + 1)) = arg( f (n))+ arg(1 + i/

√
n + 1) for n = 0, 1, 2, . . . ,

then f is the Theodorus function.

Proof. We have again to treat equation (7) with ϕ(0) = 0. By the monotonicity
of x �→ arg( f (x)), we conclude that the arguments of the discrete points add up,
i.e., ϕ(n + 1) = ϕ(n) + b(n) for n = 0, 1, 2, . . . . This means that κ(n) = 0 for
n = 0, 1, 2, . . . .

Now for n = 0, 1, 2, . . . and for x in (0, 1) the monotonicity of ϕ ensures that

0 ≤ ϕ(n + x + 1)− ϕ(n + x) = b(n + x)+ 2πκ(n + x)

≤ ϕ(n + 2)− ϕ(n) = b(n + 1)+ b(n) < π.

Hence κ(n + x) = 0, i.e., κ(y) = 0 for all nonnegative y. The same inequality with
n = 0 implies that κ(x) = 0 for x in (−1, 0). Accordingly κ(x) = 0 for all x in
(−1,∞). The rest of the proof is completely the same as that of Theorem 1.

Remark 1. Although the series in (11) converges very slowly (each term of this sum
is O(k−3/2)), numerical experiments show that the Theodorus function T can be cal-
culated with the aid of (11) on a personal computer in a reasonable length of time and
with reasonable precision. All the data for the drawings in this paper have been calcu-
lated using the mathematical program DERIVE on the author’s desktop computer.

Remark 2. Note that any solution of (2) is a product of the function T in (1) or (11)
and a function of period 1. Thus the general solution of (2) takes the form

f (x) = √
x + 1 ·(x) · ei�(x)+∑∞

k=1 i[arctan
√

x+k−arctan
√

k], (12)

where  and � are arbitrary real-valued periodic functions on (−1,∞) of period 1.
One sees easily that the monotonicity of | f (x)| alone is not sufficient to character-

ize the Theodorus function, since (12)with(x) ≡ 1 and arbitrary� yields a solution
of (2) with monotonic | f (x)| . Similarly, one can conclude that the monotonicity of
arg( f (x)) alone does not characterize (1).
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Remark 3. It is well known that any solution of (2) is uniquely determined by pre-
scribing its values on an initial curve defined on some half-open interval of length 1,
for example, on [0, 1). For y = n + x with x in [0, 1) and n in N, the value f (y) is
then given by (4); for x in (−1, 0) the formula

f (x) = (1 + i/
√

x + 1)−1 · f (x + 1)

determines the value of f (x). These formulas are very useful for calculating the values
of the solutions of (2).

5. EXAMPLES.

Example 1. Following the prescription from Remark 3, we take as initial curve the
straight line segment from 1 to 1 + i (marked in Figure 3 by two bullets), i.e., f (x) =
1 + i x (0 ≤ x < 1). This line is transformed with increasing x to a succession of
bumps that gradually increase in size. Figure 3 shows the normal solution of (2) to-
gether with the solution defined by the line segment.

Figure 3. The initial curve is the straight line segment from 1 to 1 + i .

Example 2. As initial curve we take a loop from 1 to 1 + i , the precise description
of which we suppress (see Figure 4). This loop has the property that its derivative has
a (locally) increasing argument, making it locally curve-convex (see [1]). The picture
suggests that the whole curve is also locally curve-convex.

This example gives rise to the following:

Conjecture. There exist locally curve-convex solutions of (2) that are different
from (1).

Remark 4. Konrad Heuvers brought to the attention of the author the paper [6], which
also deals with the spiral of Theodorus. Heuvers et al. considered the functional equa-
tion for the argument of a point of the spiral as a function of its distance from the
origin. The solution is the same as (1).

ACKNOWLEDGMENT. The author thanks Phil Davis, who in a personal communication called his attention
to the problem of characterizing his spiral-interpolating function.
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Figure 4. The initial curve is a the looped curve from 1 to 1 + i .
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