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Generalized Stirling Permutations and Iteration Theory

Joint work with Wojciech Jabłoński

Harald Fripertinger
Karl-Franzens-Universität Graz

60-th ISFE, June 9–15, 2024, Kościelisko, Poland

Using generalized Stirling permutations, I will present a combinatorial
proof that a certain family of power series suggested by Wojciech
Jabłoński is indeed a two-parameter iteration group.
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Iteration Groups

K be a field of characteristic 0,
(G,∗) a group,
K[[x]] the ring of formal powerseries f (x) = ∑n≥0 anxn, an ∈K,
Γ := {g(x) ∈K[[x]] | g(x) = ∑n≥1 bnxn,},
for f ∈K[[x]], g ∈ Γ, the composition ( f ◦g) = ∑n≥0 an[g(x)]n.

An iteration group is a family (Fg(x))g∈G of elements in Γ such that

Fg∗g′(x) = (Fg ◦Fg′)(x), or F(g∗g′,x) = F(g,F(g′,x)), g,g′ ∈ G,

where F(g,x) = Fg(x). Thus it is a solution of the translation equation.

E.g. K= C and G = (C,+) was studied by L. Reich.
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Generalized Factorial

ℓ≥ 1 a positive integer,
generalized factorial

(kℓ+1)!ℓ :=
k

∏
j=0

( jℓ+1) = 1 · (ℓ+1) · · ·(kℓ+1), k ∈ Z,

if k < 0, then (kℓ+1)!ℓ = 1, the empty product,
if ℓ= 1, then (kℓ+1)!ℓ = (k+1)!.
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A non-commutative two-parameter Iteration Group

W. Jabłoński studies iteration groups where G is different from K.

ℓ≥ 1 a positive integer,
G := (K××K,⋄),

(y1,y2)⋄ (z1,z2) = (y1z1,y1z2+ y2zℓ+1
1 ), (y1,y2),(z1,z2) ∈ G

G is not commutative since ℓ+1 ≥ 2.

W.J. proves in

An explicit example of an iteration group in the ring of formal
power series, in Aequationes Mathematicae 98, Nr. 3, 837–850,
(2024)

the following theorem.
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Theorem 1

The family
(

F (ℓ)
(z1,z2)

(x)
)
(z1,z2)∈K××K

given by

F (ℓ)
(z1,z2)

(x) = ∑
n≥0

(
((n−1)ℓ+1)!ℓ

n!
· zn

2

zn−1
1

)
xnl+1, (z1,z2) ∈K××K,

(1)
is a non-commutative, two-parameter iteration group in K[[x]] if and
only if

((n−1)ℓ+1)!ℓ
(n− k)!((k−1)ℓ+1)!ℓ

= ∑
c=(c1,...,ckℓ+1)

kℓ+1

∏
j=1

((c j −1)ℓ+1)!ℓ
c j!

(2)

holds true for all n ∈ N and 0 ≤ k ≤ n, where c is a composition of
n− k, i.e. c1+ · · ·+ ckℓ+1 = n− k and all ci are non-negative integers.
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Theorem 1

The family
(

F (ℓ)
(z1,z2)

(x)
)
(z1,z2)∈K××K

given by

F (ℓ)
(z1,z2)

(x) = ∑
n≥0

(
((n−1)ℓ+1)!ℓ

n!
· zn

2

zn−1
1

)
xnl+1, (z1,z2) ∈K××K,

(1)
is a non-commutative, two-parameter iteration group in K[[x]] if and
only if

((n−1)ℓ+1)!ℓ
(n− k)!((k−1)ℓ+1)!ℓ

= ∑
c=(c1,...,ckℓ+1)

kℓ+1

∏
j=1

((c j −1)ℓ+1)!ℓ
c j!

(2)

holds true for all n ∈ N and 0 ≤ k ≤ n, where c is a composition of
n− k, i.e. c1+ · · ·+ ckℓ+1 = n− k and all ci are non-negative integers.

ℓ= 1: equation (2) is true.
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Theorem 1

The family
(

F (ℓ)
(z1,z2)

(x)
)
(z1,z2)∈K××K

given by

F (ℓ)
(z1,z2)

(x) = ∑
n≥0

(
((n−1)ℓ+1)!ℓ

n!
· zn

2

zn−1
1

)
xnl+1, (z1,z2) ∈K××K,

(1)
is a non-commutative, two-parameter iteration group in K[[x]] if and
only if

((n−1)ℓ+1)!ℓ
(n− k)!((k−1)ℓ+1)!ℓ

= ∑
c=(c1,...,ckℓ+1)

kℓ+1

∏
j=1

((c j −1)ℓ+1)!ℓ
c j!

(2)

holds true for all n ∈ N and 0 ≤ k ≤ n, where c is a composition of
n− k, i.e. c1+ · · ·+ ckℓ+1 = n− k and all ci are non-negative integers.

ℓ= 1: equation (2) is true. ℓ > 1: direct computations show that (2) is
true for any n and k = 0 or n−4 ≤ k ≤ n. (The proof for k = n−5 is
similar to but more complicated than for k = n−4.)
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Stirling Permutations

n ∈ {1,2,3, . . .}
Permutation of order n: any sequence of length n which contains each
element of {1, . . . ,n} exactly once.

E.g. for n = 3: 123, 132, 213, 231, 312, 321
for n = 0: (), the empty word
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Stirling Permutations

n ∈ {1,2,3, . . .}
Permutation of order n: any sequence of length n which contains each
element of {1, . . . ,n} exactly once.

E.g. for n = 3: 123, 132, 213, 231, 312, 321
for n = 0: (), the empty word

Stirling permutation of order n: any sequence (v1, . . . ,v2n) of length
2n which contains each element of {1, . . . ,n} exactly twice, such that
for all 1 ≤ i ≤ j ≤ k ≤ 2n if vi = vk then v j ≥ vi. Between two
occurrences of the number r ∈ {1, . . . ,n} only numbers s > r may
appear.

E.g. for n = 3: 112233, 133122, 123321, 233211, . . .
however 213312, 212133, 312213, 112331 are not Stirling
permutations.
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ℓ≥ 1 a positive integer,
ℓ-Stirling permutation of order n: any sequence (v1, . . . ,vℓn) of length
ℓn which contains each element of {1, . . . ,n} exactly ℓ times, such that
for all 1 ≤ i ≤ j ≤ k ≤ ℓn if vi = vk then v j ≥ vi. Between two
occurrences of the number r ∈ {1, . . . ,n} only numbers s ≥ r may
appear.

E.g. for ℓ= 3, n = 3: 222333111, 133312221, 333112221, 112333221,
. . .
The element n occurs always as a block of length ℓ.
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ℓ≥ 1 a positive integer,
ℓ-Stirling permutation of order n: any sequence (v1, . . . ,vℓn) of length
ℓn which contains each element of {1, . . . ,n} exactly ℓ times, such that
for all 1 ≤ i ≤ j ≤ k ≤ ℓn if vi = vk then v j ≥ vi. Between two
occurrences of the number r ∈ {1, . . . ,n} only numbers s ≥ r may
appear.

E.g. for ℓ= 3, n = 3: 222333111, 133312221, 333112221, 112333221,
. . .
The element n occurs always as a block of length ℓ.

For ℓ= 1 we obtain permutations of order n.
For ℓ= 2 we obtain Stirling-permutations of order n.
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ℓ≥ 1 a positive integer,
ℓ-Stirling permutation of order n: any sequence (v1, . . . ,vℓn) of length
ℓn which contains each element of {1, . . . ,n} exactly ℓ times, such that
for all 1 ≤ i ≤ j ≤ k ≤ ℓn if vi = vk then v j ≥ vi. Between two
occurrences of the number r ∈ {1, . . . ,n} only numbers s ≥ r may
appear.

E.g. for ℓ= 3, n = 3: 222333111, 133312221, 333112221, 112333221,
. . .
The element n occurs always as a block of length ℓ.

For ℓ= 1 we obtain permutations of order n.
For ℓ= 2 we obtain Stirling-permutations of order n.

If i+1 < k, vi = vk, and vi ̸= v j for all j ∈ {i+1, . . . ,k−1}, then
k− i = mℓ+1, where m is the number of different values occurring
between vi and vk. If there exists j ∈ {i+1, . . . ,k−1} such that
v j = s > vi, then all ℓ occurrences of s lie between vi and vk.
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Recursive construction of all ℓ-Stirling Permutations

n = 0: () only the empty word
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Recursive construction of all ℓ-Stirling Permutations

n = 0: () only the empty word

n = 1: 1ℓ := 1 . . .1, ℓ-times.
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Recursive construction of all ℓ-Stirling Permutations

n = 0: () only the empty word

n = 1: 1ℓ := 1 . . .1, ℓ-times.

n = 2: Take the only ℓ-Stirling permutation of order 1 and insert the
block 2ℓ at the beginning, or in between any two 1s or at the end of the
block 1ℓ.

2ℓ1ℓ, 12ℓ1ℓ−1, 112ℓ1ℓ−2, . . . , 1ℓ−12ℓ1, 1ℓ2ℓ.

E.g for ℓ= 4 and n = 2:
22221111, 12222111, 11222211, 11122221, 11112222
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Recursive construction of all ℓ-Stirling Permutations

n = 0: () only the empty word

n = 1: 1ℓ := 1 . . .1, ℓ-times.

n = 2: Take the only ℓ-Stirling permutation of order 1 and insert the
block 2ℓ at the beginning, or in between any two 1s or at the end of the
block 1ℓ.

2ℓ1ℓ, 12ℓ1ℓ−1, 112ℓ1ℓ−2, . . . , 1ℓ−12ℓ1, 1ℓ2ℓ.

E.g for ℓ= 4 and n = 2:
22221111, 12222111, 11222211, 11122221, 11112222

n > 2: Take any ℓ-Stirling permutation v of order n−1 and insert the
block nℓ at the beginning, or in between any two entries of v or at the
end of v. They all will be pairwise different and each ℓ-Stirling
permutation v of order n can be obtained in this way.
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Theorem 2
The number of ℓ-Stirling permutations of order n is

n−1

∏
j=0

( jℓ+1) = ((n−1)ℓ+1)!ℓ.

For n = 0,1 the formula is true. By the induction hypothesis the number
of ℓ-Stirling permutations of order n−1 is ((n−2)ℓ+1)!ℓ. The block nℓ

can be inserted in (n−1)ℓ+1 ways.
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Theorem 2
The number of ℓ-Stirling permutations of order n is

n−1

∏
j=0

( jℓ+1) = ((n−1)ℓ+1)!ℓ.

For n = 0,1 the formula is true. By the induction hypothesis the number
of ℓ-Stirling permutations of order n−1 is ((n−2)ℓ+1)!ℓ. The block nℓ

can be inserted in (n−1)ℓ+1 ways.

On any totally ordered set we can construct ℓ-Stirling permutations, e.g.
on subsets A of {1, . . . ,n}. Let S(ℓ)(A) be the set of all ℓ-Stirling
permutations with entries from A. Then

|S(ℓ)(A)|= ((|A|−1)ℓ+1)!ℓ.
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Combinatorial Proof of (2)

(2) is equivalent to

((n−1)ℓ+1)!ℓ = (n− k)!((k−1)ℓ+1)!ℓ∑
c

kℓ+1

∏
j=1

((c j −1)ℓ+1)!ℓ
c j!

= ((k−1)ℓ+1)!ℓ∑
c

(
n− k

c1 . . .ckℓ+1

) kℓ+1

∏
j=1

((c j −1)ℓ+1)!ℓ.
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Combinatorial Proof of (2)

(2) is equivalent to

((n−1)ℓ+1)!ℓ = (n− k)!((k−1)ℓ+1)!ℓ∑
c

kℓ+1

∏
j=1

((c j −1)ℓ+1)!ℓ
c j!

= ((k−1)ℓ+1)!ℓ∑
c

(
n− k

c1 . . .ckℓ+1

) kℓ+1

∏
j=1

((c j −1)ℓ+1)!ℓ. (3)

Let

A = {(A1, . . . ,Akℓ+1) | A j ⊆ {k+1, . . . ,n},
kℓ+1

.⋃
j=1

A j = {k+1, . . . ,n}}.

We show that∣∣∣S(ℓ)({1, . . . ,n})
∣∣∣=

∣∣∣∣∣∣ .⋃
(A1,...,Akℓ+1)∈A

S(ℓ)({1, . . . ,k})×
kℓ+1

∏
j=1

S(ℓ)(A j)

∣∣∣∣∣∣ .
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Φ:S(ℓ)({1, . . . ,n})→ .⋃
A=(A1,...,Akℓ+1)∈A

S(ℓ)({1, . . . ,k})×{A}×
kℓ+1

∏
j=1

S(ℓ)(A j)

Φ(v) = (v ↓{1,...,k},(A1, . . . ,Akℓ+1),(v ↓A1, . . . ,v ↓Akℓ+1).

The restriction v′ := v ↓{1,...,k} belongs to S(ℓ)({1, . . . ,k}). It consists of all
entries of v which are ≤ k.
A1 is the set of elements of v occurring in front of the first element of v′.
A2 is the set of elements of v occurring between the first and second
element of v′.
Akℓ+1 is the set of elements of v occurring after the last element of v′.

The subsequence of v occurring in front of the first element of v′ is an
ℓ-Stirling permutation, thus it belongs to S(ℓ)(A1).
The subsequence of v occurring between the first and second element
of v′ is an element of S(ℓ)(A2).
The subsequence of v occurring after the last element of v′ is an
element of S(ℓ)(Akℓ+1).
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For example ℓ= 3, n = 5, k = 2.

v = 555222113344431.

Then v′ = v ↓{1,2}=222111.

A1 = {5}, A2 = A3 = A4 = A5 = /0, A6 = {3,4}, A7 = /0.

The Ai are pairwise disjoint, and their union gives {3,4,5}.

v ↓A1= 555, v ↓A6= 334443, v ↓A j= () for j ∈ {2,3,4,5,7}.

Thus Φ(v) =(
222111,

(
{5}, /0, /0, /0, /0,{3,4}, /0

)
,
(
555,(),(),(),(),334443,()

))
.
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We show that Φ is bijective by proving that Ψ is its inverse.

Ψ: .⋃
A=(A1,...,Akℓ+1)∈A

S(ℓ)({1, . . . ,k})×{A}×
kℓ+1

∏
j=1

S(ℓ)(A j)→ S(ℓ)({1, . . . ,n})

Ψ
(
w1 . . .wkℓ,(A1, . . . ,Akℓ+1),(z1, . . . ,zkℓ+1)

)
is the concatenation of

z1∥w1∥z2∥w2∥ . . .∥zkℓ∥wkℓ∥zkℓ+1. (4)

By construction each element of {1, . . . ,n} occurs exactly ℓ times in (4).
r > k: there exists exactly one j so that r ∈ A j. Between two
occurrences of r in z j only numbers ≥ r appear, since z j ∈ S(ℓ)(A j).
r ≤ k: If s < r, then all occurrences of r and s lie in w1 . . .wkℓ, hence no s
occurs between two occurrences of r.
Ψ is well defined.
Φ◦Ψ = id and Ψ◦Φ = id.
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((n−1)ℓ+1)!ℓ =
∣∣∣S(ℓ)({1, . . . ,n})

∣∣∣
=

∣∣∣∣∣∣ .⋃
(A1,...,Akℓ+1)∈A

S(ℓ)({1, . . . ,k})×
kℓ+1

∏
j=1

S(ℓ)(A j)

∣∣∣∣∣∣
= ∑

(A1,...,Akℓ+1)∈A

∣∣∣S(ℓ)({1, . . . ,k})
∣∣∣ kℓ+1

∏
j=1

∣∣∣S(ℓ)(A j)
∣∣∣

= ((k−1)ℓ+1)!ℓ∑
c

(
n− k

c1 . . .ckℓ+1

) kℓ+1

∏
j=1

((c j −1)ℓ+1)!ℓ

where the sum is taken over all compositions c = (c1, . . . ,ckℓ+1) of n− k
into kℓ+1 summands, since

|{(A1, . . . ,Akℓ) ∈ A : |A j|= c j, j = 1, . . . ,kℓ+1}|=
(

n− k
c1 . . .ckℓ+1

)
and (3) is established.
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