Generalized Stirling Permutations and lteration Theory

Joint work with Wojciech Jabtonski

Harald Fripertinger
Karl-Franzens-Universitat Graz
60-th ISFE, June 9—15, 2024, KoScielisko, Poland

Using generalized Stirling permutations, | will present a combinatorial
proof that a certain family of power series suggested by Wojciech
Jabtonski is indeed a two-parameter iteration group.
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Iteration Groups

K be a field of characteristic 0,
(G, *) a group,
K{[x]] the ring of formal powerseries f(x) =Y ,>¢anXx", a, € K,

= {g(x) e K[x]] [ g(x) = Xy>1bnx", ]
for f € K|x]], g € I', the composition (fog) =Y. ,>0an/8(x)]".

An iteration group is a family (F,(x)).cc of elements in I" such that
Fop(x) = (F;oFy)(x), or F(gxg',x) =F(g,F(¢,x)), g¢& €@,

where F(g,x) = F,(x). Thus it is a solution of the translation equation.

E.g. K=Cand G = (C,+) was studied by L. Reich.
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Generalized Factorial

¢ > 1 a positive integer,
| generalized factorial

' k

| (kKe+ 1) =]]Gl+1)=1-(L+1)--- (kl+1),

J=0
|

if k <0, then (k/+1)!, = 1, the empty product,
L if¢=1,then (k+1)!y = (k+1)!.

keZ,
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A non-commutative two-parameter Iteration Group

W. Jabtonski studies iteration groups where G is different from K.

¢ > 1 a positive integer,
G .= (K*xK, o),

()’17)’2) % (Z1722) — (Y121,Y122 —|-)’2Zf+1), (Yh)’z)a (ZbZz) cG

G is not commutative since ¢ +1 > 2.

W.J. proves in

An explicit example of an iteration group in the ring of formal
power series, in Aequationes Mathematicae 98, Nr. 3, 837-850,
(2024)

the following theorem.
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Theorem 1

The family (F@

' b
(21722) (X)) (Zl,ZQ)EKX <K glven y

FO(x) = y (((n— D+ Dy z )xnl—l—I’ (21,22) € KX X K,

n—1
n>0
(1)

n! 7y
is a non-commutative, two-parameter iteration group in K|x] if and
only if
(n=1)+1)ty y kﬁl ((c;—1)L41)1,
(n—k)((k—=1e+1), - c;!

(2)

holds true for all n € N and 0 < k < n, where c is a composition of
n—k,i.e.ci+---+cwr1 =n—kand all ¢c; are non-negative integers.
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Theorem 1

The family (F@

' b
(21722) (X)) (Zl,ZQ)EKX <K glven y

FO(x) = y (((n— D+ Dy z )xnl—l—I’ (21,22) € KX X K,

n—1
n>0
(1)

n! 7y
is a non-commutative, two-parameter iteration group in K|x] if and
only if
(n=1)+1)ty y kﬁl ((c;—1)L41)1,
(n—k)((k—=1e+1), - c;!

(2)

holds true for all n € N and 0 < k < n, where c is a composition of
n—k,i.e.ci+---+cwr1 =n—kand all ¢c; are non-negative integers.

¢ = 1: equation (2) is true.
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Theorem 1
. (0) .
The family (F(Zm) (x)) A given by

— 1 1)! A
F(E) (x) — Z (((n )'€_|_ ) 14 . 531 ) an_l, (Zl;ZZ) c K> % K,
n>0 n: 2]
(1)

is a non-commutative, two-parameter iteration group in K|x] if and
only if

(n—=1)e+1)1y KA ((c;— 1D+ 1),
(n—k)'((k—l)ﬁ—l—l)'g _C—(C1;Ckg+1)jl:ll Cj! (2)

holds true for all n € N and 0 < k < n, where c is a composition of
n—k,i.e.ci+---+cwr1 =n—kand all ¢c; are non-negative integers.

¢ = 1: equation (2) is true. ¢ > 1: direct computations show that (2) is
true foranynandk=0orn—4 <k <n. (The prooffork=n—35is
similar to but more complicated than for k =n —4.)
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Stirling Permutations

ne{1,2,3,...}
Permutation of order n: any sequence of length n which contains each

element of {1,...,n} exactly once.

E.g. forn=3: 123, 132, 213, 231, 312, 321
for n = 0: (), the empty word
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Stirling Permutations

ned{l,2,3,...}
Permutation of order n: any sequence of length n which contains each
element of {1,...,n} exactly once.

E.g. forn = 3: 123, 132, 213, 231, 312, 321
for n = 0: (), the empty word

Stirling permutation of order n: any sequence (vy,...,v,,) of length
2n which contains each element of {1,...,n} exactly twice, such that
foralll <i< j<k<2nifv,=v; thenv;> v, Between two
occurrences of the number » € {1,...,n} only numbers s > r may
appear.

E.g. forn = 3: 112233, 133122, 123321, 233211, ...
however 213312, 212133, 312213, 112331 are not Stirling
permutations.
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¢ > 1 a positive integer,

¢-Stirling permutation of order n: any sequence (vy,...,vy,) of length
¢n which contains each element of {1,...,n} exactly ¢ times, such that
foralll <i<j<k</nifv,=v,thenv; > v, Between two
occurrences of the number r € {1,...,n} only numbers s > r may
appear.

E.g. for { =3, n=3:222333111, 133312221, 333112221, 112333221,

The element n occurs always as a block of length /.
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¢ > 1 a positive integer,

¢-Stirling permutation of order n: any sequence (vy,...,vy,) of length
¢n which contains each element of {1,...,n} exactly ¢ times, such that
foralll <i<j<k</nifv,=v,thenv; > v, Between two
occurrences of the number r € {1,...,n} only numbers s > r may
appear.

E.g. for { =3, n=3:222333111, 133312221, 333112221, 112333221,

The element n occurs always as a block of length /.

For ¢ = 1 we obtain permutations of order n.
For ¢ = 2 we obtain Stirling-permutations of order n.
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¢ > 1 a positive integer,

¢-Stirling permutation of order n: any sequence (vy,...,vy,) of length
¢n which contains each element of {1,...,n} exactly ¢ times, such that
foralll <i<j<k</nifv,=v,thenv; > v, Between two
occurrences of the number r € {1,...,n} only numbers s > r may
appear.

E.g. for { =3, n=3:222333111, 133312221, 333112221, 112333221,

The element n occurs always as a block of length /.

For ¢ = 1 we obtain permutations of order n.
For ¢ = 2 we obtain Stirling-permutations of order n.

fi+1 <k, vi=w,andv;#v;forall je{i+1,...,k— 1}, then
k—i=ml+ 1, where m is the number of different values occurring
between v; and v;. If there exists j € {i+1,...,k— 1} such that
vi=s > v;, then all £ occurrences of s lie between v; and vy.
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Recursive construction of all /-Stirling Permutations

n=0: () only the empty word
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Recursive construction of all /-Stirling Permutations

n=0: () only the empty word

n=1:1:=1...1, ¢-times.
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Recursive construction of all /-Stirling Permutations

n = 0: () only the empty word

n=1:1¢:=1...1, ¢-times.
|

n = 2: Take the only ¢-Stirling permutation of order 1 and insert the
' block 2¢ at the beginning, or in between any two 1s or at the end of the

| block 1°.

| 2016, 1241 1128162, ... 171201, 1922,
| E.gfor/{ =4 and n = 2:

22221111, 12222111, 11222211, 11122221, 11112222
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Recursive construction of all /-Stirling Permutations

n=0: () only the empty word
n=1:1:=1...1, ¢-times.

n = 2: Take the only ¢-Stirling permutation of order 1 and insert the
block 2¢ at the beginning, or in between any two 1s or at the end of the
block 1°.

2016, 1241 1128162, ... 171201, 1922,
E.gfor/{ =4 and n = 2:
22221111, 12222111, 11222211, 11122221, 11112222

n > 2: Take any /¢-Stirling permutation v of order n — 1 and insert the
block n’ at the beginning, or in between any two entries of v or at the
end of v. They all will be pairwise different and each ¢-Stirling
permutation v of order n can be obtained in this way.
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Theorem 2
The number of £-Stirling permutations of order n is

n—1

[JG+1) = ((n—1)e+1)

j=0

For n =0, 1 the formula is true. By the induction hypothesis the number
of ¢-Stirling permutations of order n — 1 is ((n —2)¢+1)!,. The block n*
can be inserted in (n — 1)/ + 1 ways.
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Theorem 2
The number of £-Stirling permutations of order n is

n—1

[JG+1) = ((n—1)e+1)

J=0

For n =0, 1 the formula is true. By the induction hypothesis the number
of ¢-Stirling permutations of order n — 1 is ((n —2)¢+1)!,. The block n*
can be inserted in (n — 1)/ + 1 ways.

On any totally ordered set we can construct /-Stirling permutations, e.qg.
on subsets A of {1,...,n}. Let S*(A) be the set of all ¢-Stirling
permutations with entries from A. Then

SU(A)] = ((A] - 1)+ 1)L
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Combinatorial Proof of (2)

(2) is equivalent to

(n=1)l+1) = (n—k)!((k=1)+1)! gzkﬁl _”“)
]
n—k kl+1
e ==y (" F ) [T e 1t
BK

d 8
o = @ )
g S ® W
= 1]
= o = QO
§ B S
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Combinatorial Proof of (2)

(2) is equivalent to

(n—1)e+1)l =

(n—k) (k= 1)+ 1Y T]

L ((c;— 1)+ 1)y

b
¢ j=1 o

= ((k=1)+1)! ) <C ok )kﬁ((cj— 10+ 1)1,

Let

o ={(A1,....Au1) |A; C{k+1,...n}, [ JA;={k+1,...,n}}.
j=1

We show that

S(€>({1,...,n})‘

.....

- Cht+1/) =g

ki+1

k(+1

SOUL,... k}) x HS“)(AJ-) .

(3)
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k{+1

®:8Y({1,...,n}) = ) SO(1,... k}) x {4} x TT s

S(V) =il a At Argr), (Va5 v dag,,)-
The restriction v/ := v |1, _ 4 belongs to SY({1,...,k}). It consists of all
entries of v which are <k.
A1 is the set of elements of v occurring in front of the first element of v'.
A is the set of elements of v occurring between the first and second
element of V'
A4t is the set of elements of v occurring after the last element of V'

The subsequence of v occurring in front of the first element of V' is an
¢-Stirling permutation, thus it belongs to S (4,).

The subsequence of v occurring between the first and second element
of v/ is an element of S)(4,).

The subsequence of v occurring after the last element of V' is an
element of S (Ages1).
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Forexample { =3, n=15, k=2.

v = 555222113344431.

Thenv =v ¢{1,2}22221 11.
Al ={5}, Ay =A3=As=As =0, Ag = {3,4}, A, = 0.
The A; are pairwise disjoint, and their union gives {3,4,5}.

v bay= 555, v La,= 334443, v | = () for j € {2,3,4,5,7}.

|
Thus ®(v) =

(222111, ({5},0,0,0,0,{3,4},0), (555,(), (), (), (), 334443, ())).
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We show that & is bijective by proving that W is its inverse.

k(+1

N ) SO, kY) x {A} x HS(E)(AJ-)%Sw)({l,...,n})

A:(Al,...,Akg_H)E%

\P(Wl e o e Wiy, (Ah R 7Ak€—|—1)7 (Zh <o 7Zk€—|—1))
IS the concatenation of

z1[[wallzallwall - - lzeellwael|zes - (4)

By construction each element of {1,...,n} occurs exactly ¢ times in (4).
r > k: there exists exactly one j so that r € A;. Between two
occurrences of r in z; only numbers > r appear, since z; € S(0) (A/).

r <k:If s <r, then all occurrences of r and s lie in w;...wyy, hence no s
occurs between two occurrences of r.

¥ is well defined.

PoV¥ =id and Yo P = id.
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kl+1
. o SY{L. ) < [TSY@))
(A1, Agpy1) €A i=1
k{+1
- Y Lsuw({1, ﬂk})|]fl:yguvc4])‘
(Al ..... Akﬁ+1)€£f =1
n—k kl+1
= ((k—1)¢+1)! ( ) e D+ 1)
CITERIS ¥ (R | § CCRRIERIY

where the sum is taken over all compositions ¢ = (cy,...,cxv1) Of n—k
into k¢ + 1 summands, since

: n—=k
\{(Al,...jAkaevef:|Aj\=c]-7J=1,...,kz+1}r=( )

Cl ... Ckitl

and (3) is established.
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