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Abstract

In the constructive theory of linear codes, we can restrict attention to
the isometry classes of indecomposable codes, as it was shown by Slepian.
We describe these classes as orbits and we demonstrate how they can be
enumerated using cycle index polynomials and the tools already incorpo-
rated in SYMMETRICA, a computer algebra package devoted to repre-
sentation theory and combinatorics of symmetric groups and of related
classes of groups. Moreover, we describe how systems of representatives
of these classes can be evaluated using double coset methods.

1 Notation

Suppose we are given a permutation group G on a set X. It induces inter-
esting structures both on X and on G that are closely related (for more de-
tails cf. [7]). To begin with, there are the orbits of the elements x ∈ X:
G(x): = {gx | g ∈ G} ⊆ X, two of which are either identical or disjoint. There-
fore, the set

G\\X: = {G(x) | x ∈ X} .
of all the orbits is a set-partition of X. To the orbits there correspond the
stabilizers (which are in fact subgroups): Gx := {g ∈ G | gx = x}, and the
close relationship between orbits and stabilizers is the existence of the following
natural bijection between an orbit of an element and the set of left cosets of its
stabilizer:

G(x)→ G/Gx, gx 7→ gGx.

The cycle index of G is the following polynomial Z(G) in the indeterminates
x1, x2, . . . , x|X| over IQ, defined by

Z(G) :=
1
|G|

∑
g∈G

|X|∏
i=1

x
ai(g)
i ,

where (a1(g), . . . , a|X|(g)) is the cycle type of the permutation g ∈ G. This
means, g decomposes into ai(g) disjoint cycles of length i for i = 1, . . . , |X|. All
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elements of a conjugacy class have the same cycle type, so the cycle index can
be computed in the following way:

Z(G) =
1
|G|

∑
C∈C
|C|
|X|∏
i=1

x
ai(gC)
i , (1)

where C is the system of conjugacy classes of G and where gC is a representative
of the conjugacy class C.
Let G and H denote permutation groups on X and Y , respectively. The wreath
product H oX G is a permutation group on the set Y X := {f :X → Y }, defined
by

H oX G := HX ×G = {(ψ, g) | ψ ∈ HX , g ∈ G}

with multiplication (ψ, g)(ψ′, g′) = (ψψ′g, gg
′), where ψψ′g(x) := ψ(x)ψ′g(x) and

ψ′g(x) := ψ′(g−1x). In the case when G ≤ Sn and X = n := {0, 1, . . . , n − 1}
we write H oG instead of H on G.
The wreath product H oX G acts in a natural way on Y X . The effect of the
permutation (ψ, g) ∈ H oX G on f ∈ Y X is

(ψ, g)(f) =: f̃ , where f̃(x) = ψ(g)f(g−1x). (2)

The following lemma ([10, 9]) reduces the action of a wreath product to the
action of the group G on the set of all functions from X into the set of all orbits
of H on Y :

1.1 Lehmann’s Lemma: If G and H denote permutation groups on X and
Y , respectively, then G acts on (H\\Y )X in the following way:

g(f) := f ◦ g−1.

Moreover, the mapping

Φ:H oX G\\Y X → G\\(H\\Y )X , (H oX G(f)) 7→ G(F )

is a bijection if F ∈ (H\\Y )X is given by F (x) = H(f(x)).
There are many enumerative and constructive results dealing with various group
actions on the set Y X induced by permutation groups on the domain X and on
the range Y . For example, Sn ×H acts upon Y n by

(π, h)(f) := h ◦ f ◦ π−1.

The corresponding generating function for the numbers of Sn×H-orbits on Y n

is given by (see [1]):

∞∑
n=0

|(Sn ×H)\\Y n|xn = Z(H)
∣∣
xi=
∑∞

j=0
xij = Z(H)

∣∣
xi=

1
1−xi

. (3)
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The group action of above can be restricted to the set of all injective mappings
from n to Y , the corresponding generating function is

∞∑
n=0

∣∣(Sn ×H)\\Y ninj

∣∣xn = Z(H)
∣∣
xi=1+xi . (4)

2 Isometry classes of linear codes

A linear (n, k)-code over the Galois field GF (q) is a k-dimensional subspace
of the vector space Y X := GF (q)n. As usual codewords will be written as
rows x = (x0, . . . , xn−1). A k × n-matrix Γ over GF (q) is called a generator
matrix of the linear (n, k)-code C, if and only if the rows of Γ form a basis of
C, so that C = {x · Γ | x ∈ GF (q)k}. Two linear (n, k)-codes C1, C2 are called
equivalent , if and only if there is an isometry (with respect to the Hamming
metric) which maps C1 onto C2. Using the notion of finite group actions one
can easily express equivalence of codes in terms of the wreath product action
introduced above: C1 and C2 are equivalent, if and only if there exist (ψ, π) ∈
GF (q)∗ oSn (where GF (q)∗ denotes the multiplicative group of the Galois field)
such that (ψ, π)(C1) = C2.
The complete monomial group GF (q)∗ o Sn of degree n over GF (q)∗ acts on
GF (q)n as it was described above (see equation (2)) in the more general case of
H oX G on Y X :

(ψ, π)(f)(x) = ψ(x)f(π−1x). (5)

In order to apply the results of the theory of finite group actions, this equiv-
alence relation for linear (n, k)-codes is translated into an equivalence relation
for generator matrices of linear codes, and these generator matrices are consid-
ered to be functions Γ:n → GF (q)k \ {0} where Γ(i) is the i-th column of the
generator matrix Γ. (We exclude 0-columns for obvious reasons.)

2.1 Theorem The matrices corresponding to the two functions Γ1 and Γ2 from
n to GF (q)k \ {0} are generator matrices of two equivalent codes, if and only if
Γ1 and Γ2 lie in the same orbit of the following action of GLk(q)×GF (q)∗ oSn
as permutation group on (GF (q)k \ {0})n:

(A, (ψ, π))(Γ) = Aψ(·)Γ(π−1·),

or, more explicitly,

(A, (ψ, π))(Γ)(i) := Aψ(i)Γ(π−1(i)).

Following Slepian, we use the following notation:

Tnkq := the number of orbits of functions Γ:n→ GF (q)k \{0} under the group
action of 2.1, i.e. Tnkq =

∣∣(GLk(q)×GF (q)∗ o Sn)\\(GF (q)k \ {0})n
∣∣.
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T̄nkq := the number of orbits of functions Γ:n→ GF (q)k \{0} under the group
action of 2.1, such that for all i, j ∈ n, i 6= j and all α ∈ GF (q)∗ the value
of Γ(i) is different from αΓ(j). (In the case q = 2, this is the number of
injective functions G.)

Snkq := the number of equivalence classes of linear (n, k)-codes over GF (q)
with no columns of zeros. (A linear (n, k)-code has columns of zeros, if
and only if there is some i ∈ n such that xi = 0 for all codewords x, and
so we should exclude such columns.)

S̄nkq := the number of classes of injective linear (n, k)-codes over GF (q) with
no columns of zeros. (A linear (n, k)-code is called injective, if and only if
for all i, j ∈ n, i 6= j and α ∈ GF (q)∗ there is some codeword x such that
xi 6= αxj .)

Rnkq := the number of classes of indecomposable linear (n, k)-codes over GF (q)
with no columns of zeros. (The definition of an indecomposable code will
be given later.)

R̄nkq := the number of classes of indecomposable, injective linear (n, k)-codes
over GF (q) with no columns of zeros.

Wnkq := be the number of classes of linear (n, k)-codes overGF (q) with columns
of zeros allowed.

The following formulae hold:

Wnkq =
n∑
i=k

Sikq, Snkq = Tnkq − Tn,k−1,q, S̄nkq = T̄nkq − T̄n,k−1,q. (6)

As initial values we have Sn1q = 1 for n ∈ IN, S̄11q = 1 and S̄n1q = 0 for n > 1.
It is important to realize that

• Tnkq is the number of orbits of functions from n to GF (q)k \ {0} without
any restrictions on the rank of the induced matrix.

• All matrices which are induced from functions Γ of the same orbit have
the same rank.

• The number of orbits of functions Γ which induce matrices of rank less or
equal k − 1 is Tn,k−1,q. (This proposition holds for T̄nkq as well.)

In the next section we will show that the Rnkq or R̄nkq can be computed from
the Snkq or S̄nkq respectively, so the main problem is the computation of the
Tnkq or T̄nkq.
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In the case q = 2 the wreath product GF (q)∗ o Sn becomes the group Sn, and
so there is the group GLk(2) acting on GF (2)k \ {0} and the symmetric group
Sn acting on n. Applying the formulae (3) and (4) we get

∞∑
n=0

Tnk2x
n = Z(GLk(2))

∣∣
xi=
∑∞

j=0
xij = Z(GLk(2))

∣∣
xi=

1
1−xi

(7)

and
∞∑
n=0

T̄nk2x
n = Z(GLk(2))

∣∣
xi=1+xi . (8)

In the case q 6= 2 the wreath product GF (q)∗ oSn acts both on range and domain
of the functions Γ. Applying Lehmann’s Lemma 1.1 there is the bijection

Φ:GF (q)∗ o Sn\\(GF (q)k \ {0})n → Sn\\
(
GF (q)∗\\(GF (q)k \ {0})

)n
,

GF (q)∗ o Sn(Γ) 7→ Sn(Γ̄)

where
Γ̄:n→ GF (q)∗\\(GF (q)k \ {0}), i 7→ GF (q)∗(Γ(i))

and Sn acts on
(
GF (q)∗\\(GF (q)k \ {0})

)n by π(Γ̄) = Γ̄ ◦ π−1. Using this
bijection we have to investigate the following action of Sn ×GLk(q):

(π,A)(Γ̄) = AΓ̄π−1,

where GLk(q) acts on GF (q)∗\\(GF (q)k\{0}) by A(GF (q)∗(v)) = GF (q)∗(Av).
The set of the GF (q)∗-orbits GF (q)∗\\(GF (q)k \{0}) is the (k−1)-dimensional
projective space:

GF (q)∗\\GF (q)k = PGk−1(q)

and the representation of GLk(q) as a permutation group is the projective linear
group PGLk(q).
This proves in fact the following to be true:

2.2 Theorem The isometry classes of linear (n, k)-codes over GF (q) are the
orbits of GLk(q) × Sn on the set of mappings PGk−1(q)n. This set of orbits
is equal to the set of orbits of GLk(q) on the set Sn\\PGk−1(q)n, which can be
represented by a complete set of mappings of different content, if the content
of f ∈ PGk−1(q)n is defined to be the sequence of orders of inverse images
|f−1(x)|.
Thus the set of isometry classes of linear (n, k)-codes over GF (q) is equal to
the set of orbits of GLk(q) on the set of mappings f ∈ PGk−1(q) of different
content that form k × n-matrices of rank k.
The particular classes of elements with orders of inverse images |f−1(x)| ≤ 1
are the classes consisting of Hamming codes.
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Knowing the cycle index of PGLk(q) acting on PGk−1(q) the equations (3) and
(4) can be applied again.
In [13] Slepian explained how the cycle index of GLk(2) can be computed using
results of Elspas [3]. The first author [4] generalized this concept for comput-
ing the cycle indices of GLk(q) and PGLk(q) acting on GF (q)k or PGk−1(q)
respectively. The steps of the method used were the following ones:

1. Determination of the conjugacy classes of GLk(q) by applying the theory
of normal forms of matrices (or vector space endomorphisms). This theory
can be found in many textbooks of algebra.

2. Determination of the order of the conjugacy classes, which can be found
in Dickson, Green or Kung [2, 5, 8].

3. Determination of the cycle type of a linear map or of a projectivity respec-
tively. Since normal forms of regular matrices are strongly connected with
companion and hypercompanion matrices (see [6]) of monic, irreducible
polynomials over GF (q) it is important to know the exponent or subexpo-
nent of such polynomials (see [11, 6]). The exponent of such a polynomial
f(x) ∈ GF (q)[x] is defined to be

exp(f(x)) := min {n ∈ IN | f(x) | xn − 1}

and the subexponent is

subexp(f(x)) := min {n ∈ IN | ∃α ∈ GF (q)∗ : f(x) | xn − α} .

This element α ∈ F ∗q is uniquely defined, and it is called the integral
element of f(x). The exponent of f(x) can be used to compute the cycle
type of the companion or hypercompanion matrices of a monic, irreducible
polynomial f(x), and by a direct product formula for cycle indices the
cycle types of the normal forms in GL(k, Fq) can be derived. Using the
subexponent of f(x) and defining a formula similar to the direct product
formula of cycle indices, which depends on the integral element of f(x) as
well, the cycle type of a projectivity can be computed.

4. Determination of the cycle index by applying formula (1).

These cycle indices are now available in the computer algebra package SYM-
METRICA. Tables obtained this way are shown lower down.

3 Indecomposability

In order to minimize the number of orbits that must be enumerated or repre-
sented, and following Slepian again, we can restrict attention to indecomposable
linear (n, k)-codes. Let C1 be a linear (n1, k1)-code over GF (q) with generator
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matrix Γ1 and let C2 be a linear (n2, k2)-code over GF (q) with generator matrix
Γ2, then the code C with generator matrix

Γ :=
(

Γ1 0
0 Γ2

)
is called the direct sum of the codes C1 and C2, and it will be denoted by
C = C1 ⊕ C2. A code C is called decomposable, if and only if it is equivalent
to a code which is the direct sum of two or more linear codes. Otherwise it is
called indecomposable.
In [13] Slepian proves that every decomposable linear (n, k)-code is equiva-
lent to a direct sum of indecomposable codes, and that this decomposition is
unique up to equivalence and order of the summands. Slepian used a gen-
erating function scheme for computing the numbers Rnk2 and R̄nk2. However
after constructing these codes the authors realized that in some situations this
formula doesn’t work correctly. For that reason we are giving another formula
to determine the numbers Rnkq and R̄nkq. For the rest of this section let n ≥ 2.

3.1 Theorem The number Rnkq is equal to

Snkq −
∑
a

∑
b

n−1∏
j=1

aj 6=0


∑

c=(c1,...,caj
)∈IN

aj

j≥c1≥...≥caj
≥1,
∑

ci=bj

U(j, a, c)

 ,

where

U(j, a, c) =
j∏
i=1

Z(Sν(i,aj ,c))
∣∣
x`=Rjiq

, ν(i, aj , c) = |{1 ≤ l ≤ aj | cl = i}| ,

and where the first sum is taken over the cycle types a = (a1, . . . , an−1) of n,
(which means that ai ∈ IN0 and

∑
iai = n) such that

∑
ai ≤ k, while the

second sum is over the (n − 1)-tuples b = (b1, . . . , bn−1) ∈ INn−1
0 , for which

ai ≤ bi ≤ iai, and
∑
bi = k. In the same way the R̄nkq can be computed from

the S̄nkq. The numerical results show that for fixed q and n the sequence of
Rnkq is unimodal and symmetric. (It is easy to prove that this sequence must
be symmetric, but the proof of the unimodality is still open.)
Proof: In order to evaluate the values Rnkq the number of all classes of decom-
posable linear (n, k)-codes must be subtracted from Snkq. In other words one
has to find all possibilities of decomposing a linear (n, k)-code into a direct sum
of indecomposable linear (ni, ki)-codes such that

l∑
i=1

ni = n,

l∑
i=1

ki = k, 1 ≤ ki ≤ ni, 2 ≤ l ≤ k. (9)
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According to Slepians theorem the (ni, ki)-codes can be arranged such that
n1 ≥ n2 ≥ . . . ≥ nl and in the case that ni = ni+1 the inequality ki ≥ ki+1 holds.
At first all partitions of n into at least two parts and into at most k parts must be
found. Let n = n1 +n2 + . . .+nl be such a partition with ni ≥ 1 and 2 ≤ l ≤ k.
Then the cycle type of λ is (a1, a2, . . . , an−1), where ai = |{1 ≤ j ≤ l | nj = i}|.
Two decomposable codes which determine two different partitions of n are not
equivalent. In the second step to each partition of n one has to find all sequences
(k1, . . . , kl) such that (9) is fulfilled, and such that codes belonging to different
sequences are not equivalent. In order to do this we start with such a sequence
(k1, . . . , kl) and define

bi :=
∑
j:nj=i

kj ,

then
n−1∑
i=1

bi =
l∑
i=1

ki = k and ai ≤ bi ≤ iai.

Two decomposable codes which on the one hand belong to one partition of
n but on the other hand define two different vectors b and b′ are not in the
same equivalence class. Now the other way round we start with a sequence
(b1, . . . , bn−1) and try to determine all sequences (k1, . . . , kl) which define non
equivalent codes such that bi =

∑
j:nj=i

kj . Again by Slepian’s theorem we
must find all partitions of bj 6= 0 (this implies aj 6= 0) into exacyly aj parts of
the form

bj =
aj∑
i=1

ci, j ≥ c1 ≥ . . . ≥ caj ≥ 1.

In the last step U(j, a, c) must be evaluated. This is the the number of classes
of linear (j ·aj , bj)-codes, which have a decomposition into a direct sum of inde-
composable (j, ci)-codes for 1 ≤ i ≤ aj to a given partition c of bj into exactly aj
parts. We already know that there are Rj,ci,q classes of indecomposable linear
(j, ci)-codes. In the case that all the ci are distinct, this number is given by

aj∏
i=1

Rj,ci,q.

Otherwise there exist i, l such that i < l and ci = cl. Then ci = ci+1 = . . . = cl
and permuting the corresponding summands in the direct sum may lead to
equivalent codes. For 1 ≤ i ≤ j let ν(i) = ν(i, aj , c) be the cardinality of
{t | ct = i}. Now there is a bijection between the classes of codes, which are a
direct sum of ν(i) (j, i)-codes and the orbits of the symmetric group Sν(i) on
the set of all mappings from ν(i) into a set of Rjiq elements, where the action
of Sν(i) is given by:

Sν(i) ×Rjiqν(i) → Rjiq
ν(i), (π, f) 7→ f ◦ π−1.
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By Pólyas theorem [12] one has to compute the cycle index Sν(i) and each
variable must be substituted by Rjiq. Doing this for all possible values of i we
get

U(j, a, c) =
j∏
i=1

Z(Sν(i))
∣∣
x`=Rjiq

.

Using the computer algebra system SYMMETRICA, among many other ones
the tables of numbers of indecomposable codes which are shown below were
computed.

4 Construction

Methods for constructing representatives of classes of linear (n, k)-codes obvi-
ously do not reach as far as the enumerative methods, but the use of computers
allows to get a complete overview of linear (n, k)-codes over GF (q) for quite a
number of parameter triples (n, k, q). We have seen before that the isometry
classes can be described as orbits of GLk(q) on sets of mappings into the pro-
jective space. A very interesting and helpful constructive method for discrete
structures which can be defined as orbits of finite groups on finite sets is based
on the following fact. If G is a transitive permutation group on X, then the
orbits of a subgroup U ≤ G on X can be bijectively mapped onto double cosets
as follows: For any x ∈ X the mapping

U\\X → U\G/Gx, U(gx) 7→ UgGx

is a bijection. In the case of the (n, k)-codes we can use the fact that the general
linear group GLn(q) is transitive on the set S(n, k, q) of subspaces of dimension
k in GF (q)n, so that the isometry classes of linear (n, k)-codes turn out to be
in one-one-correspondence with the set of double cosets

GF (q)∗ o Sn\GLn(q)/GLn(q)C0 ,

where C0 is any linear (n, k)-code. A computer program due to Weinrich

([14]) allows to evaluate complete sets of representatives, and it was recently
improved by using, besides of double cosets the combinatorial method of orderly
generation. The work in this field of constructive theory is still in rapid progress,
so that we cannot tell yet how far we can reach.

References
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Table 1: Rnk2
n\k 1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 1 1 0 0 0 0 0 0 0
5 1 2 2 1 0 0 0 0 0 0

6 1 3 5 3 1 0 0 0 0 0
7 1 4 10 10 4 1 0 0 0 0
8 1 5 18 28 18 5 1 0 0 0
9 1 7 31 71 71 31 7 1 0 0

10 1 8 51 165 250 165 51 8 1 0

11 1 10 79 361 809 809 361 79 10 1
12 1 12 121 754 2484 3759 2484 754 121 12

Table 2: Rnk3
n\k 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0
2 1 0 0 0 0 0 0
3 1 1 0 0 0 0 0
4 1 2 1 0 0 0 0
5 1 3 3 1 0 0 0

6 1 5 10 5 1 0 0
7 1 7 24 24 7 1 0
8 1 10 55 105 55 10 1
9 1 13 116 403 403 116 13

10 1 17 231 1506 3000 1506 231

11 1 21 438 5425 23579 23579 5425
12 1 27 813 19440 199473 469473 199473
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Table 3: Rnk4
n\k 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0
2 1 0 0 0 0 0 0
3 1 1 0 0 0 0 0
4 1 2 1 0 0 0 0
5 1 4 4 1 0 0 0

6 1 6 14 6 1 0 0
7 1 9 38 38 9 1 0
8 1 13 104 238 104 13 1
9 1 18 276 1573 1573 276 18

10 1 25 711 11566 34288 11566 711

11 1 32 1793 88140 909664 909664 88140
12 1 42 4446 665736 25.020688 90.186547 25.020688

Table 4: Rnk5
n\k 1 2 3 4 5 6

1 1 0 0 0 0 0
2 1 0 0 0 0 0
3 1 1 0 0 0 0
4 1 2 1 0 0 0
5 1 4 4 1 0 0

6 1 8 18 8 1 0
7 1 11 62 62 11 1
8 1 18 222 659 222 18
9 1 26 800 8232 8232 800

10 1 38 2805 117351 483955 117351

11 1 51 9642 1674434 32.156437 32.156437

Table 5: Rnk7
n\k 1 2 3 4 5

1 1 0 0 0 0
2 1 0 0 0 0
3 1 1 0 0 0
4 1 3 1 0 0
5 1 5 5 1 0

6 1 11 32 11 1
7 1 18 165 165 18
8 1 33 1006 4741 1006
9 1 50 6362 179586 179586

10 1 83 39417 7.058258 45.507354

11 1 123 233578 260.571116 11419.262502

12


