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Abstract. Solutions of the spatially inhomogeneous diffusive
Aizenmann-Bak model for clustering within a bounded domain
with homogeneous Neumann boundary conditions are shown to sta-
bilize, in the fast reaction limit, towards local equilibria determined
by their monomer density. Moreover, the sequence of monomer
densities converges to the solution of a nonlinear diffusion equation
whose nonlinearity depends on the size-dependent diffusion coef-
ficient. Initial data are assumed to be integrable, bounded and
with a certain number of moments in size. The number density of
clusters for the solutions is assumed to verify uniform bounds away
from zero and infinity independently of the scale parameter.

1. Introduction. In this work, we will analyze the fast reaction
asymptotics of the spatially inhomogeneous Aizenman-Bak model for
clustering with spatial diffusion given by

∂tf − a(y)4xf = Q(f, f) . (1)
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Here, f = f(t, x, y) is the concentration of clusters with size y ≥ 0 at
time t ≥ 0 which are spatially diffusing in x ∈ Ω ⊂ Rd, d ≥ 1 with
normalized volume, i.e., |Ω| = 1. Homogeneous Neumann boundary
condition:

∇x f(t, x, y) · ν(x) = 0 on ∂Ω (2)

where ν denotes the outward unit normal to Ω, are imposed in order
to preserve the total number of aggregates. As in [3], we assume that
the diffusion coefficient a(y) is non-degenerate

0 < a∗ ≤ a(y) ≤ a∗ (3)

with a∗, a
∗ ∈ R+. The collision operator Q(f, f) takes into account

cluster coagulation and fragmentation/break-up, and it reads as

Q(f, f) = Qc(f, f) + Qb(f, f) (4)

with

Qc(f, f) :=

∫ y

0

f(t, x, y−y′)f(t, x, y′) dy′−2f(t, x, y)

∫ ∞

0

f(t, x, y′) dy′ ,

and

Qb(f, f) := Q+
b (f, f)−Q−

b (f, f) := 2

∫ ∞

y

f(t, x, y′) dy′ − y f(t, x, y) .

These models appear in applications such as polymerization [1], clus-
ter aggregation in aerosols [1], [2], [5], cell physiology [12], population
dynamics [11], astrophysics [14] and blood thrombi formation [6].

A basic formal property of solutions is the conservation of mass, i.e.
the total number of monomers. Since the reaction term (4) satisfies∫∞

0
y Q(f, f) dy = 0, we have (formally) for all t ≥ 0,∫
Ω

N(t, x) dx =

∫
Ω

Nin(x) dx := N∞ ,

where N(t, x) :=

∫ ∞

0

y f(t, x, y) dy. (5)

Another macroscopic quantity of interest is the number density of poly-
mers,

M(t, x) :=

∫ ∞

0

f(t, x, y) dy, (6)
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that together with the monomer density N(t, x) satisfies the reaction-
diffusion type system

∂tN −4x

(∫ ∞

0

ya(y) f(t, x, y) dy

)
= 0 , (7)

∂tM −4x

(∫ ∞

0

a(y) f(t, x, y) dy

)
= N −M2 . (8)

The other important property is the dissipation of the corresponding
entropy functional. We will consider the weak definition of the action
of the collision operator (4) given by∫ ∞

0

Q(f, f) ϕ dy = −2

∫ ∞

0

ϕ(y)f(y) dy

∫ ∞

0

f(y′) dy′

+

∫ ∞

0

∫ ∞

0

f(y)f(y′)ϕ(y′′) dy dy′

+ 2

∫ ∞

0

f(y) Φ(y) dy −
∫ ∞

0

y f(y) ϕ(y) dy

(9)

for any smooth function ϕ(y), where y′′ = y+y′ and with the function Φ
being the primitive of ϕ (i.e. ∂yΦ = ϕ) such that Φ(0) = 0. Let us
consider the entropy functional associated to any positive density f as

H(f)(t, x) =

∫ ∞

0

(f ln f − f) dy ,

with the relative entropy H(f |g) = H(f)−H(g) between two states f
and g not necessarily with the same L1

y-norm. Then, the entropy for-
mally dissipates as

d

dt

∫
Ω

H(f) dx =−
∫

Ω

∫ ∞

0

a(y)
|∇x f |2

f
dy dx (10)

−
∫

Ω

∫ ∞

0

∫ ∞

0

(f ′′−ff ′) ln

(
f ′′

ff ′

)
dy dy′dx :=−DH(f).

Global-in-time weak solutions to (1)-(2) satisfying the entropy dissi-
pation inequality∫

Ω

H(f(t)) dx +

∫ t

0

DH(f(s)) ds ≤
∫

Ω

H(f0) dx

for all t ≥ 0, were obtained in [8]. The equilibrium states for which the
entropy dissipation vanishes are given by:

f∞ = e
− y√

N∞ ,

where N∞ is uniquely identified by the conservation of mass (5). It is
also proved in [8] that f∞ attracts all global weak solutions in L1(Ω×
(0,∞)) of (1)-(2) but no time decay rate is obtained. Exponential
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rate of decay for this problem was recently studied in [3] in the one
dimensional spatial case. We refer to [8], [3] for extensive literature
related to these problems.

Our present aim is to study the fast-reaction asymptotics, i.e. the
limit ε → 0 of the rescaled problem:

∂tf
ε − a(y)4xf

ε =
1

ε
Q(f ε, f ε) , for x ∈ Ω, y ∈ (0,∞), t>0 ,

∇x f ε(t, x, y) · ν(x) = 0 , for x ∈ ∂Ω, y ∈ (0,∞), t>0 ,

f ε(t = 0, x, y) = fin(x, y) ≥ 0 , for x ∈ Ω, y ∈ (0,∞) ,

(11)

where we shall assume that (1 + y + ln fin)fin ∈ L1(Ω× (0,∞)). This
asymptotic regime is called the fast reaction limit since the reaction
term is dominant as ε gets smaller. In fact, letting formally ε → 0, we
expect f ε → f 0 satisfying Q(f 0, f0) = 0, i.e.

f ε → e
− y√

N0 ,

where the limiting monomer density N0(t, x) diffuses according to the
limit of the moment equation (7):

∂tN
0 −4xn(N0) = 0 , (12)

where n(N) denotes the function

n(N) :=

∫ ∞

0

a(y)ye
− y√

N dy . (13)

Under assumption (3), equation (12) is a nonlinear, non-degenerate
diffusion equation satisfying

0 < a∗N ≤ n(N) ≤ a∗N , 0 < a∗ ≤ n′(N) ≤ a∗ .

Our main goal is a complete rigorous justification of this formal limit.
As a first step however, we will show in this work an “if-theorem”. We
will assume in the following that the number density M ε given by (6) is
bounded away from zero and infinity uniformly in ε > 0. More precisely,
our assumptions are the existence of constants 0 < M∗ ≤ M∗ < ∞
such that

Hypothesis (HMBB), M ε is bounded from below: M ε(t, x) ≥M∗

and

Hypothesis (HMBA), M ε is bounded from above: M ε(t, x) ≤M∗

for all t ≥ 0, x ∈ Ω and ε > 0. The main result of this work is the
following:
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Theorem 1.1. Let Ω be a bounded smooth subset of Rd with normal-
ized volume |Ω| = 1 and let the diffusion coefficient a(y) satisfies (3).
Assume non-negative initial data f ε(t = 0, x, y) = fin(x, y) ≥ 0 such
that (1 + y6 + ln fin)fin ∈ L1(Ω × (0,∞)) and fin ∈ L∞(Ω × (0,∞)).
Let us assume that the solutions of the rescaled problem (11) verify the
hypotheses (HMBB) and (HMBA). Then, the monomer density N ε

converges in L2((0, T ) × Ω) to the unique solution N of the Neumann
problem for the nonlinear diffusion equation{

∂tN −4xn(N) = 0 ,

∇x N · ν(x)|∂Ω = 0,
(14)

with initial data Nin =
∫∞

0
yfin dy, for any T > 0, and where the

nonlinearity n(N) is given by (13).

Let us remark that the hypotheses (HMBB) and (HMBA) can-
not be obtained by the estimates in [3] since they lead to ε dependent
bounds. Bounds from below depending on ε of the density function
could be obtained by adapting the arguments in [10]. It is an open
problem to show these ε uniform bounds in this generality, although a
perturbative setting around global equilibrium is under current inves-
tigation.

Next Sections below are the main steps in the proof of the previous
Theorem. Section 2 is devoted to show that the entropy dissipation
tends to 0 as ε → 0, which in return shows local stabilization of the
distribution function in L1 in phase-space. Section 3 collects several
estimates on moments, L∞-bounds of f ε and Lp-bounds of N ε, which
allow, in Section 4, to prove local stabilization in L2 in space at the
cost of a lower exponent of ε controlling uniformly the rest of the ε-
expansion of f ε. Finally, by an L2 duality arguments, Section 4 finishes
the proof of Theorem 1.1 by passing to the limit in the nonlinear non-
local diffusion equations.

Notation. We will use various short-cuts like Lp
x = Lp(Ω), Lp

y =

Lp((0,∞)), and L2
t (L

1
x,y) = L2((0,∞), L1(Ω× (0,∞))).

2. Entropy Dissipation: L1-Trend to Local Equilibria. In this
section, we prove an ε independent L1

x-bound of M ε, which allows to
show that the limiting solution f ε equilibrates asymptotically at a local
equilibrium of the form:

fNε := e
− y√

Nε .
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For notational convenience, we will work (in this and the next section)
on the equivalent time-scaled problem with t = ετ :

∂τf
ε−εa(y)4xf

ε =Q(f ε, f ε) , for x∈Ω, y∈(0,∞), τ >0 ,

∇x f ε(τ, x, y) · ν(x)=0 , for x∈∂Ω, y∈(0,∞), τ >0 ,

f ε(τ = 0, x, y) = fin(x, y) , for x ∈ Ω, y ∈ (0,∞).

(15)

Moreover in this section, it is sufficient to assume initial data f ε(τ =
0, x, y) = fin(x, y) ≥ 0 such that (1 + y + ln fin)fin ∈ L1(Ω× (0,∞)).

We start by deriving the L1
x-bound of M ε by integrating equality (8),

obtaining

d

dτ

∫
Ω

M ε(τ, x) dx =

∫
Ω

N ε(τ, x) dx−
∫

Ω

M ε(τ, x)2 dx

≤
∫

Ω

Nin(x) dx−
(∫

Ω

M ε(τ, x) dx

)2

by the conservation of mass (5) and by Hölder’s inequality. Therefore,
for all τ ≥ 0 and ε > 0, we have∫

Ω

M ε(τ, x) dx≤max

{∫
Ω

Min(x) dx,

(∫
Ω

Nin(x) dx

)1/2
}

:=M∗
0. (16)

We remark that a bound like (16) also follows clearly for the hypoth-
esis (HMBA), which we nevertheless like to avoid whenever we know
how to.

The trend to local equilibrium follows now from the dissipation of the
entropy, which is better understood by using the remarkable inequality
proven in [1, Propositions 4.2 and 4.3], implying that [3]∫ ∞

0

∫ ∞

0

(f ′′−ff ′) ln

(
f ′′

ff ′

)
dy dy′ ≥ M H(f |fN)+2(M−

√
N)2 . (17)

Thus, the decay of the entropy functional H(f ε) =
∫∞

0
(f ε ln f ε − f ε) dy

is estimated using inequality (17) as

− d

dτ

∫
Ω

H(f ε) dx ≥ ε

∫
Ω

∫ ∞

0

a(y)
|∇x f ε|2

f ε
dy dx

+

∫
Ω

[
M ε H(f ε|fNε) + 2(M ε −

√
N ε)2

]
dx .

(18)
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Taking into account the Csiszar-Kullback inequality as in [3, Lemma
3], we conclude

‖f ε−e
− y√

Nε ‖2
L1

x,y
≤ 2

{∫
Ω

[
M ε(τ, x)+

√
N ε(τ, x)

]
dx

}∫
Ω

H(f ε|fNε) dx

≤ 2
{
M∗

0 +
√

N∞

}∫
Ω

H(f ε|fNε) dx (19)

by Hölder’s inequality, conservation of mass (5) and the above
bound (16). Hence, the dissipation of entropy in (18) and (19) im-
plies the following equilibration of the density function f ε:

Lemma 2.1. There exists C independent of ε such that∫ ∞

0

∫
Ω

M εH(f ε|fNε) dx dτ ≤ C , (20)

and thus, using the assumption (HBMB), that

‖f ε − e
− y√

Nε ‖2
L2

τ (L1
x,y) ≤ C(M∗) ,

or equivalently,

‖f ε − e
− y√

Nε ‖2
L2

t (L1
x,y) ≤ εC(M∗) , (21)

for a constant C depending on M∗ but not on ε.

The notation L2
τ (L

1
x,y) refers to the space of functions in the scaled

space (τ, x, y) belonging to L2((0,∞), L1(Ω× (0,∞))).

3. A priori Estimates. In this section, we show further uniform in ε
apriori estimates to be interpolated with (21) in proving Theorem 1.1
in the following section.

We start by showing the uniform control in time and ε < 1 of all
moments with respect to y of the solutions provided they are initially
finite. Let us define the moment of order p > 1 by

M ε
p (f ε)(τ) :=

∫
Ω

∫ ∞

0

yp f ε(τ, x, y) dy dx

for all τ ≥ 0. Then, the following Lemma holds:

Lemma 3.1. Let fin ≥ 0 be a nonnegative initial datum such that
(1 + yp)fin ∈ L1(Ω × (0,∞)) with p > 1. Assume that the hypoth-
esis (HMBA) holds. Then, the solution f ε of (15) has moments
M ε

p (f ε)(τ) uniformly bounded in time τ ≥ 0 and all ε < 1, i.e., there
exist explicit constants M∗

p(fin,M∗, p) such that

M ε
p (f ε)(τ) ≤M∗

p , for a.e. τ ≥ 0. (22)
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Proof. Using the weak formulation (9), it is easy to check that∫ ∞

0

Q(f ε, f ε) yp dy = −2

(∫ ∞

0

ypf ε(y) dy

)
M ε

+

∫ ∞

0

∫ ∞

0

f ε(y)f ε(z)(y + z)p dy dz

− p− 1

p + 1

∫ ∞

0

f ε(y) yp+1 dy.

Taking into account Hypothesis (HMBA) and (y + z)p ≤ C ′
p (yp + zp),

we deduce∫ ∞

0

Q(f ε, f ε) yp dy ≤ 2C ′
pM∗

∫ ∞

0

ypf ε(y) dy− p− 1

p + 1

∫ ∞

0

f ε(y) yp+1 dy

for all p > 1. Integrating in space, we find that the evolution of the
moment of order p > 1 is given by

d

dτ
M ε

p (f ε)(τ) ≤ 2C ′
pM∗ M ε

p (f ε)(τ)− p− 1

p + 1
M ε

p+1(f
ε)(τ).

Trivial interpolation of the p + 1-order moment with the moment of
order one implies

M ε
p (f ε)(τ) ≤ 1

δp−1

∫
Ω

Nin(x) dx + δ M ε
p+1(f

ε)(τ)

for all δ > 0, and thus

d

dτ
M ε

p (f ε)(τ) ≤ 2C ′
pM∗ M ε

p (f ε)(τ)− p− 1

p + 1

1

δ
M ε

p (f ε)(τ) + Dδ

for a certain constant Dδ (of order δ−p). Choosing δ > 0 such that

2C ′
pM∗ − p− 1

p + 1

1

δ
≤ − 1

10δ

we obtain
d

dτ
M ε

p (f ε)(τ) ≤ − 1

10δ
M ε

p (f ε)(τ) + Dδ

for all t > 0, from which

M ε
p (f ε)(τ) ≤ min(M ε

p (f ε)(0), 10δDδ),

ending the proof.

We can also control uniformly the distribution function f ε.
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Lemma 3.2. Let fin ≥ 0 be a nonnegative initial datum such that
fin ∈ L∞(Ω × (0,∞)). Then, the solution f ε of (15) is uniformly
bounded in time τ ≥ 0 and all ε < 1, i.e., there exists an explicit
constant K(fin) such that

‖f ε(τ)‖L∞x,y
≤ K , for a.e. τ ≥ 0. (23)

Proof. We use [8, Lemma 3.5] with ϕ(r) = (r−K)+ with K ≥ ‖fin‖L∞x,y

to obtain

∫
Ω

∫ ∞

0

Qc(f
ε, f ε) ϕ′(f) dydx

≤ −
∫

Ω

∫ ∞

0

∫ ∞

0

ϕ′(f ε(x, y))f ε(x, y)f ε(x, y′) dy′ dy dx

for all τ ≥ 0. Let us remind the main ideas of the proof of [8,
Lemma 3.5] for the sake of the reader, see also [9]. Assume first ϕ is
differentiable and convex such that 0 ≤ ϕ(r) ≤ rϕ′(r) for all r > 0.
The action of the coagulation operator can be written as

I :=

∫
Ω

∫ ∞

0

Qc(f
ε, f ε) ϕ′(f) dydx

= −2

∫
Ω

∫ ∞

0

∫ ∞

0

ϕ′(f(y))f(y)f(y′) dy′ dy dx

+

∫
Ω

∫ ∞

0

∫ y

0

f(y − y′)f(y′)ϕ′(f(y)) dy′ dy dx.

Using the convexity of ϕ in the last term,
ϕ(f(y′)) ≥ ϕ(f(y)) + ϕ′(f(y))(f(y′)− f(y)), we get

I ≤ −2

∫
Ω

∫ ∞

0

∫ ∞

0

ϕ′(f(y))f(y)f(y′) dy′ dy dx

+

∫
Ω

∫ ∞

0

∫ y

0

f(y − y′)ϕ(f(y′)) dy′ dy dx

+

∫
Ω

∫ ∞

0

∫ y

0

f(y − y′)[f(y)ϕ′(f(y))− ϕ(f(y))] dy′ dy dx.

Changing variables in the second and third term of the right-hand side
as (y, y′) 7→ (y, z = y − y′) and (y, y′) 7→ (y′, z = y − y′) respectively,
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we obtain

I ≤ −2

∫
Ω

∫ ∞

0

∫ ∞

0

ϕ′(f(y))f(y)f(y′) dy′ dy dx

+

∫
Ω

∫ ∞

0

∫ ∞

0

f(z)ϕ(f(y′)) dz dy′ dx

+

∫
Ω

∫ ∞

0

∫ ∞

0

χ[0,y](z)f(z)[f(y)ϕ′(f(y))− ϕ(f(y))] dz dy dx

= −
∫

Ω

∫ ∞

0

∫ ∞

0

ϕ′(f(y))f(y)f(y′) dy′ dy dx

+

∫
Ω

∫ ∞

0

∫ ∞

0

[χ[0,y](z)f(z)−f(z)] [f(y)ϕ′(f(y))−ϕ(f(y))] dz dy dx,

where χ[0,y](z) is the characteristic function of the interval [0, y]. It is
easy to observe that the last term is non-positive from which the stated
inequality on the contribution of the coagulation operator results. The
proof for ϕ(r) = (r −K)+ follows by approximation by smooth differ-
entiable convex functions verifying 0 ≤ ϕ(r) ≤ rϕ′(r) for all r > 0.

Next, we estimate the gain part of the fragmentation kernel to deduce∫
Ω

∫ ∞

0

Q+
b (f ε, f ε)ϕ′(f) dydx

≤ 2

K

∫
Ω

∫ ∞

0

∫ ∞

0

ϕ′(f ε(x, y))f ε(x, y)f ε(x, y′) dy′ dy dx

where we use that Kϕ′(r) ≤ rϕ′(r) for r ≥ K and otherwise ϕ′(r) = 0.
Putting these terms together and disregarding the non-positive contri-
bution of Q−

b , we get

d

dτ

∫
Ω

∫ ∞

0

ϕ(f) dy dx

≤
(

2

K
− 1

) ∫
Ω

∫ ∞

0

∫ ∞

0

ϕ′(f ε(x, y))f ε(x, y)f ε(x, y′) dy′ dy dx.

Then, the result follows by taking K = K(fin) = max{2, ‖fin‖L∞x,y
}.

Finally in this section, we show an interpolation inequality.

Lemma 3.3. Let f ≥ 0, f ∈ L∞(Ω × (0,∞)) such that (1 + yr)f ∈
L1(Ω × (0,∞)). Let p > 1 and any k > 0 such that r > pk and
pk + 1 > 2p. Then, for a constant C∥∥∥∥∫ ∞

0

yf(x, y) dy

∥∥∥∥
Lp

x

≤ C ‖f‖1/p′

L∞x,y
‖(1 + yr)f‖1/p

L1
x,y

.
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As a consequence, the monomer density N ε of the solution f ε of (15)
with suitable initial data satisfies an explicit bound N (fin,M∗,M∗

r)
such that

‖N ε(τ)‖Lp
x
≤ N , for a.e. τ ≥ 0. (24)

Proof. For p > 1 and ‖N ε(τ)‖p
Lp(Ω) =

∫
Ω

(∫∞
0

yf ε dy
)p

dx, we use first

the L∞ bound of Lemma 3.2 and further Hölder’s inequality, observing
that p′(−k + 1) < −1, to estimate for various constants C

‖N ε(τ)‖p
Lp

x
≤ C‖f ε‖p−1

L∞x,y

∫
Ω

(∫ ∞

0

(
(1 + y)pkf ε

)1/p
(1 + y)−k+1 dy

)p

dx

≤ C‖f ε‖p−1
L∞x,y

∫
Ω

∫ ∞

0

(1 + y)pkf ε dy dx

≤ C‖f ε‖p−1
L∞x,y

∫
Ω

∫ ∞

0

(1 + yr)f ε dy dx ,

which is bounded by Lemma 3.1, and thus, so is (24).

4. Interpolation: Trend to Nonlinear Diffusion in L2. Return-
ing to the original time variable, we gain from the estimate (21) in
Lemma 2.1 and the bounds of the Lemmata 3.1, 3.2, and 3.3 the fol-
lowing result:

Lemma 4.1. Under the assumptions of Theorem 1.1 exists for any
T > 0 a constant CT independent of ε such that for θ = 1/20

‖f ε − e
− y√

Nε ‖L2
t,x(L1

y((1+y) dy)) ≤ εθCT , (25)

on bounded time intervals t ∈ [0, T ].

Proof. We estimate using the L∞ bound of Lemma 3.2 and Cauchy-
Schwarz that for various constants C

‖f ε − e
− y√

Nε ‖2
L2

t,x(L1
y(1+y))

≤ C
(
‖f‖L∞x,y

+ 1
)

×
∫ T

0

∫
Ω

(∫ ∞

0

(1 + y)2|f ε − e−y/
√

Nε|1/2 (1 + y)−1 dy

)2

dx dt

≤ C

∫ T

0

∫
Ω

∫ ∞

0

(1 + y)4|f ε − e−y/
√

Nε| dy dx dt .

Next, for a A > 1 to be chosen, we split
∫∞

0
dy =

∫ A

0
dy +

∫∞
A

dy :=
I1 + I2. For the first part, we have by Lemma 2.1 in the original time
variable that

I1 ≤ C(1 + A)4

∫ T

0

∫
Ω

∫ ∞

0

|f ε − e−y/
√

Nε| dy dx dt ≤ CA4 T 1/2
√

ε .
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For the second part, we estimate

I2 ≤ C
1

A

∫ T

0

∫
Ω

∫ ∞

A

(1 + y)5(f ε + e−y/
√

Nε
) dy dx dt

≤ C

A

(
T (M5 +M0) +

∫ T

0

∫
Ω

(
√

N ε + (N ε)3) dx dt

)
≤ C

A

(
CT + T

(√
N∞ + ‖N ε‖3

L∞t (L3
x)

))
≤ CT

1

A
,

where we have used Lemma 3.3 for the last term with p = 3, r = 6
and 5/3 < k < 2. Thus finally, the statement follows by choosing
A = ε−1/10.

In the following, we will expand f ε according to (25) as

f ε = e
− y√

Nε + εθf ε
1 ,

where f ε
1 is bounded in L2

t,x(L
1
y((1+y) dy)) and satisfies ∇x f ε

1 ·ν(x) = 0
on ∂Ω. This yields the moment equation

∂tN
ε −4xn(N ε) = εθ4x

∫ ∞

0

a(y)yf ε
1 dy := εθ4xg

ε,

where gε is uniformly bounded in L2
t,x and satisfies ∇x gε · ν(x) = 0.

Lemma 4.2. Assume that gε is uniformly bounded in L2
t,x and satisfies

∇x gε · ν(x) = 0 on ∂Ω. Then, the sequence of solutions N ε for the
nonlinear diffusion equation{

∂tN
ε −4xn(N ε) = εθ4xg

ε ,

∇x N ε · ν(x)|∂Ω = 0,
(26)

with initial data Nin ∈ L2
x converges as ε → 0 in L2

t,x to the unique
solution N of the nonlinear diffusion equation{

∂tN −4xn(N) = 0 ,

∇x N · ν(x)|∂Ω = 0,
(27)

with initial data Nin.

Proof. The proof uses a duality argument as in [13]. We first remark
that the initial data Nin belongs to L2 by Lemma 3.3. Let us also ob-
serve the uniqueness of the Cauchy problem for the limiting nonlinear
non-degenerate diffusion equation (27) that follows from standard argu-
ments, see for instance [7], [4]. For any T > 0, we consider nonnegative
solutions w ≥ 0 with end data w(T ) = 0 of the equation

− ∂tw −
n(N ε)− n(N)

N ε −N
4xw = H ≥ 0 , (28)
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with Neumann boundary condition ∇x w · ν(x)|∂Ω = 0, for nonnegative
test functions H ∈ C∞

0 ([0, T ]×Ω). These solutions satisfy the estimates

‖4xw‖L2([0,T ]×Ω) ≤ C‖H‖L2([0,T ]×Ω) (29)

for a constant C. The existence of such solutions follows via smooth
approximations of the bounded coefficient a∗ ≤ n(Nε)−n(N)

Nε−N
≤ a∗, which

justify also the following formal calculations: multiplication of (28)
with −4xw and integration by parts yields

−1

2

d

dt

∫
Ω

|∇x w|2 dx+a∗

∫
Ω

(4xw)2 dx ≤ −
∫

Ω

H(4xw) dx

≤ a∗
2

∫
Ω

(4xw)2 dx+
1

2a∗

∫
Ω

H2 dx ,

by Young’s inequality. Then, after integration in time over the inter-
val [0, T ] and recalling that w(T ) = 0, it follows that

a∗
2

∫ T

0

∫
Ω

(4xw)2 dxdt ≤ 1

2a∗

∫ T

0

∫
Ω

H2 dxdt ,

which gives (29).
To prove the statement of the Lemma, we multiply the difference of

equation (26) with (27) by the dual solution w and integrate by parts
in time and space:∣∣∣∣ ∫ T

0

∫
Ω

(N ε−N) Hdxdt

∣∣∣∣=εθ

∣∣∣∣ ∫ T

0

∫
Ω

gε4xw dxdt

∣∣∣∣ ≤ εθ‖gε‖L2
t,x
‖H‖L2

t,x
.

Since H is arbitrary, we deduce that for a constant C

‖N ε −N‖L2
t,x
≤ C εθ ‖gε‖L2

t,x
≤ C εθ.

This ends the proof of the Lemma and Theorem 1.1.

Remark 4.3. In [13], explicit examples show that equations with dis-
continuous diffusion (as equation (26) is one) can be ill-posed with a
right-hand side in Lq for q close to 1, while well-posed for a right-hand
side in L2. Therefore, the interpolation Lemma 4.1, which allows to
obtain a right-hand side in H−2, seems crucial.
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