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1. Introduction. The ultimate aim of modelling and simulating application problems
is to achieve better understanding of real world systems eventually with the purpose of
being able to influence these systems in a desired way. This purpose has motivated the
formulation of optimal control problems. These consist of a dynamical or equilibrium system,
a description of the control mechanism, and a criterion defining the cost functional, that
models the purpose of the control and describes the cost of its action. An optimal control
problem is then formulated as the minimization of the cost functional where the state of the
system is characterized by the modelling equations and the action of the control. This is a
constrained minimization problem. The necessary conditions for such a minimum result in
a set of coupled equations called the optimality system.

We are concerned with the numerical solution of optimality systems corresponding to
optimal control problems governed by partial differential equations. Regarding optimal
control theory we follow the approach given in [79, 80, 84] and the references given there.
Other references relevant for our work are, e.g., [1, 4, 9, 10, 49, 81]. The increasing interest
and applications of optimal control methods give account of the large number of recent
mathematical contributions to this field. For a partial overview of methods and application
areas see [42, 46, 66, 67].

The ever growing computational capabilities allow to realize optimal control strategies
in current practical applications having increasing complexity. The aim is to solve large-scale
optimization problems in an accurate and computationally efficient way. Most contributions
to the development and analysis of discretization schemes and solvers for optimal control
problems are rather recent; see, e.g., [65, 66, 67, 73] and references given there. In this paper
we present our contribution to this field of scientific computing.

Our contribution to the numerical solution of optimal control problems is twofold. Pri-
marily, we are concerned with the fast solution of discretized optimality systems by means
of multigrid methods. The multigrid approach to optimal control problems is, apart from
a few contributions, rather recent; see, e.g., [63, 64]. Secondarily, we consider accurate ap-
proximation of optimal control solutions by finite difference schemes. In contrast to finite
element approximations to optimality systems that are rather well investigated - see, e.g.,
[84] and the references given there - much less rigorous analysis is available on the finite
difference discretization of optimal control problems.

We pursue the one-shot multigrid strategy as proposed in [2, 3, 99]. Related approaches
can be found in [47, 51, 95] within the successive quadratic programming method, and in
[51, 55, 58, 59, 74] concerning the reformulation of the optimality conditions as fixed-point
equations and their solution by multigrid methods.

A one-shot multigrid algorithm means solving the optimality system for the state, the
adjoint, and the control variables in parallel in the multigrid process. This is in contrast
to solving sequentially the state and the adjoint equations and then updating the control
variables along with the gradients provided by the optimality condition. Notice that the one-
shot approach of [2, 3] applied to elliptic problems uses the gradient scheme just described
for designing the smoothing iteration. This approach may result in a lack of robustness
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2 A. BORZÌ

of the multigrid solution process with respect to the value of the weight of the cost of the
control, here denoted by ν. Moreover, the ‘gradient’ approach requires that the uncontrolled
state equation be solvable, and thus it cannot be applied to solve singular optimal control
problems [80].

In [18, 22] we develop a smoothing scheme that is robust with respect to changes of ν and
results in multigrid schemes that successfully apply to singular optimal control problems.
Specifically, in these references the optimal control of the solid fuel ignition model was
considered that is characterized by an exponential nonlinearity such that the uncontrolled
model may not admit solutions. Accuracy of the finite difference approximation of this
model is discussed in [18].

The results presented in [18, 22] motivate the multigrid convergence analysis presented
in [21]. In this reference, sharp multigrid convergence factor estimates are obtained by
means of local Fourier analysis and a multigrid convergence theory in the framework of [32]
is provided which guarantees mesh-independent convergence of the multigrid process under
weak regularity assumptions on the solutions of the optimality system. In particular, in [21]
it is demonstrated that the convergence behavior of our multigrid scheme does not depend
on the value of ν. Comparing the results in [18] and [21] it is shown that the presence of
nonlinearities in the model does not remarkably influence the multigrid convergence factor.

Based on the finite difference theoretical framework of [61] we present in [21] optimal-
order accuracy estimates under minimum regularity assumptions on the solution of the
optimality system.

While [18, 21, 22] deal with geometric multigrid schemes, in [14, 15] we extend our
approach to algebraic multigrid (AMG) methods. The advantage of the algebraic multi-
grid formulation is its general applicability to linear optimality systems defined on complex
geometries. By taking advantage of the relationship between state and adjoint equations
we construct an algebraic multigrid scheme which is able to solve optimality systems with
a computational complexity close to that typical of AMG for scalar problems. In applica-
tions, optimality systems where the state equation is given by an anisotropic elliptic operator
with strongly discontinuous coefficients [14] and by a convection diffusion operator with re-
circulating convection [15] are considered. Also within this setting numerical experiments
demonstrate robustness with respect to the weight of the cost of the control. Within the
pure algebraic formulation in [14] conditions are given that guarantee convergence of the
AMG iteration.

In [20] a new smoothing iteration for control-constrained optimality systems is presented.
It allows to construct robust multigrid schemes that apply also in case ν = 0, thus allowing
the investigation of bang-bang control problems. In particular, using the multigrid scheme
in [20] it is possible to show the phenomenon of ‘chattering control’ [9] for elliptic systems
which appears to be a problem which received little attention. Also in [20] extensions of our
multigrid schemes to solve boundary optimal control problems and optimal control problems
where the control acts only in a sub-domain of the computational domain are presented.
Using results in [82] we obtain in [20] error estimates for the case of constrained optimal
control problems.

The results described above concern multigrid methods for elliptic optimality systems.
In the following, we discuss our contribution [11, 12, 19] to the development of multigrid
schemes for parabolic optimality systems. These systems are characterized by a set of
parabolic partial differential equations with opposite orientation. The starting point for
our development is represented by space-time parabolic multigrid methods [57, 103] and
the approach presented in [56]. The use of parabolic multigrid methods is suggested by
the need of a setting that allows a robust implementation of the time coupling between
state and adjoint variables. The coupling is then realized within our smoothing scheme
proposed in [11, 19]. This iterative scheme has been successfully applied in combination
with different coarsening strategies to solve singular parabolic optimal control problems. In
fact, in contrast to [58, 59] our smoothing scheme implements the coupling between state
and adjoint variables at each time step, thus avoiding to solve the state equation without
effective control.

Results of numerical experiments in [11, 19] demonstrate the ability of our space-time
multigrid scheme to solve parabolic optimality systems. We obtain optimal convergence
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factors and robustness with respect to changes of the value of the weight of the cost of
the control. These facts are confirmed by the results of the multigrid convergence analysis
presented in [12].

Multigrid methods for constrained parabolic optimal control problems are discussed in
[11, 12]. In these references the presence of constraints is reformulated as a nonlinear term
relating the control to the adjoint variable. Within this setting, it is shown in [12] that the
W -cycle multigrid scheme is superior to the V -cycle scheme. Optimal error estimates are
presented in [12] in case of unconstrained parabolic optimal control problems.

In [16, 17] we present an optimal control formulation of the optical flow problem. Op-
tical flow is the field of apparent velocities of objects in a sequence of images. We apply
multigrid schemes to solve the resulting optimality conditions that consist of a system of
two elliptic equations for the two optical flow components. These are the flow components
for the hyperbolic optical flow equation and for the adjoint equation. The hyperbolic-elliptic
optimality system is solved iteratively in a segregation loop. Well posedness of the proposed
iteration is analyzed in [16]. Results presented in [16, 17] considering images of noisy and
fast-moving objects demonstrate the advantage of our formulation.

In the following we report results of our work mentioned above and comment on our
ongoing research projects on multigrid methods and optimal control problems.

The next three sections provide an introduction to the optimal control problems we con-
sider, their approximation, and a description of geometric and algebraic multigrid methods.
In Section 5 we report results on the accuracy of finite difference discretization and on the
convergence of multigrid methods applied to elliptic optimality systems using local Fourier
analysis and general multigrid theory. In Section 6 efficiency and robustness of multigrid
methods solving singular optimal control problems is discussed. In Section 7 the multigrid
solution of constrained optimal control problems also in the limit case of bang-bang solutions
is discussed. In Section 8 we describe the development and analysis of algebraic multigrid
methods for optimality systems. In Section 9 multigrid methods for parabolic optimal con-
trol problems are described. In Section 10 we discuss an optimal control formulation of the
optical flow problem and its solution by multigrid and time-marching methods. In the final
section we give account of our ongoing research related to the work presented in this paper
and draw conclusions.

2. Optimal control problems. The formulation of optimal control of systems gov-
erned by partial differential equations requires the following terms: 1) The definition of a
control function u that represents the driving influence of the environment on the system. 2)
The partial differential equations modelling the controlled system, represented by the state
function y(u). 3) The cost functional which models the purpose of the control on the system.
We now discuss these terms that enter in the definition of optimal control problems. We
consider steady and evolutionary problems thus the optimal control problems are defined
on space or space-time domains.

With u we denote the control function belonging to the closed and convex set of ad-
missible controls Uad ⊂ U , where U is a real Hilbert space with inner product and norm
denoted by (·, ·) and | · |, respectively.

The state of the system as a function of the control is denoted by y(u) ∈ Y , where Y
is a real Hilbert space with inner product and norm denoted by ((·, ·)) and || · ||. It is given
by the solution of a partial differential equation which is formally expressed as e(y, u) = 0
where e : Y ×U → Y ∗. It is required that the solution of this equation with given u defines
a continuous affine mapping u → y(u). Let us denote its first derivative at u in the direction
δu by y′(u, δu). It is characterized as the solution to e(y′, δu) = 0. The second derivative of
u → y(u) is zero.

The cost functional is formally given by

J(·, ·) : Y × U → R.

It is assumed that J(y, u) is twice Frechet-differentiable and that the second Frechet deriva-
tive J ′′ is locally Lipschitz-continuous. Using the mapping u → y(u) we can define Ĵ(u) =
J(y(u), u).



4 A. BORZÌ

The optimal control problem can be formulated as follows: Find u∗ ∈ Uad such that

Ĵ(u∗) = inf
u∈Uad

Ĵ(u).

We are interested in cost functionals of tracking type given by

J(y, u) =
1
2
||y − z||2 +

ν

2
|u|2,(2.1)

where z ∈ Z is the given objective function, Z being a real Hilbert space. In the following
we let Y ⊆ Z and when no confusion may occur we denote with ((·, ·)) and || · || the inner
product and norm of Z as well. Here ν > 0 is the weight of the cost of the control. (The
case ν = 0 is discussed in Section 7.)

We find for the second derivative of u → Ĵ(u)

Ĵ ′′(u)(δu, δu) = ||y′(u, δu)||2 + ν|δu|2L2(Ω),

and thus u → Ĵ(u) is uniformly convex. This implies existence of a unique solution u∗ ∈ Uad

to the optimal control problem which can be characterized by the following optimality
condition

Ĵ ′(u∗, v − u∗) = ((y∗ − z, y′(u∗, v − u∗))) + ν(u∗, v − u∗) ≥ 0, for all v ∈ Uad,

where y∗ = y(u∗).
Introduce p∗ ∈ Y as the unique solution to e∗y(y∗, u∗)p∗ = −(y∗−z) where e∗y : Y → Y ∗.

Then via e(y′, δu) = 0, δu = v − u∗, we have

Ĵ ′(u∗, v − u∗) = −((p∗, v − u∗)) + ν(u∗, v − u∗) ≥ 0 for all v ∈ Uad.(2.2)

In case Uad = U this condition becomes Ĵ ′(u)(u∗; v − u∗) = 0.
Summarizing, the solution of the optimal control problem is characterized by the fol-

lowing optimality system

e(y∗, u∗) = 0,

e∗y(y∗, u∗)p∗ = −(y∗ − z),(2.3)
−((p∗, v − u∗)) + ν(u∗, v − u∗) ≥ 0,

for all v ∈ Uad.
Now we give three examples of some of the optimal control problems and of the corre-

sponding optimality systems which are discussed in detail in the sections that follow.
Example I: An elliptic optimal control problem.





minu∈L2(Ω) J(y, u),
−∆y = u + g in Ω,

y = 0 on ∂Ω,
(2.4)

subject to u ∈ Uad = L2(Ω), where J(y, u) is given by

J(y, u) =
1
2
||y − z||2L2(Ω) +

ν

2
||u||2L2(Ω).(2.5)

Here and in the following we assume that Ω ⊂ R2 is convex or ∂Ω is C1,1 smooth and
g, z ∈ L2(Ω).

The corresponding optimality system is given by

−∆y = u + g in Ω,
y = 0 on ∂Ω,

−∆p = −(y − z) in Ω,
p = 0 on ∂Ω,

νu− p = 0 in Ω.

(2.6)
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From the optimality system one concludes the following regularity property
Lemma 2.1. If z, g ∈ L2(Ω) then y∗, u∗, p∗ ∈ H1

0 (Ω) ∩H2(Ω).
Example II: A parabolic optimal control problem.





minu∈L2(Q) J(y, u),
−∂ty + ∆y = u in Q = Ω× (0, T ),

y = y0 in Ω at t = 0,
y = 0 on Σ = ∂Ω× (0, T ),

(2.7)

where we take y0(x) ∈ H1
0 (Ω). We consider a cost functional of tracking type given by

J(y, u) =
1
2
||y − z||2L2(Q) +

ν

2
||u||2L2(Q).(2.8)

where z ∈ L2(Q).
The optimality system related to this problem is given by

−∂ty + ∆y = u in Q,
y = 0 on Σ,

∂tp + ∆p = −(y − z) in Q,
p = 0 on Σ,

νu− p = 0 in Q,

(2.9)

with initial condition y(x, 0) = y0(x) and terminal condition p(x, T ) = 0.
The following regularity property results
Lemma 2.2. If z ∈ L2(Q) then y∗, u∗, p∗ ∈ H2,1(Q) where H2,1(Q) = L2(0, T ;H2(Ω)∩

H1
0 (Ω)) ∩H1(0, T ; L2(Ω)).

Example III: A hyperbolic optimal control problem.




min~w∈V J(y, ~w),
yt + ~w · ∇y = 0 in Q = Ω× (0, T ),

y = Y0 in Ω at t = 0,
(2.10)

where ~w = (u, v) ∈ V , V is a class of admissible flow fields and J is the cost functional

J(y, ~w) =
1
2

∫

Ω

N∑

k=1

|y(x1, x2, tk)− Yk|2dΩ(2.11)

+
α

2

∫

Q

|∂ ~w

∂t
|2dq +

β

2

∫

Q

(|∇u|2 + |∇v|2)dq +
γ

2

∫

Q

|∇ · ~w|2dq.

Here, {Yk}k=0,N is a sequence of given ‘frames’ defined at increasing times tk ∈ [0, T ] with
tN = T . The coefficients α, β, and γ are predefined positive weights.

The corresponding optimality system results in

yt + ~w · ∇y = 0, with y(·, 0) = Y0,

pt +∇ · (~wp) =
N−1∑

k=1

[δ(t− tk)(y(·, tk)− Yk)] , with p(·, T ) = −(y(·, T )− YN ),

α
∂2u

∂t2
+ β∇ · [(|∇u|2 + |∇v|2)∇u] + γ

∂

∂x1
(∇ · ~w) = p

∂y

∂x1
,(2.12)

α
∂2v

∂t2
+ β∇ · [(|∇u|2 + |∇v|2)∇v] + γ

∂

∂x2
(∇ · ~w) = p

∂y

∂x2
,

where, e.g., ~w ∈ V is required to satisfy prescribed boundary conditions on the spatial
boundary and at the temporal boundaries of Q.

We have that
Lemma 2.3. Suppose that Yk ∈ H1

per(Ω) ∩ W 1,q(Ω), for some q ∈ [2,∞] and all k =
0, . . . , N then y∗, p∗ ∈ C(0, T ;Lq(Ω)) ∩ L∞(0, T ; H1

per(Ω) ∩W 1,q(Ω)) and
~w∗ ∈ L∞(0, T ;Lip(Q))× L∞(0, T ; Lip(Q)).
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3. Approximation of optimal control problems. For the approximation of op-
timal control problems we use a finite difference framework and follow the notation and
terminology of [61].

Consider a sequence of grids {Ωh}h>0 defined by

Ωh = {x ∈ R2 : xi = si h, si ∈ Z} ∩ Ω.

To avoid certain technicalities we assume that Ω is a square and that the values of h are
chosen such that the boundaries of Ω coincide with grid lines. The negative Laplacian
with homogeneous Dirichlet boundary conditions is approximated by the common five-point
stencil and denoted by −∆h.

For grid functions vh and wh defined on Ωh we introduce the discrete L2-scalar product

(vh, wh)L2
h

= h2
∑

x∈Ωh

vh(x) wh(x),

with associated norm |vh|0 = (vh, vh)1/2

L2
h

. We require as well the discrete H1-norm given by

|vh|1 =

(
|vh|20 +

2∑

i=1

|∂−i vh|20
)1/2

,

where ∂−i denotes the backward difference quotient in the xi direction and vh is extended
by 0 on grid points outside of Ω. The spaces L2

h and H1
h consist of the sets of grid functions

vh endowed with |vh|0, respectively |vh|1, as norm. For the definition of H2
h we refer to

[61], as well. We have the inverse property |vh|2 ≤ ch−1|vh|1 and the Poincaré-Friedrichs
inequality for finite differences (see, e.g., [97]): There exists a constant c∗ such that for any
grid function vh ∈ Vh

|vh|20 ≤ c∗
2∑

i=1

|∂−i vh|20.

Denote with Vh the vector space of nodal functions vh defined on Ωh which have pre-
specified values on the boundary. The system of nodal functions (vh, wh) is denoted by
Vh = Vh × Vh.

Functions in L2(Ω) and H2(Ω) are approximated by grid functions defined through their
mean values with respect to elementary cells [x1 − h

2 , x1 + h
2 ]× [x2 − h

2 , x2 + h
2 ]. This gives

rise to the restriction operators R̃h : L2(Ω) → L2
h and Rh : H1

0 (Ω)∩H2(Ω) → L2
h defined in

[61]. The following property can be proved

|R̃hv −Rhv|0 ≤ c h2 |v|H2(Ω) for all v ∈ H2(Ω).(3.1)

Here and below, c denotes a positive constant which does not depend on the discretization
parameters.

In case of time-dependent optimal control problems we also need to define the time step
size δt = T/Nt and the space-time mesh is given by

Qh,δt = {(x, tm) : x ∈ Ωh, tm = (m− 1)δt, 1 ≤ m ≤ Nt + 1}.

On this grid, ym
h denotes a grid function at time level m. The action of the backward and

forward time difference operators on this function are denoted by

∂+
t ym

h =
ym

h − ym−1
h

δt
and ∂−t ym

h =
ym+1

h − ym
h

δt
,

respectively.
For grid functions defined on Qh,δt we use the discrete L2(Q) scalar product with norm

||vh,δt||0 = (vh,δt, vh,δt)
1/2

L2
h,δt(Qh,δt)

.
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For convenience, it is assumed that there exist positive constants c1 ≤ c2 such that
c1h

2 ≤ δt ≤ c2h
2. Hence h can be considered as the only discretization parameter. There-

fore, in the following, the subscript δt is omitted.
On the cylinder Qh define the family of piecewise constant functions on the intervals

[tm, tm+1) as follows

Vh = {vh | vh(t) = vh(tm) for t ∈ [tm, tm+1), vh(tm) ∈ L2
h(Ωh)}.

The space-time extension of the operators R̃h and Rh are denoted by

R̃h, Q : L2(Q) → Vh and Rh, Q : H2,1(Q) → Vh.

Based on the present finite difference framework the discretization of the optimal control
problems given in the examples above is as follows.
Example I. The discretization of the optimal control problem (2.4) is specified by

{
min 1

2 |yh − R̃hz|20 + ν
2 |uh|20,

−∆hyh = uh + R̃hg.
(3.2)

Let u∗h denote the unique solution to (3.2) and set y∗h = yh(u∗h). The optimality system
related to (3.2) is found to be (dropping the ∗ superscript)

−∆hyh = uh + R̃hg,

−∆hph = −(yh − R̃hz),(3.3)
νuh − ph = 0.

Example II. The discrete optimal control problem approximating (2.7) is given by
{

min 1
2 ||yh − R̃h, Qz||20 + ν

2 ||uh||20,
−∂+

t ym
h + ∆hym

h = um
h .

(3.4)

The optimality system related to (3.4) follows

−∂+
t ym

h + ∆hym
h = um

h ,

∂−t pm
h + ∆hpm

h = −(ym
h − R̃h,Qzm),(3.5)

νum
h − pm

h = 0.

Example III. In this case appropriate finite difference methods for hyperbolic problems are
in order. To solve the optimality system (2.12) explicit second-order TVD schemes for both
the state equation and the adjoint equation are used. For example, in the one-dimensional
case, the TVD scheme for the variable y is written as

yi,κ+1 − yi,κ

τ
=−

{
1
h

[1 +
1
2
χ(r+

i−1/2)−
1
2

χ(r+
i−3/2)

r+
i−3/2

](u)+i−1/2(yi,κ − yi−1,κ)

+
1
h

[1 +
1
2
χ(r−i+1/2)−

1
2

χ(r−i+3/2)

r−i+3/2

](u)−i+1/2(yi+1,κ − yi,κ),(3.6)

where (u)+ = max(0, u) and (u)− = min(0, u). The limiter function χ is defined as function
of the flux difference ratios r∓i±1/2 and r∓i±3/2 given by

r+
i−1/2 =

(u)+i+1/2(yi+1 − yi)

(u)+i−1/2(yi − yi−1)
, r−i+1/2 =

(u)−i−1/2(yi − yi−1)

(u)−i+1/2(yi+1 − yi)
,

r+
i−3/2 =

(u)+i−1/2(yi − yi−1)

(u)+i−3/2(yi−1 − yi−2)
, r−i+3/2 =

(u)−i+1/2(yi+1 − yi)

(u)−i+3/2(yi+2 − yi+1)
.
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We use the Superbee limiter given by χ(r) = max[0, min(2r, 1),min(r, 2)].
The elliptic equations in (2.12) are discretized as follows. Consider the elliptic equation

for u

α
uh

i,j,κ+1 − 2uh
i,j,κ + uh

i,j,κ−1

τ2
+ β{∇h · [(|∇huh|2 + |∇hvh|2)∇huh]}i,j,κ

+γ
uh

i+1,j,κ − 2uh
i,j,κ + uh

i−1,j,κ

h2
= [p

∂I

∂x
]i,j,κ − γ

vh
i+1,j+1,κ − vh

i+1,j−1,κ − vh
i−1,j+1,κ + vh

i−1,j−1,κ

4h2
,

and similarly for the v component.

4. Multigrid methods. Solvers of discretized partial differential equations based on
the multigrid strategy [28, 35, 60, 100] typically show optimal computational complexity, i.e.
the number of computer operations required scales linearly with the number of unknowns.
This is also true in case of multigrid methods applied to optimal control problems [2, 18, 19,
21, 22, 11, 12, 14, 15, 47, 55, 95]. Furthermore, it was demonstrated that multigrid methods
are robust with respect to changes of the weight of the cost of the control.

Before discussing multigrid methods for optimality systems in detail in the forthcoming
sections, we give here an introduction of the multigrid framework used and introduce the
notation.

Let us index operators and variables defined on a grid with mesh size h = hk = 1/2k,
k = 1, . . . , L, with the index k, the level number. Here L denotes the finest level. We
introduce vector notation: we let w = (u, v) and |w|0 = |(u, v)|0, etc..

Consider the following discrete problem

Akwk = fk.(4.1)

For the purpose of multigrid methods it is important to utilize the fact that the solution
of (4.1) is equivalent to solving Akwe

k = rk where we
k = w̄k −wk is the error grid function

between the solution w̄k to (4.1) and its current approximation wk and rk is the residual
defined by

rk = fk −Akwk.(4.2)

Initially we can assume that wk is affected by errors having a large spectrum of frequencies.
The multigrid strategy is to solve for all frequency components of the error using multiple
grids.

On the grid of level k, a smoothing procedure is applied in order to solve for the
high-frequency components of the error. This is an iterative scheme denoted by w(m1)

k =
Sm1

k (wk, fk), where Sm1
k is a linear smoothing operator applied m1 times. For example Sk

can be the pointwise (collective) Gauss-Seidel iteration. One sweep of this iteration is writ-
ten in the form: w(m1)

k = w(m1−1)
k +Rk (fk−Akw

(m1−1)
k ) where the operator Rk applies to

the residual.
To correct for the smooth components of the error, a coarse grid correction (CGC) is

defined. For this purpose a coarse grid problem for the error function is constructed on the
grid with mesh size hk−1. That is,

Ak−1wk−1 = Ik−1
k rk,(4.3)

where wk−1 represents on the coarse grid Ωk−1 the error we
k on the next finer grid. The

operator Ik−1
k : Vk → Vk−1 restricts the residual computed at level k to the grid with level

k − 1.
Once the coarse grid problem is solved, the coarse grid correction follows:

wnew
k = wk + Ik

k−1 wk−1,(4.4)

where Ik
k−1 : Vk−1 → Vk is an interpolation operator. Here wk represents the current

approximation at level k as it was obtained by the smoothing process and before coarsening.
If the high frequency components of the error on the finer grid k are well damped, then



MULTIGRID METHODS FOR OPTIMALITY SYSTEMS 9

the solution at level wk−1 should provide enough resolution for the error of wk through
Ik

k−1wk−1.
The idea of transferring to a coarser grid can be applied along the set of nested meshes.

One starts at level k with a given initial approximation (e.g., zero) and applies the smoothing
iteration m1 times. The residual is then computed and transferred to the next coarser grid
while wk obtained by smoothing is left unchanged. On the coarse grid with index k − 1
again the smoothing process is applied. This procedure is repeated until the coarsest grid
is reached.

On the coarsest grid, one solves the problem using a direct method or by iteration and
the result is used to improve wk via (4.4). The coarse grid correction is then followed by
m2 post-smoothing steps at level k before the CGC procedure followed by post-smoothing is
repeated for the next (if any) finer level. This entire process represents one multigrid cycle.
It can be interpreted as a linear iteration of the type w`+1

L = w`
L +ML(fL −ALw`

L) where
Mk is the multigrid iteration operator. The multigrid algorithm expressed in terms of Mk

is given as follows.

Multigrid Algorithm
Set M1 = A−1

1 . For k ≥ 2 define Mk : Vk → Vk in terms of Mk−1 as follows. Let
g ∈ Vk and q0 = 0.

1. Set w0 = 0.
2. Define wl for l = 1, . . . , m1 by

wl = wl−1 +Rk(g −Ak wl−1).

3. Set wm1+1 = wm1 + Ik
k−1q

m where qi for i = 1, . . . , m is defined by

qi = qi−1 +Mk−1[Ik−1
k (g −Ak wm1)−Ak−1qi−1].

4. Set Mkg = wm1+m2+1 where w` for ` = m1 + 2, · · · ,m1 + m2 + 1 is given by Step
2.

Notice that we can perform m two-grid iterations at each working level. For m = 1 we have
a V (m1,m2)-cycle and for m = 2 we have a W (m1,m2)-cycle; m is called the cycle index
[100]. In the following, N is the number of V - or W -cycles that are applied to solve the
problem at hand.

The algorithm above uses the equivalence of equation (4.1) with the residual equation.
This holds true for A being a linear operator. In case A(·) is a nonlinear operator, the
multigrid algorithm described above must be modified. The most used nonlinear multigrid
method is the full approximation scheme (FAS) [34]. It consists of the same steps as the
multigrid algorithm previously described but instead of solving for the error function we

k it
applies to the variable wk−1 = Îk−1

k wk + we
k as the coarse-grid unknown function.

To describe this method consider the discrete problem

Ak(wk) = fk.(4.5)

As in the linear case we need to define a smoothing procedure also denoted by Sk. This
corresponds, for example, to a Newton-Gauss-Seidel scheme. The coarse grid correction is
defined in the following way. First, a coarse grid problem is constructed on the next coarser
grid with index k − 1. We have

Ak−1(wk−1) = Ik−1
k fk + τk−1

k ,(4.6)

where τk−1
k is the fine-to-coarse defect correction defined by

τk−1
k = Ak−1(Îk−1

k wk)− Ik−1
k Ak(wk).(4.7)

Notice that Îk−1
k is a restriction operator which is not necessarily equal to Ik−1

k . We usually
choose Îk−1

k be straight injection. Once the coarse grid problem is solved, the coarse grid
correction follows

wnew
k = wk + Ik

k−1(wk−1 − Îk−1
k wk).(4.8)
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Assuming that the smoothing iteration has reduced the high frequency components of the
error on the finer grid, then the difference wk−1 − Îk−1

k wk provides a good approximation
for the smooth error of wk.

The FAS algorithm can be summarized as follows.

FAS Algorithm
Set M1 ≈ A−1

1 (e.g., iterating with S1). For k ≥ 2 define Mk : Vk → Vk in terms of
Mk−1 as follows. Let g ∈ Vk and q0 = 0.

1. Set w0 = w̃ (starting approximation).
2. Define wl for l = 1, . . . , m1 by

wl = wl−1 +Rk(g −Ak wl−1).

3. Set wm1+1 = wm1 + Ik
k−1(q

m − Îk−1
k wm1) where qi for i = 1, . . . , m is defined by

qi = qi−1 +Mk−1[Ik−1
k (g −Ak wm1) +Ak−1(Îk−1

k wm1)−Ak−1qi−1].

4. Set Mkg = wm1+m2+1 where w` for ` = m1 + 2, · · · ,m1 + m2 + 1 is given by Step
2.

One can choose a starting grid with a level number K < L which is coarser than the
finest grid where the solution is desired. In this case one applies N multigrid cycles on level
K and then the solution is interpolated on the next finer grid. The interpolation provides a
first approximation for the multigrid solution process on this finer level and so on until the
finest grid is reached. The combination of the nested iteration technique with the multigrid
scheme is called the full multigrid (FMG) scheme.

Because of the action of the smoothing iteration and since we deal with elliptic-type
operators, linear or bilinear interpolation operators can be used to transfer error functions
from coarser to finer grids and to transfer residuals from finer to coarser grids. Many choices
of interpolation and restriction operators are possible. For example for two-dimensional
problems, the bilinear interpolation operator Ik

k−1 : Vk−1 → Vk is given in stencil form by

Ik
k−1 =

1
4




1 2 1
2 4 2
1 2 1


 .(4.9)

This choice is consistent with the assumption of bilinear finite elements on each square
partition of the discretization.

To transfer residuals one can use the full-weighting restriction operator Ik−1
k : Vk → Vk−1

given in stencil form by

Ik−1
k =

1
16




1 2 1
2 4 2
1 2 1


 .(4.10)

The action of Ik
k−1 and of Ik−1

k on pairs of grid functions is denoted by Ik
k−1 and Ik−1

k ,
respectively.

We complete this section describing the algebraic multigrid (AMG) approach to the
solution of Akuk = fk, representing a discretized partial differential equation. Algebraic
multigrid solvers [26, 37, 38, 41, 54, 92, 96, 104] have been developed to resolve the diffi-
culty of designing geometric multigrid schemes for problems which are highly non-regular
(i.e. discontinuous coefficients, singularities, etc.) and in case complex computational do-
mains are considered. AMG schemes resemble the geometric multigrid process utilizing only
information contained in the algebraic system to be solved. For a review see [96].

We now outline the main concepts of the algebraic multigrid approach. The algebraic
multigrid algorithm constructs a hierarchy of problems indexed by k = 1, . . . , L where L
denotes the coarsest level. Notice that in this case the level index k is reversed: The finest
problem corresponds to k = 1, coarser problems correspond to larger k. We denote by Nk

the total number of (variables) points at level k.
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In the development of AMG, smooth and rough components of the error are defined
in an algebraic sense. Roughly speaking, e is smooth for the given iteration operator S if
|Se| ≈ |e|, in the energy norm. The construction of the prolongation operator Ik

k+1 is based
on the definition of smooth and rough error components and it is such to have the smooth
error vectors in its range.

Using the notion of algebraic smoothness it is assumed to approximate the smooth error
component e at point i as a linear combination of its neighboring error components ej . That
is, the following direct interpolation formula is used [96]

ei =
∑

j∈Pi

wij ej , i ∈ F,(4.11)

where Pi ⊂ Ñi ∩ C, Ñi = {j 6= i : aij 6= 0}, and wij = −αiaij/aii. The wij ’s measure the
coupling between variables and αi is introduced to take into account that in general Pi 6= Ñi.
Here, we have partitioned the whole set of unknown variables (also called points) in two
subsets, C and F . The subset C has been selected as the subset of linearly independent
components for the prolongation operator. It represents a coarse level of variables. The
remaining variables belonging to the complement F of C are assumed to be expressed by
means of (4.11).

With the sets C and F given, one can define the AMG components. The restriction
operator is given by the transpose of the prolongation operator, multiplied by a normalization
coefficient as follows Ik+1

k = c
(
Ik
k+1

)T . In our implementation we choose c = Nk+1
Nk

. With
this choice the restriction operator maps a constant to an almost constant vector with the
same mean value.

The coarse matrix of coefficients Ak+1 is defined by the Galerkin formula

Ak+1 = Ik+1
k Ak Ik

k+1.

With these components, the solving phase of AMG can be implemented according to
the classical multigrid schemes like the V -cycle and the W -cycle.

Notice that the main step in the implementation of AMG schemes is the construction
of the sets Pi. The set Pi should contain those indices j for which the absolute value of
wij is larger, or at least some of them. To this end the notion of strong coupling between
variables is introduced [96]. A point i is said to be strongly negatively coupled (or strongly
n-coupled) to another point j if

−aij > εstr max
aik<0

|aik| with 0 < εstr < 1.(4.12)

The set of points to which i is strongly n-coupled is denoted by Si. Clearly the variables in
Si should be in Pi to have an effective interpolation formula. Consequently a point which
has a large amount of points strongly n-coupled to it should be put in C. This amount is
the number of elements in the set ST

i = {j : i ∈ Sj}. Once the point i has been put in C,
the points in ST

i which are not already in C are put in F .
For the purpose of further reducing memory complexity, aggressive coarsening is used.

This corresponds to a generalization of the notion of connectivity between points: the point
i has a (p, l) long-range strong n-connection with the point j if there are at least p paths
of length l, each given by a sequence of points i0, i1, . . . , il with i0 = i and il = j such
that iq+1 ∈ Siq for q = 0, 1, . . . , l − 1 [96]. Aggressive coarsening is made by substituting
the set Sp,l

i = {j ∈ Ω : i strongly n− connected to j w.r.t. (p, l)} to Si in the algorithm
previously described. Using S2,2

i or S1,2
i the computational burden for the C/F splitting is

high. In [14, 15, 25] we propose a modification of the splitting algorithm [96] which keeps the
computational effort to a minimum. Specifically, our aggressive coarsening strategy differs
from that in [96] where standard coarsening followed by a further coarsening for C variables
is used.

Corresponding to the long-range coarsening strategy, multi-pass interpolation is per-
formed. With our splitting algorithm, a three-pass interpolation is enough, whereas using
the approach in [96] requires a four-pass interpolation.
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5. Analysis of the multigrid solution of an elliptic optimality system. In this
section, the main results of the work presented in [21] are reported. In this paper, finite
difference discretization of the optimal control problem (2.4) and its multigrid solution are
investigated. Results on stability of the finite difference optimality system and optimal-order
error estimates in appropriate norms are discussed next.

Consider the following discrete optimality system
{ −ν ∆hyh − ph = ν R̃hg,

−∆hph + yh = R̃hz.
(5.1)

Which is obtained from (3.3) by eliminating uh using the control equation.
To investigate the convergence of the solution of (5.1) to the solution of (2.6) as h → 0+,

we introduce the family of operators

Ah =
( −ν ∆h −Ih

Ih −∆h

)
,(5.2)

where Ih is the identity operator on grid functions vh. The operators Ah are defined between
product spaces of grid functions. The casesAh : H1

h×H1
h → H−1

h ×H−1
h andAh : H2

h×H2
h →

L2
h × L2

h were considered.
For Ah : H1

h ×H1
h → H−1

h ×H−1
h it is proved that the family {Ah}h>0 is H1

h-regular,
that is, Ah is invertible and there exists a constant C1 independent of h such that

||A−1
h ||L(H−1

h ×H−1
h ,H1

h×H1
h) ≤ C1.

Analogously, it is proved that Ah : H2
h ×H2

h → L2
h × L2

h is H2
h-regular.

The next step in order to get accuracy estimates is to prove consistency of Ah with its
infinite dimensional analog given by

A =
( −ν ∆ −I

I −∆

)
,(5.3)

where ∆ is understood with homogeneous Dirichlet boundary conditions. This operator is
well defined from H1

0 (Ω)×H1
0 (Ω) to H−1(Ω)×H−1(Ω) as well as from (H2(Ω)∩H1

0 (Ω))×
(H2(Ω) ∩H1

0 (Ω)) to L2(Ω)× L2(Ω). We have the following consistency result.
Lemma 5.1. There exists a constant CK independent of h such that

||AhR2
h − R̃2

hA||L((H2∩H1
0 )2,(H−1

h ×H−1
h )) ≤ CK h.

Using these preparatory results the following two theorems are stated.
Theorem 5.2. There exists a constant K1, depending on Ω, g, z, and independent of

h such that

|y∗h −Rhy∗|1 + |u∗h −Rhu∗|1 + |p∗h −Rhp∗|1 ≤ K1 h.

Assuming that the boundaries of Ω coincide with grid lines we have
Theorem 5.3. There exists a constant K2, depending on Ω, g, z, and independent of

h such that

|y∗h −Rhy∗|0 + |u∗h −Rhu∗|0 + |p∗h −Rhp∗|0 ≤ K2 h2.

We now discuss the derivation of sharp convergence factor estimates of the two grid
method solving the optimality system. These estimates are obtained by means of local
Fourier analysis [36]. Then, a multigrid convergence theory in the framework of [32] is
provided that guarantees convergence of the multigrid process towards weak solutions of the
optimality system.
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Table 5.1
Convergence factors.

LFA Experim.

(m1, m2) η(TGk−1
k ) V (m1, m2)

(1,1) 0.25 0.30
(2,1) 0.12 0.12
(2,2) 0.08 0.08
(3,2) 0.06 0.06
(3,3) 0.05 0.05

Consider (5.1) expressed as

Akwk = fk on Ωk,(5.4)

where wk = (yk, pk) and fk = (gk, zk) are defined on the mesh Ωhk
.

As smoother we choose the collective Gauss-Seidel scheme (CGS). It can be written as
Sh = Ih−RhAh where Rh is the iteration matrix. To analyze this iteration by local Fourier
analysis, consider the Fourier space spanned by the functions

φ(θ,x) = a eiθ1x/h eiθ2y/h, θ = (θ1, θ2),

where a = (1, 1)T . One defines

φ low frequency component ⇐⇒ θ ∈ [−π

2
,
π

2
)2,

φ high frequency component ⇐⇒ θ ∈ [−π, π)2 \ [−π

2
,
π

2
)2.

In this framework, the smoothing factor of the CGS scheme for the optimality system
is defined by

µ = µ(Sh) = sup{|ρ(Ŝh(θ))| : θ high frequency },(5.5)

where Ŝh(θ) is the Fourier symbol [100] of the CGS scheme and ρ denotes the spectral
radius.

By inspection in the range of high frequencies for h ∈ [0.01, 0.25] and ν ranging in the
interval [10−6, 1], we find the upper bound µ(Sh) ≤ 0.5.

Local Fourier analysis is also applied to investigate the two grid solution process for the
optimal control optimality system. That is, we apply the local Fourier analysis to the two
grid operator given by

TGk−1
k = Sm2

k [Ik − Ik
k−1 (Ak−1)−1 Ik−1

k Ak]Sm1
k .(5.6)

Here, the coarse grid operator is CGk−1
k = [Ik − Ik

k−1 (Ak−1)−1 Ik−1
k Ak].

The convergence factor is given by

η(TGk−1
k ) = sup{ρ(T̂G

k−1

k (θ)) : θ ∈ [−π/2, π/2)2}.

Here, ρ(T̂G
k−1

k (θ)) is the spectral radius of T̂G
k−1

k (θ).
In Table 5.1 the values of η(TGk−1

k ) obtained with the two grid analysis are reported. For
comparison, the observed value of convergence factor defined as the “asymptotic” value of
the ratio between the discrete L2-norms of residuals resulting from two successive multigrid
cycles on the finest mesh is reported. Notice that the values reported in Table 5.1 are typical
of the standard Poisson model problem. These values have been obtained considering the
mesh size value h ranging in the interval [0.01, 0.25] corresponding to the interval of mesh
sizes used in the multigrid code. The value of the weight ν has been taken in the interval
[10−6, 1].

In the framework of local Fourier analysis it is possible to obtain sharp convergence
estimates which are important in the first phase of development of the multigrid components.
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The other analytical tool presented here is important from the theoretical point of view. It
makes possible to prove optimal convergence of the multigrid process under weak regularity
assumptions. The general multigrid convergence theory presented in [21] and discussed here
is developed in two steps. First, the multigrid method applied to the uncoupled differential
system is considered. Then, the non differential coupling term characterizing the optimality
system is introduced. By analyzing the difference between the operators obtained with and
without coupling, we are able to estimate the convergence factor of multigrid for optimality
systems based on the estimates available for the uncoupled problem.

For ease of presentation, we briefly describe multigrid convergence theory for scalar
Poisson equation discretized by finite difference method on a unit square. Consider

−∆y = f in Ω,
y = 0 on ∂Ω.

(5.7)

The matrix form of this problem is

Âkyk = fk.(5.8)

Let P̂k−1 : Vk → Vk−1 (resp. Ik−1
k : Vk → Vk−1) be the Âk (resp. L2

k) projections defined by

(Âk−1P̂k−1u, v)k−1 = (Âku, Ik
k−1v)k, (resp. (Ik−1

k u, v)k−1 = (u, Ik
k−1v)k),

for all u ∈ Vk and v ∈ Vk−1. Let R̂k : Vk → Vk be the iteration operator of the smoothing
process. Then the V -cycle multigrid algorithm to solve (5.8) in recursive form is given as
follows:

Multigrid Algorithm V (m1, m2)
Set M̂1 = Â−1

1 . For k ≥ 2 define M̂k : Vk → Vk in terms of M̂k−1 as follows. Let g ∈ Vk.
1. Set y0 = 0.
2. Define yl for l = 1, . . . , m1 by

yl = yl−1 + R̂k(g − Âk yl−1).

3. Set ym1+1 = ym1 + Ik
k−1q where

q = M̂k−1I
k−1
k (g − Âk ym1).

4. Set M̂kg = ym1+m2+1 where y` for ` = m1 + 2, · · · ,m1 + m2 + 1 is given by Step 2
(R̂t

k instead of R̂k).
For the purpose of analysis, we take m1 = 1 and m2 = 0.
From the definition of P̂k−1, we see that

Ik−1
k Âk = Âk−1P̂k−1.

Let Ŝk = Ik − R̂kÂk for k > 1, where Ik denotes the identity on Vk. Then Ŝk y = y − y1.
Now for y ∈ Vk, k = 2, · · · , L, we have

(Ik − M̂kÂk) y = y − y1 − Ik
k−1q

= Ŝk y − Ik
k−1M̂k−1Âk−1P̂k−1Ŝk y

= [Ik − Ik
k−1M̂k−1Âk−1P̂k−1] Ŝk y

= [(Ik − Ik
k−1P̂k−1) + Ik

k−1(Ik−1 − M̂k−1Âk−1) P̂k−1]Ŝk y.

(5.9)

The convergence results of the multigrid method are expressed in terms of the error
operators Êk := Ik − M̂kÂk and Ê := ÊL.

We have the following result from [32].
Theorem 5.4. Let R̂k be a suitable iteration operator. Then there exists a positive

constant δ̂ < 1 such that

(ÂLÊLy, ÊLy)L ≤ δ̂2 (ÂLy, y)L for all y ∈ VL,
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where δ̂ = CL/(CL + 1).
To prove convergence of multigrid for the optimal control optimality system, we first

consider the decoupled symmetric system:

−ν∆y = νg in Ω,
y = 0 on ∂Ω,

−∆p = z in Ω,
p = 0 on ∂Ω.

(5.10)

This system is exactly two copies of Poisson equation, hence the multigrid convergence
theory for this system inherits the properties of the scalar case. In fact, if we define

Âk =
(

ν Âk 0
0 Âk

)
,(5.11)

and analogously M̂k, Êk etc. as the system counterparts of M̂k, Êk etc., then the multigrid
algorithm has exactly the same form as (5.9) with M̂k, Âk, etc. replacing M̂k, Âk, etc.. As
a consequence we have

Theorem 5.5. Under the assumption of Theorem 5.4, there exists a positive constant
δ̂ < 1 such that

(ÂLÊL(y, p), ÊL(y, p))L ≤ δ̂2(ÂL(y, p), (y, p))L for all (y, p) ∈ VL(5.12)

where δ̂ has the same form as in Theorem 5.4.
To analyze the optimality system we let

Ak = Âk + dk,

where

dk =
(

0 −Ik

Ik 0

)
.

We note that

|(dk(u, v), (y, p))| ≤ C0 |(u, v)|0 |(y, p)|0,(5.13)

for some constant C0. Now, the multigrid algorithm corresponding to this nonsymmetric
problem has exactly the same recursive form as (5.9) with Mk, Ak, etc. replacing M̂k, Âk,
etc. and thus,

Ek = Ik −MkAk = [Ik − Ik
k−1Pk−1 + Ik

k−1(Ik−1 −Mk−1Ak−1)Pk−1]Sk,(5.14)

where Ik is the identity operator on Vk.
Next, we recall some preparatory lemmata; see [21, 44].
Lemma 5.6. There exists some constant CS independent of k such that

|(Âk(Sk − Ŝk)w,v)k| ≤ CS hk |w|1 |v|1,(5.15)

for all w,v ∈ Vk.
Lemma 5.7. The following inequalities hold

|(Âk−1(P̂k−1 −Pk−1)w,v)k−1| ≤ CP hk−1 |w|1|v|1, for w ∈ Vk, v ∈ Vk−1(5.16)

and

|(Âk(Ik − Ik
k−1Pk−1)w,v)k| ≤ CI hk |w|1 |v|1, for w ∈ Vk, v ∈ Vk(5.17)

where CP and CI are some constants independent of k.
In the present framework the main result is given by the following theorem.
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Theorem 5.8. There exist positive constants h0 and δ < 1 such that for all h1 < h0

we have

(ÂLELw, ELw)L ≤ δ2(ÂLw,w)L, for all w ∈ VL,

where δ = δ̂ + Ch1 and δ̂ is as in Theorem 5.5.
The requirement for h1 to be sufficiently small was not found to be relevant in our

numerical experience (using collective Gauss-Seidel). However, the estimate of Theorem 5.8
states that, for sufficiently small h1 we have δ ≈ δ̂, that is, the convergence factor of the
multigrid method applied to the optimality system is close to the convergence factor of the
multigrid scheme applied to the scalar Poisson problem. This fact agrees with our numerical
experience and the results reported in Table 5.1.

6. Optimal control of the steady state solid fuel ignition model. In this sec-
tion we present results given in [18, 22] for the case of singular optimal control problems
discretized by finite differences and solved by multigrid techniques. Two optimal control
strategies for solid fuel ignition phenomena are considered and compared. The correspond-
ing optimality systems are solved to second-order accuracy by a multigrid method whose
convergence properties are independent of the values of the weights in the cost functionals
and of the number of grid points.

The steady state solid fuel ignition model which can give rise to blow-up phenomena is
given by

∆y + δ exp(y) = u in Ω,(6.1)
y = 0 on ∂Ω.

Due to the non-monotonic sign in front of the exponential term, this nonlinear indefinite
problem may admit multiple solutions or no solution at all depending on Ω and on the
value of the positive coefficient δ. Actually, the absence of coerciveness represents a major
difficulty in the analysis and in the solution of this problem.

A necessary condition for the existence of at least one solution is expressed by the
following theorem [53].

Theorem 6.1. Let λ0 be the smallest eigenvalue of −∆ under homogeneous Dirichlet
boundary conditions. If λ0 < δe, then the set of solutions is empty.
Thus, in order to have at least one solution we must have λ0 ≥ δe. If Ω is a unit square,
then there exists a critical value δ∗ > 0 such that

• If δ > δ∗ there is no solution.
• If δ ∈]0, δ∗] (δ ∈]0, δ∗[) then there exists at least one and at most two solution which

belong to W 2,q(Ω), q ≥ 1.
• If δ = δ∗ there exists one solution y∗ ∈ H1

0 (Ω) ∩W 2,q(Ω), q ≥ 1, and δ∗ is referred
to as the turning point.

For the case of Ω = [0, 1]×[0, 1], the turning point has been estimated, based on continuation
techniques and obtained δ∗ ≈ 6.80; see, e.g., [50].

Sufficient conditions for existence of solutions to (6.1) where u is a continuous function
on Ω can be obtained by means of the upper and lower solutions method [53, 87, 94]. We
have the following result [18].

Theorem 6.2. Let ỹ and ŷ be ordered upper and lower solutions of (6.1). Then {y(k)}
converges monotonically from above to a solution ȳ, and {y(k)} converges monotonically
from below to a solution y, and both solutions of (6.1) belong to C2+α(Ω), α > 0. Moreover,
y ≤ ȳ.

Control on (6.1) can be exerted by adding or subtracting thermal energy to the fuel
through a source term. The optimal control problem is formulated as follows





minu∈L2(Ω) J(y(u), u),
∆y + δ exp(y) = u in Ω,

y = 0 on ∂Ω,
(6.2)
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Due to the lack of coercivity of the state equation it is at first not obvious how to properly
choose the cost functional J(y, u). In previous work two formalisms were considered:

J1(y, u) =
1
2
||y − z||2L2(Ω) +

β

2
||ey − ez||2L2(Ω) +

ν

2
||u||2L2(Ω)(6.3)

(see [72]), or as,

J2(y, u) =
1
2
||y − z||2L2(Ω) +

1
2
||∇y −∇z||2L2(Ω) +

ν

2
||u||2L2(Ω)(6.4)

(see [70]). In (6.3) and (6.4) the next to last terms guarantee the existence of solutions to
(6.2). In these cost functionals ν is the weight of the cost of the control, β is a positive
scaling factor, and z ∈ H2(Ω) is the desired state. In both cases radial unboundedness of
J in (6.2) is guaranteed and existence of a solution (u∗, y∗) = (u∗, y(u∗)) to the optimal
control problem (6.2) with J = J1 or J = J2 can be established.

For J = J1 the solution of the optimal control problem is characterized by the following
optimality system

∆y + δ exp(y)− u = 0,

(OPC1) ∆p + δ exp(y)p + (y − z) + βey(ey − ez) = 0,

νu− p = 0.

Similarly, the optimality system corresponding to J = J2 is found to be

∆y + δ exp(y)− u = 0,

(OPC2) ∆p + δ exp(y)p + (y − z)−∆(y − z) = 0,

νu− p = 0.

We now discuss the discretization of (6.1) on Ωh. We have

∆hyh + δ exp(yh) = uh in Ωh,(6.5)
yh = 0 on ∂Ωh.

Necessary and sufficient conditions for existence of solutions to the steady state solid fuel
ignition model can be extended to the present discrete case. A sufficient condition for
existence of solutions to (6.5) can be obtained by adaptation of the upper and lower solutions
method; see [88].

Second-order accuracy of the solution to (6.5) is stated in the following lemma [18]. It
uses results given in [27] for a linear indefinite problem.

Lemma 6.3. Let y ∈ C4(Ω) be a bounded solution to the steady state solid fuel ignition
model (6.1) and let yh satisfy (6.5), with limh→0 ||y − yh|| = 0, where || · || denotes the
maximum norm on Ωh. Then for sufficiently small mesh sizes h we have

||y − yh|| = O(h2).

The discrete system corresponding to (OPC1) is denoted by

∆hyh + δ exp(yh)− uh = 0,

∆hph + δ exp(yh)ph + (yh − zh) + βeyh(eyh − ezh) = 0,(6.6)
νuh − ph = 0.

For (OPC2) we have

∆hyh + δ exp(yh)− uh = 0,

∆hph + δ exp(yh)ph + (yh − zh)−∆(yh − zh) = 0,(6.7)
νuh − ph = 0.
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0 5 10 15 20 25 30 35 40 45
−12

−10

−8

−6

−4

−2

0

Work Units

Lo
g1

0 
(N

or
m

 o
f R

es
id

ua
l)

0 5 10 15 20 25 30 35 40 45
−16

−14

−12

−10

−8

−6

−4

−2

Lo
g1

0 
(N

or
m

 o
f R

es
id

ua
l)

Work Units

Fig. 6.1. Convergence history of the GSN-FAS method for solving the state equation (left) and the
co-state equation (right) of (OPC1) for different ν. We have ν = 10−3 with ’*’; ν = 10−5 with ’–’,
ν = 10−7 with ’+’, ν = 10−9 with ’. . .’

Using the result of Lemma 6.3 and results of [27] it is possible to prove second-order
accuracy of the solution of the optimality system.

To solve (6.6) and (6.7) using the FAS Algorithm two smoothing schemes were considered
[18]. Following [2, 3] the first smoothing iteration is given by the following steps: One step of
an iterative solver applied to the state equation, then one step of an iterative solver applied
to the co-state equation and finally update of the control function by means of u = p/ν. As
iterative solver for each equation we take one Gauss-Seidel-Picard (GSP) iteration.

Our second choice is the Gauss-Seidel-Newton (GSN) iteration. It is a local Newton
step applied at each grid point to the set of variables φ = (y, p, u). It is defined by

φ
(new)
ij = φ

(old)
ij − [G′(φij)]−1G(φij).(6.8)

The vector equation G(yh, ph, uh) = 0 represents (6.6) or (6.7) at any grid point and
G′(yh, ph, uh) denotes the Jacobian of G.

Notice that by this approach no global linearization of the optimal control problem is
involved. The FAS method is applied directly to the optimal control system.

We give examples demonstrating the efficiency of the multigrid method to solve singular
optimal control problems. We report the values of the tracking error ||yh − zh|| (maximum
norm) as well as of the control costs |uh|0 = |ph|0/ν. The numerical accuracy of the solution
can be expressed by ||EH || = maxΩH |yH − ÎH

h yh| and the norm of the error of the adjoint
variable p is defined by ||VH || = maxΩH |pH − ÎH

h ph|. Recall that the critical value for δ
is δ∗ = 6.80. Consider the desired state given by z(x1, x2) = 1

π2 sin(πx1) sin(πx2) and set
δ = β = 6.0, and ν = 5 · 10−3.

With this setting, the FAS algorithm with GSP-smoothing show typical multigrid con-
vergence behavior. However, for smaller values of ν the performance of the GSP-FAS method
worsen. The GSP method is not robust with respect to this parameter.

A significant improvement in robustness of the FAS algorithm is obtained using the GSN
iteration for smoothing. The resulting full multigrid version of the FAS scheme computes
the solution of (OPC1) and of (OPC2) in a few work units and is robust with respect to
value of ν. The convergence history of the GSN-FAS method solving (OPC1) is illustrated
in in Figure 6.1. Observe that the convergence factor is almost independent of ν. Similar
results are obtained in solving the (OPC2) problem; see Figure 6.2.

Results obtained in [18, 22] confirm the expected optimal control behavior: As ν de-
creases, |uh|0 increases and ||yh − zh|| decreases, both for (OPC1) and (OPC2); See Tables
6.1 and 6.2. In Table 6.2 we report results obtained using the FAS based FMG scheme.
Notice that the value of ||yh− zh|| is almost independent of the discretization level, showing
that the numerical solution quickly attains its optimal value. Comparing the tracking error
obtained with the two formalisms we note that, with the present choice of z, the J2-based
formulation allows better tracking than the J1-based formulation.
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Fig. 6.2. Convergence history of the GSN-FAS method for solving the state equation (left) and the
co-state equation (right) of (OPC2) for different ν. We have ν = 10−3 with ’*’; ν = 10−5 with ’–’,
ν = 10−7 with ’+’, ν = 10−9 with ’. . .’

Table 6.1
Tracking ability of the GSN-FAS method; z(x1, x2) = sin(πx1) sin(πx2)/π2 .

OPC1 OPC2
ν ||yh − zh|| ||yh − zh||

10−1 3.4 (-1) 2.5 (-1)
10−3 3.0 (-2) 5.6 (-3)
10−5 3.4 (-3) 6.7 (-5)

Table 6.2
Tracking and accuracy results with (OPC1) and (OPC2) obtained by the GSN-FAS based FMG scheme.

Use β = δ = 6.8, and ν = 10−5.

OPC1 OPC2
3-FMG 3-FMG

k ||yh − zh|| ||EH || ||VH || |uh|0 ||yh − zh|| ||EH || ||VH || |uh|0
3 0.26(-2) 0.41(-3) 0.35(-5) 5.72 0.64(-4) 0.27(-4) 0.33(-6) 5.82
4 0.30(-2) 0.15(-3) 0.12(-5) 5.81 0.65(-4) 0.11(-5) 0.11(-5) 6.05
5 0.33(-2) 0.45(-4) 0.30(-6) 5.83 0.66(-4) 0.29(-5) 0.28(-5) 6.15
6 0.34(-2) 0.11(-4) 0.77(-7) 5.84 0.67(-4) 0.35(-5) 0.35(-5) 6.20
7 0.34(-2) – – 5.84 0.67(-4) – – 6.21

5-FMG 5-FMG
k ||yh − zh|| ||EH || ||VH || ||uh||0 ||yh − zh|| ||EH || ||VH || ||uh||0
3 0.26(-2) 0.42(-3) 0.35(-5) 5.72 0.64(-4) 0.33(-6) 0.33(-6) 5.82
4 0.30(-2) 0.15(-3) 0.12(-5) 5.81 0.65(-4) 0.11(-5) 0.11(-5) 6.05
5 0.33(-2) 0.45(-4) 0.30(-6) 5.83 0.66(-4) 0.29(-5) 0.28(-5) 6.15
6 0.33(-2) 0.11(-4) 0.77(-7) 5.84 0.67(-4) 0.35(-5) 0.35(-5) 6.20
7 0.34(-2) – – 5.84 0.67(-4) – – 6.21

In Table 6.3 we depict the convergence factors for the state and the co-state equations
of (OPC1) and (OPC2), with various choices for δ, β = δ, and ν = 10−5. We observe that
for a wide range of δ-values the convergence factors are almost independent of the number of
variables. Notice that the controlled system is considered for values of δ significantly larger
than the critical value δ∗ beyond which the uncontrolled system does not admit solutions.
A slight deterioration is revealed as the coefficient of the nonlinearity becomes very large.

When solving (OPC1) a value of the scaling factor β must be chosen. Only a weak
influence of this factor on the convergence property of the multigrid iteration is observed.
Tracking improves as β is increased. Finally, in [18] examples are given where the desired
function z is not attainable by any control. Convergence behavior similar to that observed
above is observed also in these cases. Results depicted in Figure 6.3 show that the (OPC1)
approach is more suitable for tracking objective functions that are not compatible with
the boundary conditions. The (OPC2) approach is more suitable when smooth objective
functions are considered that satisfy the boundary conditions.
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Table 6.3
Convergence factors of the GSN-multigrid method on different grids and various δ.

OPC1
L=4 L=7

δ ρy ρp ρy ρp

1 0.09 0.10 0.09 0.09
10 0.07 0.09 0.08 0.09
50 0.15 0.16 0.12 0.12
100 0.19 0.19 0.13 0.12

OPC2
L=4 L=7

δ ρy ρp ρy ρp

1 0.09 0.09 0.10 0.11
10 0.09 0.09 0.10 0.05
50 0.09 0.09 0.10 0.05
100 0.07 0.07 0.09 0.05
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Fig. 6.3. State solutions of (OPC1) and (OPC2) with z = 1/π2 (not attainable).

7. Multigrid schemes for elliptic constrained optimal control problems. By
reformulating the presence of constraints as a nonlinear equation relating the control to the
adjoint variable, it is possible to solve constrained optimal control problems using nonlinear
multigrid methods. This approach was considered in [11]. The resulting multigrid scheme
shows typical multigrid efficiency for sufficiently large values of the weight of the cost of
the control. For small values of the weight, convergence of the multigrid iteration may
deteriorate, showing a lack of robustness of this approach.

In [20] we propose a different technique where the constraints are enforced at each grid
point in the smoothing procedure. This procedure appears to be robust with respect to
changes of the value of the weight and, in particular, it allows the choice ν = 0. This fact
makes our multigrid algorithm a useful tool to investigate bang-bang type control phenomena
for elliptic problems.

To describe our multigrid approach consider the following optimal control problem




minu∈Uad
J(y, u),
−∆y = Bu + g in Ω,

y = 0 on ∂Ω,
(7.1)

where Ω is a open bounded set in R2, with boundary ∂Ω and u ∈ Uad ⊂ L2(Ω). We assume
that Ω is convex or that ∂Ω is C1,1 smooth. The cost functional J is of the tracking type
and is given by

J(y, u) =
1
2
||y − z||2L2(Ω) +

ν

2
||Bu||2L2(Ω),(7.2)

where ν ≥ 0. The set of admissible controls is the closed convex subset of L2(Ω) given by

Uad = {u ∈ L2(ω) |u(x) ≤ u(x) ≤ u(x) a.e in ω ⊂ Ω},(7.3)
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where u and u are elements of L∞(Ω) and ω is a subset of Ω. The extension operator
B : L2(ω) → L2(Ω) is defined as follows

Bu =
{

u in ω,
0 in Ω \ ω.

Existence of a unique solution to (7.1) and its characterization are well known [20, 79, 82].
We have that the solution to (7.1) is characterized by the following optimality system

−∆y = Bu + g in Ω,
y = 0 on ∂Ω,

−∆p = −(y − z) in Ω,
p = 0 on ∂Ω,

(νu−B∗ p, v − u) ≥ 0 for all v ∈ Uad,

(7.4)

where B∗ denotes the adjoint of B.
Notice that the last equation in (7.4) giving the optimality condition is equivalent to

(see [79, 82])

u = max{u, min{u,
1
ν

p(u)}} in ω, if ν > 0.(7.5)

We obtain the following regularity result.
Lemma 7.1. If ν > 0 and u, u ∈ H1(Ω) then u ∈ H1(Ω).
This regularity result is used [20] in the analysis of the finite difference approximation

of the solution to the optimality system.
The unique solution u to (7.1) with ν = 0 satisfies

−∆y = Bu + g in Ω,
y = 0 on ∂Ω,

−∆p = −(y − z) in Ω,
p = 0 on ∂Ω,
p = min{0, p + u− u}+ max{0, p + u− u} in Ω.

(7.6)

We are interested in solutions for which the inactive set I = {x : u < u < u} is small.
For this case, sufficient conditions for the construction of test examples are given in [20].

We propose to call controls for which I contains no interior points almost bang-bang.
Sufficient conditions which guarantee meas(I) = 0, i.e. that the control is bang-bang,
appear to be an interesting open problem.

Now consider the discrete optimal control problem
{

min 1
2 |yh − R̃hz|20 + ν

2 |uh|20,
−∆hyh = Bhuh + R̃hg,

(7.7)

where uh ∈ Uadh = Uad ∩ L2
h.

Let u∗h denote the unique solution to (7.7) and set y∗h = yh(u∗h). The optimality system
related to (7.7) is found to be

−∆hy∗h = Bhu∗h + R̃hg,

−∆hp∗h = −(y∗h − R̃hz),(7.8)
(νu∗h −B∗

h p∗h) · (vh − u∗h) ≥ 0 for all vh ∈ Uadh.

To investigate the accuracy of the solution to (7.8) we use the approach of [82] extended
to the finite difference framework introduced in Section 3. We require ν > 0 and u, u ∈
C0,1(Ω). The following accuracy estimates are obtained in [20]. We have

|u∗h −Rhu∗|0 ≤ c h, |y∗h −Rhy∗|0 ≤ c h, and |p∗h −Rhp∗|0 ≤ c h.

These estimates are sub-optimal in the sense that H2(Ω)-regularity of y∗ and p∗ would
suggest O(h2) convergence estimates. Such results are impeded by the lack of the estimate
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Table 7.1
Accuracy results; ν = 10−8.

mesh |y − yh|0 |p− ph|0 |u− uh|0
129× 129 1.63 10−7 1.60 10−3 1.54 10−3

257× 257 4.20 10−8 4.03 10−4 5.26 10−4

513× 513 1.11 10−8 1.00 10−4 1.80 10−4

1025× 1025 2.93 10−9 2.51 10−5 6.26 10−5

|y∗h − ȳh|0 ≤ c h |y∗h − ȳh|1. For finite element approximations this is a consequence of the
Aubin-Nitsche duality argument. If the estimate were to hold, we would obtain h2. More-
over, numerical experiments show that the estimate for the control function is pessimistic.
In fact, we observe

|u∗h −Rhu∗|0 ≤ c h3/2,

and O(h2) convergence for the state and the adjoint variables. In a recent publication [90]
these convergence rates could be verified for finite element approximations.

To validate these accuracy results consider the following exact solution to (7.4) with

g(x1, x2) = −u + 2π2 sin(πx1) sin(πx2),(7.9)
z(x1, x2) = −∆p + y,(7.10)

where

y(x1, x2) = sin(πx1) sin(πx2),(7.11)
p(x1, x2) = sin(8πx1) sin(8πx2),(7.12)
u(x1, x2) = max{−1, min{1, p/ν}}.(7.13)

Note that the control is active for any ν < 1.
Results of experiments with this test case are reported in Table 7.1. We observe second-

order convergence of the state and adjoint variables. In fact, the solution errors reduce
approximately as a factor of four by halving the mesh size. On the other hand, the error for
the control scales as h3/2.

These results have been obtained using our multigrid scheme. For the formulation of
this algorithm notice that in order to represent (7.8) on all grids we need to have a multigrid
full approximation storage representation of the problem. That is, a representation where
the solution and not the error is computed on all grids. In fact, in order to impose the
constraints the variables uh and ph must be available at all levels.

Let (7.8) with h = hk represents the fine grid problem to be solved, then the corre-
sponding coarse grid problem on the grid with mesh size H = hk−1 is given by

−∆HyH −BHuH = IH
h gh + τ(y)H

h ,(7.14)
−∆HpH + yH = IH

h zh + τ(p)H
h ,(7.15)

(νuH −B∗
H pH) · (vH − uH) ≥ 0 for all vH ∈ UadH ,

where τ(y)H
h and τ(y)H

h are fine-to-coarse defect corrections defined by

τ(y)H
h = −∆H ÎH

h yh −BH ÎH
h uh − IH

h (−∆hyh −Bhuh),(7.16)
τ(p)H

h = −∆H ÎH
h ph + ÎH

h yh − IH
h (−∆hph + yh),(7.17)

with ÎH
h : L2

h → L2
H a restriction operator not necessarily equal to IH

h . We choose ÎH
h to be

straight injection. Once the coarse grid problem is solved, the coarse grid correction follows

ynew
h = yh + Ih

H(yH − ÎH
h yh),(7.18)

pnew
h = ph + Ih

H(pH − ÎH
h ph),(7.19)

where Ih
H : L2

H → L2
h represents an interpolation operator.
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The coarse grid correction step just described is implemented in the W (m1,m2)-cycle
process. In fact, our numerical experience [12] shows that in case of constrained control
problems the use of W -cycles results in a robust multigrid iteration.

In the W -cycle we apply m1 pre-smoothing and m2 post-smoothing iterations. In the
present context, the smoothing iteration must reduce the high-frequency components of the
error and must preserve the inequality constraint. In case of unconstrained optimal control
problems of the type considered here, the Fourier analysis presented in [21] and discussed in
Section 5 proves that collective Gauss-Seidel iteration has the smoothing property required
in the multigrid method. In order to present our modification of this iteration that takes
account of the presence of constraints consider (7.8) at x ∈ Ωh, where x = (ih, jh) and i, j
index the grid points lexicographically. We have

−(yi−1 j + yi+1 j + yi j−1 + yi j+1) + 4yij − h2 Bhuij = h2gij + h2 f
(y)
ij ,(7.20)

−(pi−1 j + pi+1 j + pi j−1 + pi j+1) + 4pij + h2 yij = h2 zh + h2 f
(p)
ij ,(7.21)

(νuij −B∗
h pij) · (vij − uij) ≥ 0 for all vh ∈ Uadh,(7.22)

where f (y) and f (p) have been introduced to take into account the presence of defect cor-
rections in (7.14) and (7.15).

A Gauss-Seidel step at x consists in updating the values yij and pij such that the
resulting residuals of the two equations at that point are zero. The neighboring variables
are considered constant during this process. Therefore, define the two constants

Cy = (yi−1 j + yi+1 j + yi j−1 + yi j+1) + h2gij + h2 f
(y)
ij ,

and

Cp = (pi−1 j + pi+1 j + pi j−1 + pi j+1) + h2 f
(p)
ij .

Replacing these two constants in (7.20) and (7.21), we obtain yij and pij as functions of uij

as follows

yij = (Cy + h2 Bhuij)/4,(7.23)

and

pij = (4 Cp − h2 Cy + 4 h2 zij − h4 Bhuij)/16.(7.24)

Now to obtain the uij update, replace the expression for pij in the inequality constraint and
define the auxiliary variable

ũij =
1

16 ν + h4
B∗

h (4Cp − h2 Cy + 4 h2 zij).(7.25)

Then, the new value for uij resulting from our Gauss-Seidel step is given by

uij =





uij if ũij > uij

ũij if uij ≤ ũij ≤ uij

uij if ũij < uij

(7.26)

for all x = (ih, jh) ∈ ωh, uij = 0 otherwise. With the new value of uij given, new values for
yij and pij are obtained. This completes the Gauss-Seidel step.

The collective Gauss-Seidel step defined by (7.23), (7.24), (7.25), and (7.26) satisfies
the inequality constraint; see [20]. Further, in case ν = 0 the Gauss-Seidel iteration defined
above satisfies (7.6). Because of (7.26) we can consider the present iteration belongs to the
class of projected Gauss-Seidel schemes [39].

In the following we present numerical results with constrained optimal control problems
obtained using our multigrid scheme. The multigrid setting is as follows. For the coarsest
grid we have h1 = 1/8 and we use up to eleven levels. For L = 11 we have a 8193×8193 mesh.
In all experiments we use m1 = m2 = 2 smoothing steps and the FMG-W -cycle version of
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Table 7.2
Case ω = Ω.

ν = 10−4

mesh ρy, ρp |y − z|0 |ry|0, |rp|0
129× 129 0.04, 0.04 1.11 10−1 3.1 10−10, 1.2 10−13

257× 257 0.03, 0.04 1.11 10−1 6.8 10−10, 7.1 10−14

513× 513 0.03, 0.04 1.11 10−1 4.9 10−10, 1.5 10−13

1025× 1025 0.03, 0.03 1.11 10−2 3.2 10−10, 7.2 10−13

ν = 10−6

mesh ρy, ρp |y − z|0 |ry|0, |rp|0
129× 129 0.56, 0.56 5.30 10−2 1.3 10−6, 2.2 10−10

257× 257 0.52, 0.51 5.30 10−2 1.5 10−7, 1.3 10−11

513× 513 0.03, 0.03 5.30 10−2 3.5 10−10, 5.3 10−14

1025× 1025 0.03, 0.03 5.30 10−2 2.2 10−10, 2.2 10−13

ν = 10−8

mesh ρy, ρp |y − z|0 |ry|0, |rp|0
129× 129 0.63, 0.63 5.28 10−2 1.6 10−3, 8.3 10−8

257× 257 0.54, 0.54 5.28 10−2 2.4 10−6, 7.4 10−11

513× 513 0.64, 0.60 5.28 10−2 2.5 10−7, 3.7 10−12

1025× 1025 0.68, 0.66 5.28 10−2 2.7 10−7, 2.1 10−12

2049× 2049 0.74, 0.71 5.28 10−2 7.8 10−7, 3.5 10−12

4097× 4097 0.76, 0.70 5.28 10−2 7.4 10−8, 2.9 10−12

the algorithm with initial level K = 3. Recall that with this setting the typical multigrid
convergence factor for the unconstrained optimal problem is ρ ≈ 0.08 independently of ν
and of the mesh size; see Section 5.

Consider the following objective function

z(x1, x2) = sin(2πx1) sin(πx2).

We make the choice ω = Ω and the constraints are given by u = −30 and u = 30. For
this case, the constraints are active in large portions of the domain for all three choices of
ν = {10−4, 10−6, 10−8} considered here.

From the results of numerical experiments reported in Table 7.2 we observe that for
ν = 10−4 the multigrid convergence behavior is similar to that observed in the uncon-
strained case. Reducing the value of ν results in steeper gradients of the adjoint and control
variables, particularly close to the boundary where p and u are required to be zero. Fur-
thermore, decreasing ν results in an increasingly more complex switching structure of the
control between upper and lower bounds; see Figure 7.1. The results for ν = 10−6 in Table
7.2 suggest that once the mesh size is sufficiently fine to resolve completely the switching
structure the typical multigrid convergence rate is obtained. They further indicate that the
multigrid convergence factor depends only weakly on the mesh size provided the problem is
sufficiently well resolved on the mesh.

The ability of the multigrid scheme in solving constrained control problems with very
small value of ν allows to investigate the occurrence of almost bang-bang control for the
present class of problems. In particular, with the choice of z given above we can observe fast
switching of the control function in the x2 direction as depicted in Figure 7.1. In this figure
we give plots of the control function for x1 = 3/4 and x2 ∈ [0, 1] for the following choices
of ν ∈ {10−8, 10−10, 10−12, 0}. We can see that as the value of ν is reduced the number of
switching points increases.

The solution obtained for ν = 0 is of interest: By further refining the mesh size additional
switching points can be seen as shown in Figure 7.2.

Now consider the same setting and another desired state given by

z1(x1, x2) = sin(4πx1) sin(2πx2).

The difference between this objective function and the previous one is that the gradient of
z1 is larger close to the boundary. For the choice ν = 0 the constraints are everywhere
active, i.e. differently from the previous case with desired state z the control is bang-bang.
Moreover no fast switching of the control occurs. In Figure 7.3 the optimal control and the
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Fig. 7.1. The control function for x1 = 3/4 and x2 ∈ [0, 1] obtained with ν = 10−8 (top left), ν = 10−10

(top right), ν = 10−12 (bottom left), and ν = 0 (bottom right); 2049× 2049 mesh.
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Fig. 7.2. Switching of the control function for x1 = 3/4 and x2 ∈ [0.9, 1] (notice the scaling) obtained
with ν = 0 on increasingly finer meshes: 1025×1025 (top left), 2049×2049 (top right), 4097×4097 (bottom
left), and 8193× 8193 (bottom right).
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Fig. 7.3. Numerical solutions with z1 and ν = 0. The state (left) and the control (right); 257× 257 mesh.

corresponding state for ν = 0 are depicted. The numerical results in Table 7.3 document
the convergence factors.

Table 7.3
Results of experiments with z1 and ν = 0.

mesh ρy , ρp |y − z|0 |ry|0, |rp|0
513× 513 0.12, 0.13 3.70 10−1 2.9 10−8, 1.3 10−13

1025× 1025 0.12, 0.13 3.70 10−1 2.5 10−8, 4.2 10−13

2049× 2049 0.12, 0.16 3.70 10−1 1.9 10−8, 1.6 10−12

Next consider the case where the control acts on ω which is given by

ω = {x ∈ Ω : (x1 − 1/2)2 + (x2 − 1/2)2 <
√

(7/160)} ⊂ Ω,

and z is the desired state.
In the unconstrained case typical multigrid convergence behavior is obtained. In the

constrained case the obtained convergence factors are similar to those reported for the
previous case with ω = Ω and are reported in Table 7.4. Notice that the convergence
factors are almost mesh independent.

Table 7.4
Case ω ⊂ Ω.

ν = 10−4

mesh ρy, ρp |y − z|0 |ry|0, |rp|0
129× 129 0.05, 0.05 4.24 10−1 4.4 10−10, 5.0 10−11

257× 257 0.05, 0.05 4.23 10−1 3.2 10−10, 1.4 10−13

513× 513 0.05, 0.05 4.23 10−1 2.3 10−10, 5.6 10−13

1025× 1025 0.05, 0.05 4.23 10−1 2.7 10−10, 2.6 10−12

ν = 10−6

mesh ρy, ρp |y − z|0 |ry|0, |rp|0
129× 129 0.61, 0.61 4.23 10−1 6.9 10−6, 1.1 10−9

257× 257 0.67, 0.67 4.22 10−1 3.0 10−6, 2.7 10−10

513× 513 0.71, 0.70 4.22 10−1 1.1 10−6, 5.7 10−11

1025× 1025 0.72, 0.70 4.22 10−1 3.7 10−7, 1.0 10−11

ν = 10−8

mesh ρy, ρp |y − z|0 |ry|0, |rp|0
129× 129 0.57, 0.57 4.23 10−1 7.8 10−5, 1.3 10−8

257× 257 0.58, 0.57 4.22 10−1 1.2 10−5, 6.9 10−10

513× 513 0.64, 0.63 4.22 10−1 5.5 10−6, 1.2 10−10

1025× 1025 0.70, 0.68 4.22 10−1 2.5 10−6, 2.7 10−11

For comparison we report results obtained with the choice ν = 0 and z1 as objective
function. Results of numerical experiments for this case are reported in Table 7.5. In Figure
7.4, bang-bang control in ω can be seen.
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Table 7.5
Results of experiments with z1, ω ⊂ Ω, and ν = 0.

mesh ρy , ρp |y − z|0 |ry|0, |rp|0
513× 513 0.27, 0.23 4.87 10−1 6.6 10−8, 2.4 10−13

1025× 1025 0.22, 0.21 4.87 10−1 1.6 10−7, 6.3 10−13

2049× 2049 0.20, 0.21 4.87 10−1 9.0 10−9, 2.5 10−12
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Fig. 7.4. Numerical solutions with z1 and ω ⊂ Ω and ν = 0. The state (left) and the control (right);
257× 257 mesh.

We now turn to the following boundary optimal control problem with constraints. Min-
imize

J(y, u) =
1
2
||y − z||2L2(Ω) +

ν

2
||u||2L2(∂Ω),(7.27)

subject to u ∈ Uad ⊂ L2(∂Ω) and

−∆y + y = g in Ω,
∂y
∂n = u on ∂Ω,

(7.28)

where Ω is a open bounded set of R2, g ∈ L2(Ω), z ∈ L2(Ω) is the objective function, and
ν ≥ 0. The set of admissible controls is given in this case by

Uad = {u ∈ L2(∂Ω) |u(x) ≤ u(x) ≤ u(x) a.e in ∂Ω},(7.29)

where u and u are functions of L∞(∂Ω).
For the existence of a unique solution to (7.27)-(7.29) we refer to [79]. The solution is

characterized by the following optimality system

−∆y + y = g in Ω,
∂y
∂n = u on ∂Ω,

−∆p + p = −(y − z) in Ω,
∂p
∂n = 0 on ∂Ω,

(νu− p, v − u) ≥ 0 for all v ∈ Uad.

(7.30)

After discretization the optimal control problem becomes




min 1
2 |yh − R̃hz|20 + ν

2 |uh|20,
−∆hyh = R̃hg,

∂n
hyh = uh.

(7.31)

Here, ∂n
h denotes the second-order centered difference quotient with orientation normal to

the boundary. The optimality system related to (7.31) is found to be

−∆hyh + yh = gh,
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∂n
hyh = uh

−∆hph + ph = −(yh − zh),(7.32)
∂n

hph = 0
(νuh − ph) · (vh − uh) ≥ 0 for all vh ∈ Uadh,

where gh = R̃hg and zh = R̃hz.
Notice that to solve (7.32) we need to realize the control on the boundary. For this

purpose we eliminate the Neumann boundary conditions including them in the stencil of the
differential operator considered at the boundary. We discuss this approach explicitly for one
lateral boundary of a rectangular domain Ωh.

Let x = (ih, jh) be a boundary grid point on the side x = 0. We have

−(yi−1 j + yi+1 j + yi j−1 + yi j+1) + (4 + h2)yij = h2gij + h2 f
(y)
ij ,

yi−1 j − yi+1 j = 2huij ,

−(pi−1 j + pi+1 j + pi j−1 + pi j+1) + (4 + h2)pij + h2 yij = h2 zh + h2 f
(p)
ij ,

pi−1 j − pi+1 j = 0.

Summing up the minus Laplacian stencil with the normal derivative the (ghost) variables
outside of Ω are eliminated. We have

−(2yi+1 j + yi j−1 + yi j+1) + (4 + h2)yij − 2huij = h2gij + h2 f
(y)
ij ,

−(2pi+1 j + pi j−1 + pi j+1) + (4 + h2)pij + h2 yij = h2 zh + h2 f
(p)
ij .

The equations obtained in this way have the same structure as (7.20) and (7.21) and can be
solved by our multigrid scheme.

The application of the collective Gauss-Seidel iteration follows along the same lines as
described above. In the interior of the computational domain the collective Gauss-Seidel
iteration reduces in this case to the single Gauss-Seidel iteration for the state equation while
the residuals of the state equation and of the adjoint equation both enter in the relaxation
of the adjoint variable.

For restricting the residuals at the boundary we use the full-weighting restriction opera-
tor [100]. This choice is necessary to guarantee the right scaling for the coarse-grid problem
formulation; see the discussion in [100]. Clearly, on the boundary the restriction operator is
mirrored.

To numerically validate the present algorithm for solving boundary optimal control
problems, consider the desired state given by

z(x1, x2) = (x2
1 − x2

2) sin(πx1) sin(πx2),

and g = 0. We choose constraints given by u = −1 and u = 1 which are active in part of
the boundary for ν ≤ 10−6. The multigrid setting is the same as above. Results for this
case are reported in Table 7.6.

Table 7.6
Results of experiments, boundary control problems; 1025× 1025 mesh.

ν ρy , ρp |y − z|0 |ry |0, |rp|0
10−6 0.05, 0.05 8.09 10−2 1.7 10−10, 2.9 10−13

10−8 0.14, 0.12 8.09 10−2 3.7 10−8, 2.9 10−13

10−10 0.28, 0.28 8.09 10−2 4.7 10−5, 9.9 10−11

0 0.25, 0.26 8.09 10−2 3.5 10−5, 4.8 10−11

8. Algebraic multigrid methods for optimality systems. In this section we re-
port our contribution to the development of algebraic multigrid schemes for solving elliptic
differential systems [14, 15] with a focus on optimality systems arising from optimal control
of convection-diffusion problems.
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Present algebraic multigrid methods have been designed with a focus on scalar problems
which limits the applicability of AMG to differential systems; see, e.g., [86]. In particular,
a straightforward application of AMG schemes to solve optimality systems results in more
copies of equal operators which results in unnecessary high memory complexity. Further-
more, the standard approach results in coarsening operators that not only depend on the
‘differential’ part of the problem but also on zero-order coupling terms. This must be avoided
when solving optimality systems where the coefficient modulating the action of the control
on the system scales as 1/ν, where ν may be taken as small as possible.

We are interested in the AMG solution of optimality systems of the following form

Ay = p/ν,

A∗p = −(y − z).

At the discrete level we have that in general the discrete operators Ah and A∗h do not
coincide. This is the case when, e.g., A is not self-adjoint. Nevertheless, under suitable
conditions it may occur that A∗h = AT

h , where T means transpose. Assuming that the
optimal control problem is discretized and then the optimality system is derived, we have
that A∗h = AT

h holds always true. In an optimal control context this approach is considered
valid.

Therefore, under this assumption, to represent the optimality system one needs only
store the matrix Ah and the mass matrix needed to represent the zero-order coupling terms.
In the storage of the mass matrix we may assume a sparsity pattern equal to (or a subset
of) that of the matrix of coefficients. Thus we do not need to add new pointers to the
matrix elements. By this approach we obtain AMG algorithms for optimality systems having
memory complexity close to that of algebraic multigrid methods for scalar problems.

In our approach the intergrid transfer operators are constructed based only on Ah. The
advantage of this approach is that the resulting AMG setup effort for solving optimality
systems is comparable to the algebraic multigrid setup work needed in scalar cases. This
is a remarkable fact since AMG setup may cost as much as, e.g., six V -cycles of the AMG
solver. Notice that, in our approach all algebraic multigrid components need be stored only
once. Additional storage is required only to store an additional array corresponding the
adjoint variables.

Results of numerical experiments demonstrate that the present approach results in AMG
solvers that are robust with respect to changes of ν.

For the purpose of our discussion assume Ω ⊂ R3 and consider the following elliptic
problem

−
3∑

k=1

∂

∂xk

(
dk

∂y

∂xk

)
+

3∑

k=1

ck
∂y

∂xk
= u + g in Ω,(8.1)

α
∂y

∂τ
+ β y = γ on ∂Ω,(8.2)

where, for x ∈ Ω, the functions dk = dk(x) and ck = ck(x), represent the diffusion coefficients
and the convection coefficients, respectively. The right-hand side is given by u, g ∈ L2(Ω).
Equation (8.2) is defined on ∂Ω, where α, β, γ ∈ R and τ is the outward normal to the
boundary. It describes general Robin boundary conditions.

The formulation of optimal control problems requires to find u such that the following
cost functional of tracking type is minimized

J(y, u) =
1
2
||y − z||2L2(Ω) +

ν

2
||u||2L2(Ω),(8.3)

under the constrain that y is solution of (8.1) and (8.2). To minimize (8.3) with y governed
by (8.1)-(8.2) one derives the necessary optimality conditions which result in the following
optimality system

−
3∑

k=1

∂

∂xk

(
dk

∂y

∂xk

)
+

3∑

k=1

ck
∂y

∂xk
− 1

ν
p = g in Ω,(8.4)
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α
∂y

∂τ
+ β y = γ on ∂Ω,(8.5)

−
3∑

k=1

∂

∂xk

(
dk

∂p

∂xk

)
−

3∑

k=1

ck
∂p

∂xk
+ y = z in Ω,(8.6)

α
∂p

∂τ
+ β p = 0 on ∂Ω,(8.7)

where we have substituted the control equation ν u − p = 0. For simplicity of presentation
we assumed that

∑d
k=1 ∂ck/∂xk = 0. The differential operator in (8.6) is defined to be the

adjoint of the differential operator in (8.4). The optimality system (8.4), (8.5), (8.6), and
(8.7) characterizes the optimal control solution.

To describe our algebraic multigrid approach to solve the optimality system (8.4)-(8.7)
denote with A the differential part of (8.4) and with A∗ denote the differential part of (8.6).
Let us represent the discretized version of the optimality system for the state and adjoint
variable w = (y, p) as follows

Âkwk + Bkwk = Fk,(8.8)

where

Âk =
(

Ak 0
0 A∗k

)
, Bk =

(
0 − 1

ν Bk

Bk 0

)
, and Fk =

(
gk

zk

)
,(8.9)

and where the boundary conditions enter in the definition of Âk, Bk, and of Fk. The
algebraic multigrid algorithm constructs a hierarchy of coarser problems denoted by (8.8)
with k = 2, . . . , L, where L indexes the coarsest level. In our approach this setup phase
is based on the operator Ak. A detailed description of our AMG setup phase is given in
[14]. Based on the entries of this matrix the sets of coarse and fine points are defined and
the restriction and prolongation operators are constructed. The coarse matrix of coefficients
Âk+1 and the mass matrix Bk+1 are given by the Galerkin formula

Âk+1 = Ik+1
k Âk Ik

k+1 and Bk+1 = Ik+1
k Bk Ik

k+1.

The AMG components are denoted in the following way. A smoothing procedure to
solve for the rough components of the error at level k is denoted by Sk. The operator Ik+1

k

restricts the residual computed at level k to the level k+1. It represents the action of Ik+1
k on

the residuals of the state and of the adjoint equations. Ik+1
k is the AMG restriction operator

based on Ak. The prolongation operator is denoted by Ik
k+1, it represents the action of Ik

k+1

on the variables y and p. We sketch one V -cycle of the AMG solution process:
Algorithm 8.1. AMG - V (m1,m2)-cycle to solve Âkwk + Bkwk = Fk.
AMG SETUP (Ak,Bk)
AMG(Âk,Bk,wk,Fk,ε)
begin

if Âk is the coarsest matrix then
solve Âkwk + Bkwk = Fk directly

else
apply Sk, m1 times, on Âkwk + Bkwk = Fk

rk = Fk − Âkwk − Bkwk

if k is the finest level and ‖rk‖ < ε exit
Fk+1 = Ik+1

k rk, wk+1 = 0
AMG(Âk+1,Bk+1,wk+1,Fk+1, ε)
wk = wk + Ik

k+1wk+1

apply Sk, m2 times, on Âkwk + Bkwk = Fk

endif
end
Numerical experiments were performed based on finite differences and finite elements

matrices [14]. For the former we used the SPARSKIT software [93]. These matrices result
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Table 8.1
Number of variables at various levels k of the coarsening process. Standard coarsening.

n = 50 n = 80 n = 100
k Ni Ni Ni

1 115200 486720 960400
2 57600 243360 480200
3 28800 121641 240051
4 11913 50452 99600
5 3450 14587 29159
6 830 3464 6787
7 169 658 1298
8 36 118 224
9 - 22 30

from the second-order centered finite-difference discretization of convection-diffusion equa-
tions in a cubic domain Ω = (0, 1)3 discretized by a uniform grid with n1 = n2 = n3 = n
grid points in each direction. Therefore a total of N = n1n2n3 of state variables and of
adjoint variables define the set of unknowns. In case of Dirichlet boundary conditions the
corresponding boundary entries are eliminated from the algebraic system; we denote with
Ni the effective number of grid points.

The number of iterations (No. iter.) reported are those needed by AMG to reach a value
of the sum of the discrete L2-norm | · |0 of the residuals which is less than the tolerance,
tol = 10−10, times the sum of the discrete L2-norm of the right-hand sides. We denote
with ci and cr the total storage complexity corresponding to the integer and real variables
stored in the AMG code, respectively. Storage complexity is defined as the ratio of the total
memory needed by the solver to the memory required to define the problem at the finest
level (the input).

A challenging optimal control problem is formulated by (8.4) - (8.7) with boundary
conditions given by

planes x1 = 0, x1 = 1 : α = 0, β = 1, γ = 0;
planes x2 = 0, x2 = 1 : α = 1, β = 0, γ = 0;
planes x3 = 0, x3 = 1 : α = 0, β = 1, γ = 0.

(8.10)

Further, we assume no convection, ck = 0, k = 1, 2, 3, and the following discontinuous
anisotropic diffusion coefficients

d1(x) =
{

1 x2 ≥ x1,
102 x2 < x1,

d2(x) =
{

102 x2 ≥ x1,
1 x2 < x1,

d3(x) =
{

101 x2 + x3 ≥ 1,
10−1 x2 + x3 < 1.

As desired state we take

z(x1, x2, x3) = sin(2πx1) cos(2πx2) sin(2πx3).

In Table 8.1 the coarsening history relative to this case is reported. Standard coarsening
is approximately halving the number of variables at each coarsening step and this reduction
factor is almost independent of the number of initial points.

When aggressive coarsening is performed, it is used only to pass from the finest to the
next coarser level. This step reduces the number of variables by a factor of approximately
eight.

Results regarding the computational complexity of our algorithm are reported in Table
8.2. These results are obtained with one pre-smoothing step and one post-smoothing step. In
case of standard coarsening, the convergence factor is similar to that obtained by multigrid
for simple scalar problems. In case of aggressive coarsening larger values of ρ are obtained.
This is the disadvantage of using aggressive coarsening technique; compare with [96]. On
the other hand, the use of aggressive coarsening results in better storage complexity as can
be seen comparing the complexity factors.

Results on tracking ability and robustness of our algorithm are reported in Table 8.3.
Notice that the AMG convergence factor does not deteriorate by reducing the value of ν.
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Table 8.2
Convergence properties depending on N (ν = 10−6).

Standard coarsening Aggressive coarsening
Ni ρ No.iter. ci/cr |y − z|0 ρ No.iter. ci/cr |y − z|0

115200 0.16 17 3.25/3.31 3.23(-1) 0.61 63 2.21/2.19 3.23(-1)
486720 0.28 22 3.33/3.39 3.23(-1) 0.66 73 2.25/2.23 3.23(-1)
960400 0.30 25 3.35/3.42 3.22(-1) 0.67 80 2.26/2.25 3.22(-1)
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Fig. 8.1. Computational performance of AMG for three values of the weight; n = 50. Standard
coarsening. Left: convergence factor; Right: L2-norm of residual. Solid line, ν = 10−4; +-Solid line
ν = 10−6; o-Solid line ν = 10−8.

In Figure 8.1 the convergence history of AMG for various choices of ν is depicted. Notice
that initially the rate of reduction of the residuals may be different for different cycles. This
fact may result in different total numbers of iterations also in the case of (almost) equal
asymptotic convergence factors.

Table 8.3
Tracking properties depending on ν; n = 50.

ν |y − z|0 ρ No.iter.
10−4 3.56(-1) 0.30 21
10−6 3.23(-1) 0.16 17
10−8 4.57(-2) 0.13 16

Next consider the optimal control problem governed by a convection diffusion equation
given by (8.4) - (8.7) with dk(x) = 1, k = 1, 2, 3, and with convection giving recirculating
flow as follows

c1 = − sin πx1 cos πx2,
c2 = sin πx2 cos πx1,
c3 = 0.

(8.11)

The boundary conditions are given by

planes x1 = 0, x1 = 1 : α = 1, β = 0, γ = 0;
planes x2 = 0, x2 = 1 : α = 1, β = 0, γ = 0;
planes x3 = 0, x3 = 1 : α = 0, β = 1, γ = 0.

(8.12)

For these experiments the desired state is given by

z(x1, x2, x3) = sin(3πx1) cos(3πx2) sin(πx3).

The number of coarse points obtained for the present test case are reported in Table 8.4.
The coarsening behavior observed in this case is similar to that seen in the discontinuous
diffusion case.
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Table 8.4
Number of variables at various levels of the coarsening process.

Standard coarsening Aggressive coarsening
k Ni Ni Ni Ni

1 120000 499200 120000 499200
2 60000 249600 14198 58067
3 10000 41608 6259 25454
4 1255 5225 991 3985
5 272 1210 161 639
6 41 193 31 98
7 - 34 - 18

In Table 8.5 we report the convergence behavior of AMG solving the present optimal
control problem. We use two pre-smoothing and two post-smoothing steps. Notice a weak
dependency of the convergence factor ρ on the size of the problem. Also in Table 8.5 we
compare the performance of AMG when using standard coarsening and aggressive coarsen-
ing. The clear advantage of aggressive coarsening is smaller values of the complexity factors
compared with those obtained by standard coarsening.

Table 8.5
Convergence properties depending on Ni (ν = 10−6).

Standard coarsening Aggressive coarsening
Ni ρ No.iter. ci/cr |y − z|0 ρ No.iter. ci/cr |y − z|0

120000 0.14 15 2.65/2.68 2.79 10−2 0.40 33 1.70/1.69 2.79 10−2

499200 0.19 21 2.69/2.73 2.61 10−2 0.51 42 1.72/1.72 2.60 10−2

712800 0.23 25 2.70/2.74 2.59 10−2 0.60 47 1.72/1.72 2.60 10−2

In Table 8.6 tracking errors and convergence factors depending on ν are reported. In
all experiments we observed AMG convergence that does not deteriorates as ν tends to be
small.

We conclude this section discussing a theoretical framework that makes possible to
extend convergence results for AMG for scalar problems to the present AMG approach [14].
Convergence theories available [32, 33, 37, 92, 104] focus on symmetric positive definite
scalar problems. Our approach is based on the theory developed in [21, 29].

Denote with Vk the space of vector functions uk defined on level k. We introduce the
discrete L2-scalar product

(u, v)k =
1

Nk
< u, v >k, u, v ∈ Vk,(8.13)

where < ·, · >k denotes the Euclidean scalar product for the Nk-dimensional vector space
Vk. In the following we also denote with (·, ·)k the L2-scalar product for the system of point
functions wk = (uk, vk) ∈ Vk where Vk = Vk×Vk. Furthermore, denote with | · |0,k = (·, ·)1/2

k

the discrete L2-norm and | · |1,k = (Âk·, ·)1/2
k , where Âk is defined as in (8.9) by multiplying

the first equation by ν.
In order to prove convergence of multigrid, the following two conditions are usually

required (see [32] and the discussion given there)

(A.1) The spectrum of ŜkŜ∗k is in the interval [0, 1);
(A.2) (Âk Ik

k+1wk+1, Ik
k+1wk+1)k ≤ (Âk+1wk+1,wk+1)k+1 for all wk+1 ∈ Vk+1;

where Ŝ∗k is the adjoint of Ŝk with respect to (Âk·, ·)k. Condition (A.1) is satisfied by the
collective Gauss-Seidel iteration under the assumption that Âk is positive definite and its
diagonal blocks are positive definite; see [32, 62, 85]. Notice that the operator Ak = Âk +Bk

corresponding to the complete system satisfies these two conditions. Therefore condition
(A.1) is satisfied by the collective Gauss-Seidel and (A.2) holds with equality due to the
AMG variational formulation, Ak+1 = Ik+1

k Ak Ik
k+1.

Conditions (A.1) and (A.2) are essential to ensure convergence of algebraic multigrid
methods as stated in [32] (Theorem 1).
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Table 8.6
Tracking properties depending on ν; Ni = 120000, standard coarsening.

ν |y − z|0 ρ No.iter.
10−4 2.61 10−1 0.08 12
10−6 2.79 10−2 0.14 15
10−8 3.89 10−3 0.03 8

Theorem 8.2. Assume that (A.1) and (A.2) hold. Then for some δ̂ < 1 we have

(Â1Ê1u, Ê1u)1 ≤ δ̂2 (Â1u,u)1 for all u ∈ V1,

where Ê is the multigrid error operator.
This estimate does not guarantee AMG convergence independent of the number of

unknowns. In order to have convergence independent of the size of the problem, additional
assumptions on Âk and on the construction of the intergrid transfer operators are needed.

In particular, Ik
k+1 should satisfy the following weak approximation property: For any

u ∈ Vk there exists v ∈ Vk+1 such that

|u− Ik
k+1v|20,k ≤

C̃

ρ(Âk)
|u|21.

(See [33, 37, 83, 104].)
We assume that δ̂ as in Theorem 5.4 is independent of the numbers of variables and

formulate two additional conditions that provide convergence of our AMG algorithm:
Lemma 8.3. There exist two positive constants βS and CS independent of k such that

(C.1) |(Âk(Sk − Ŝk)w,v)k| ≤ CS 1

N
βS
L

|w|1,k |v|1,k,

for all w,v ∈ Vk.
Lemma 8.4. There exist two positive constants βP and CP independent of k such that

(C.2) |(Âk+1(P̂k+1 −Pk+1)w,v)k+1| ≤ CP 1

N
βP
L

|w|1,k|v|1,k+1,

for all w ∈ Vk, v ∈ Vk+1.
The proof of the next theorem results from techniques given in [14, 21].
Theorem 8.5. Assume that (A.1), (A.2), (C.1), and (C.2) hold. Then there exist

positive constants N0 and δ < 1 such that for all NL > N0 we have

(Â1E1w, E1w)1 ≤ δ2(Â1w,w)1, for all w ∈ V1,

where δ = δ̂ + C 1

Nβ
L

, δ̂ is as in Theorem 5.4, and β = min{βS , βP}.
In the context of geometric multigrid theory, Conditions (C.1) and (C.2) are proved in,

e.g., [19, 32, 29] for various discretization schemes. While we were not able to prove the
validity of these two conditions in general within the pure algebraic setting, we can give
examples where (C.1) and (C.2) hold. In fact, we can argue that there exists a constant
C such that λ̄−1

k ≤ C N−β
L and therefore (C.1) holds in case of Richardson smoothing.

Condition (C.2) is satisfied if we require that the norm of the difference between the Âk

projection and the discrete L2 projection can be bounded by C N−β
L .

The estimate of Theorem 5.8 states that for sufficiently large number of unknowns we
have δ ≈ δ̂, that is, the convergence factor of the algebraic multigrid method applied to
the optimality system is close to the convergence factor of the algebraic multigrid scheme
applied to the corresponding scalar problem in agreement with our numerical experience.

9. Multigrid methods for parabolic optimal control problems. In this section
we describe our development and analysis of space-time multigrid schemes for the solution
of parabolic optimal control problems [11, 12, 19].

We consider parabolic multigrid methods that solve distributed parabolic optimal con-
trol systems in the whole space-time cylinder. The advantage of our approach, in contrast
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to the sequential one, is the ability to implement time coupling in the optimality system
consisting of parabolic partial differential equations with opposite orientation. The present
space-time multigrid strategy results in fast solvers whose convergence factors are mesh
independent and do not deteriorate as the weight of the cost of the control tends to be
small.

The disadvantage of this approach is the need to store the dependent variables for all
time steps. This fact may limit the choice of the size of the time interval. Nevertheless, the
present approach may be used in the framework of receding horizon techniques [69] to solve
optimal control problems in unbounded time intervals.

Consider the following optimal control problem




minu∈L2(Q) J(y, u),
−∂ty + ∆y = u in Q = Ω× (0, T ),

y(x, 0) = y0(x) in Ω at t = 0,
y(x, t) = 0 on Σ = ∂Ω× (0, T ),

(9.1)

where we take y0(x) ∈ H1
0 (Ω). We consider cost functionals of the tracking type given by

J(y, u) =
1
2
||y − z||2L2(Q) +

ν

2
||u||2L2(Q),(9.2)

where z ∈ L2(Q) denotes the desired state. Then there exists a unique solution (y∗, u∗) =
(y∗(u∗), u∗) to the optimal control problem above; see [79]. Corresponding to our setting
we have y∗(u∗) ∈ H2,1(Q) where H2,1(Q) = L2(0, T ;H2(Ω) ∩H1

0 (Ω)) ∩H1(0, T ; L2(Ω)).
The solution to (9.1) is characterized by the following optimality system

−∂ty + ∆y = u,(9.3)
∂tp + ∆p + (y − z) = 0,(9.4)

νu− p = 0,(9.5)

with initial condition y(x, 0) = y0(x) for the state equation (evolving forward in time) and
terminal condition p(x, T ) = 0 for the adjoint equation (evolving backward in time). Here,
for convenience we dropped the ∗-notation. From (9.4) and (9.5) we have p, u ∈ H2,1(Q).
The a priori knowledge of the regularity of solution is essential for the numerical analysis
results which follow.

We consider the numerical solution of the optimality system (9.3)-(9.5) in the framework
of finite differences and backward Euler scheme as discussed in Section 3.

The discrete optimal control problem is given by
{

min 1
2 ||yh − R̃h, Qz||20 + ν

2 ||uh||20,
−∂+

t yh + ∆hyh = uh.
(9.6)

Let uh ∈ L2
h(Qh) denote the unique solution to (9.6) and set yh = yh(uh). The opti-

mality system related to (9.6) is found to be

−∂+
t yh + ∆hyh = uh,

∂−t ph + ∆hph = −(yh − R̃h,Qz),(9.7)
νuh − ph = 0.

Using the control equation we eliminate uh from this system. We obtain

− [1 + 4γ] yi j m + γ [yi+1 j m + yi−1 j m + yi j+1 m + yi j−1 m] + yi j m−1

=
δt

ν
pi j m, 2 ≤ m ≤ Nt + 1,(9.8)

− [1 + 4γ] pi j m + γ [pi+1 j m + pi−1 j m + pi j+1 m + pi j−1 m] + pi j m+1

+ δt (yi j m − z̃i j m) = 0, 1 ≤ m ≤ Nt,(9.9)
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where γ = δt
h2 , i, j index the internal grid points, m is the time-step index, and z̃ = R̃h,Qz.

The implementation of the boundary conditions on Σ, of the initial condition at t = 0, and
of the terminal condition at t = T should be clear.

For convenience, it is assumed that there exist positive constants c1 ≤ c2 such that
c1h

2 ≤ δt ≤ c2h
2. Hence h can be considered as the only discretization parameter. There-

fore, in the following, the parameter δt is omitted.
Recall condition (3.1) given in Section 3. It implies

||R̃h, Q v −Rh, Q v||0 ≤ c h2 |v|H2,1(Q).(9.10)

Using Lemma 1.1 and the approach of Theorem 1.2 of [82], and (9.10) we have

||u∗h −Rh, Q u∗||0 ≤ c h2.(9.11)

Next, assume that y be solution of the state equation with any given u ∈ L2(Q) and let
yh be its finite difference approximation where uh = R̃h, Q u. Then the following estimate
holds

||yh −Rh, Q y||0 ≤ c h2 |y|H2,1(Q),

and in a similar way one has that ||ph − Rh, Q p||0 ≤ c h2|p|H2,1(Q). Using these estimates
and (9.11), we obtain the following estimates for the approximation of the state variable and
of the adjoint variable

||y∗h −Rh, Q y∗||0 ≤ c h2 and ||p∗h −Rh, Q p∗||0 ≤ c h2.(9.12)

To validate the accuracy estimates (9.11) and (9.12), consider the following exact solu-
tion

y(x, t) = t2 (1− t)2 sin(πx1) sin(πx2),

p(x, t) = 2 ν (1− t)t(π2t2 − (π2 − 2)t− 1) sin(πx1) sin(πx2),

for the optimal control problem with objective function given by

z(x, t) = ((t− 1)2t2 + 2ν (2π4t4 − 4π4t3 + 2(π4 − 3)t2 + 6t− 1)) sin(πx1) sin(πx2),

in Ω = (0, 1)× (0, 1) and T = 1.
In Table 9.1 results of numerical experiments with this choice of z(x, t) and using y0(x) =

y(x, 0) are reported. We observe second-order convergence. In fact, the solutions errors
reduce approximately as a factor of four by halving the space mesh size.

Table 9.1
Accuracy results; ν = 10−4, δt = 32 h2.

(x, t)-mesh ||y − yh||0 ||p− ph||0
32× 32× 32 2.63 10−5 5.64 10−7

64× 64× 128 7.05 10−6 1.47 10−7

128× 128× 512 1.78 10−6 3.73 10−8

To solve (9.7) we consider two multigrid schemes corresponding to two different coars-
ening strategies. These methods solve (9.8) and (9.9) for all time levels simultaneously. We
use a set of grids with space mesh size h = hk = h1/2k−1, k = 1, . . . , L, that is, stan-
dard coarsening in the space directions. In the time direction we set δt = δtk = δt1/sk−1,
s ∈ {1, 2}. If s = 1 we have semicoarsening in space; the case s = 2 is referred to as standard
time coarsening. The choice of different coarsening strategies can be motivated by memory
needs. Clearly, larger values of the coarsening factor s results in less memory requirements.

The mesh of level k is denoted by Qk. Any operator and variable defined on Qk is
indexed by k. Denote by Vk = Vk × Ṽk the space of the system of nodal functions (yk, pk).
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The algebraic problem given by (9.8) and (9.9) at level L with given initial, terminal,
and boundary conditions is represented by the following equation

AL(wL) = fL,(9.13)

where wL is the pair (yL, pL) ∈ VL.
To solve (9.13) we use the FAS algorithm described in Section 4. To transfer the

residuals we choose the half-weighted restriction operator in space with no averaging in
the time direction. The prolongation is defined by bilinear interpolation in space. If s = 1
no interpolation in time is needed, whereas if s = 2 then bilinear interpolation also in time
is applied.

The choice of the smoothing operator Sk is a delicate one. We need guarantee a robust
coupling between state and control variables and take care of the fact that the state variable
evolves forward in time while the adjoint variable evolves backwards. Robust coupling is
essential in case of optimal control of nonlinear parabolic problems with possible finite-time
blow-up [19, 22, 11]; see later in this section. In the following we describe a smoothing
iteration which guarantees robust coupling.

Consider a collective Gauss-Seidel iteration which is applied at each grid point to the
set of variables wk = (yk, pk). For this purpose denote with E(wi j m) = [f −A(w)]i j m = 0,
the two algebraic equations (9.8) and (9.9) for the two variables yi j m and pi j m at the grid
point i j m. Further denote with E ′ the Jacobian of E with respect to these two variables.
A sweep of the collective Gauss-Seidel scheme is given by

w(1)
i j m = w(0)

i j m − [E ′(w(0)
i j m)]−1E(w(0)

i j m).(9.14)

This iteration was discussed in Section 6 (see [18]) and successfully used to solve optimality
systems relative to (steady-state) explosive phenomena. In case of time-dependent phe-
nomena, iteration (9.14) will eventually diverge because the information of the opposite
orientation of the state equation and of the adjoint equation is not taken into account. To
add this information we use (9.14) to update the state component y marching in the forward
direction and to update the adjoint variable p using (9.14) but marching backwards in time.
In this way a robust iteration is obtained given by the following

Time-Splitted Collective Gauss-Seidel Iteration (TS-CGS)
1. Set w0 = w̃.
2. For m = 2, . . . , Nt do
3. For ij in lexicographic order do

y
(1)
i j m = y

(0)
i j m − [E ′(wi j m)]−1E(wi j m)|y,

p
(1)
i j Nt−m+2 = p

(0)
i j Nt−m+2 − [E ′(wi j Nt−m)]−1E(wi j Nt−m+2)|p,

4. end.
Here, [E ′(wi j m′)]−1E(wi j m′) is a two-component column vector corresponding to the vari-
ables y and p. A more explicit form of Step 3. follows

y
(1)
i j m = y

(0)
i j m − (1 + 4γ) ry(w)− δt

ν rp(w)

(1 + 4γ)2 + δt2

ν

|(0)i j m,

p
(1)
i j Nt−m+2 = p

(0)
i j Nt−m+2 −

(1 + 4γ) rp(w) + δt ry(w)
(1 + 4γ)2 + δt2

ν

|(0)i j Nt−m+2,

where ry(w) denotes the residual of (9.8) and rp(w) denotes the residual of (9.9) prior
update. Obvious modifications are required to define time-splitted Red-Black collective
Gauss-Seidel scheme or time-splitted collective Jacobi scheme.

The multigrid methods discussed in this section are designed to solve parabolic optimal
control problems where the time discretization is by backward Euler scheme. In case of
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Crank-Nicolson discretization our multigrid approach can be successfully applied only for a
small range of values of γ ≈ 1. For γ >> 1 our multigrid schemes possibly diverge. This
fact is in agreement with results in [101] where it is shown that for large values of γ space-
time multigrid solvers of parabolic problems are not robust in solving for Crank-Nicolson
discretization. Following [101] three-level backward Euler discretization could be used for
large γ when second-order time accuracy is required.

We now investigate the convergence properties of the proposed multigrid methods.
We use the FAS V (1, 1)-cycle with the time-splitted collective Gauss-Seidel scheme as the
smoothing iteration. The discretization parameters are chosen such that γ = δt/h2 >> 1,
which is the most common situation where implicit time discretization is chosen.

Consider Ω = (0, 1)× (0, 1), T = 1, and the following objective function

z(x, t) = (x1 − x2
1) (x2 − x2

2) cos(4π t).

We take y0(x) = z(x, 0).
The results reported in the following tables are obtained with N = 10 FAS V (1, 1)

cycles. In Table 9.2 we report results of numerical experiments with multigrid using semi-
coarsening strategy. Three different grids with increasing refinement in space directions are
considered. Similar results are obtained also on meshes with Nt = {128, 256, 512}. The
observed convergence factors demonstrate usual multigrid convergence speeds and appear
to be almost independent of the value of γ and weakly dependent on the value of ν. This
fact shows robustness of the multigrid scheme with TS-CGS smoothing. As the value of ν
increases then larger values of ||y − z||0 are obtained.

Table 9.2
Results of experiments with semicoarsening.

ν = 10−4

(x, t)-mesh γ ρ ||y − z||0 ||ry(w)||0, ||rp(w)||0
32× 32× 64 16 0.146 1.55 10−3 4.5 10−10, 7.6 10−12

64× 64× 64 64 0.164 1.55 10−3 9.1 10−10, 1.0 10−11

128× 128× 64 256 0.159 1.55 10−3 1.1 10−9, 8.1 10−12

ν = 10−6

(x, t)-mesh γ ρ ||y − z||0 ||ry(w)||0, ||rp(w)||0
32× 32× 64 16 0.147 4.03 10−5 1.4 10−10, 1.9 10−13

64× 64× 64 64 0.140 4.23 10−5 2.6 10−10, 2.1 10−13

128× 128× 64 256 0.165 4.27 10−5 3.3 10−10, 5.8 10−13

ν = 10−8

(x, t)-mesh γ ρ ||y − z||0 ||ry(w)||0, ||rp(w)||0
32× 32× 64 16 0.008 9.09 10−7 4.7 10−15, 1.1 10−18

64× 64× 64 64 0.06 1.73 10−6 9.1 10−12, 7.6 10−16

128× 128× 64 256 0.134 2.06 10−6 9.1 10−11, 8.1 10−15

In case of multigrid coarsening in space and in time we observe slow convergence; see
Table 9.3. Nevertheless, for sufficiently small values of ν typical multigrid convergence
factors are obtained. This fact is confirmed by the Fourier analysis reported later in this
section.

The setting s = 2 provides acceptable multigrid convergence rates also in case where T
and correspondingly γ tend to be small. Small time intervals are of interest when considering
control of transient phenomena. For example, consider the case T = 0.01 and a highly
oscillating objective function given by

z̃(x, t) = (x1 − x2
1) (x2 − x2

2) sin(100πt).

In this case the choices s = 2 gives good results even for moderate values of ν as can be seen
in Table 9.4.

Further numerical experiments demonstrate that the multigrid convergence behavior as
observed in this section appears to be insensitive to the particular choice of the objective
function, which may not be attainable.

In the framework of Fourier mode analysis [36, 68, 100, 101] it is possible to analyze
the convergence properties of the twogrid version of our parabolic optimal control solver.
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Table 9.3
Results of experiments with standard coarsening.

ν = 10−4

(x, t)-mesh γ ρ ||y − z||0 ||ry(w)||0, ||rp(w)||0
32× 32× 64 16 0.929 1.60 10−3 1.9 10−2, 2.6 10−4

64× 64× 64 64 0.976 1.69 10−3 7.3 10−2, 5.5 10−4

128× 128× 64 256 0.999 2.20 10−3 1.4 10−1, 1.2 10−3

ν = 10−6

(x, t)-mesh γ ρ ||y − z||0 ||ry(w)||0, ||rp(w)||0
32× 32× 64 16 0.905 4.07 10−5 3.1 10−3, 1.9 10−6

64× 64× 64 64 0.140 4.23 10−5 2.6 10−10, 2.1 10−13

128× 128× 64 256 0.165 4.27 10−5 3.3 10−10, 5.8 10−13

ν = 10−8

(x, t)-mesh γ ρ ||y − z||0 ||ry(w)||0, ||rp(w)||0
32× 32× 64 16 0.008 9.09 10−7 4.7 10−15, 1.1 10−18

64× 64× 64 64 0.06 1.73 10−6 9.1 10−12, 7.6 10−16

128× 128× 64 256 0.134 2.06 10−6 9.1 10−11, 8.1 10−15

Table 9.4
Results of experiments with standard time coarsening for the case T = 0.01 and z̃ as objective function.

The finest grid is Nx ×Ny ×Nt = 64× 64× 128.

ν ρ ||y − z||0 ||ry(w)||0, ||rp(w)||0
10−3 0.154 2.29 10−3 1.1 10−8, 3.2 10−10

10−5 0.117 9.63 10−4 2.2 10−9, 6.0 10−12

10−7 0.110 4.61 10−5 1.4 10−9, 3.7 10−13

We investigate the dependence of the twogrid convergence factor on the weight ν and on
the ratio γ = δt/h2. The Fourier analysis provides convergence results that closely predict
the convergence factors observed experimentally. For ease of presentation the one space
dimensional case is considered.

We use Fourier mode analysis assuming infinite grids; see [12] for all the details. On
the fine grid consider the Fourier components φ(j,θ) = eij·θ where i is the imaginary unit,
j = (jx, jt) ∈ Z× Z, θ = (θx, θt) ∈ [−π, π)2, and j · θ = jxθx + jtθt.

First, consider the case of semicoarsening in space. The frequency domain is spanned
by the following two sets of frequencies

θ(0,0) := (θx, θt) and θ(1,0) := (θx, θt),

where (θx, θt) ∈ ([−π/2, π/2)× [−π, π)) and θx = θx− sign(θx)π. The components φ(·,θα)
are called harmonics. The first harmonics φ(·, θ(0,0)) represents low frequencies components
in space. The second harmonics φ(·, θ(1,0)) contains the high frequencies components in space
direction. Both have all frequencies components in time direction. Using semicoarsening,
we have that φ(j,θ(0,0)) = φ(j,θ(1,0)) on the coarse grid.

With this setting the twogrid operator TGk−1
k results in a 4× 4 matrix given by

T̂G
k−1

k (θ) = Ŝk(θ)m2 ĈG
k−1

k (θ) Ŝk(θ)m1 ,

where ĈG
k−1

k is the Fourier symbol of the coarse grid correction.
Consider to apply the TS-CGS step first to all state variables leaving the adjoint variables

unchanged and then vice versa. Under this assumption substituting (??) into (9.8) and (9.9)
we obtain

Ŝk(θ) = diag{σ(θ(0,0)), σ(θ(1,0)), σ(θ(0,0)), σ(θ(1,0))},

where

σ(θ(p,q)) =
νγ(2γ + 1)eiθp

x

δt2 + ν[(2γ + 1)2 − γ(2γ + 1)e−iθp
x − (2γ + 1)e−iθq

t ]
.
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Fig. 9.1. Semicoarsening: (left) smoothing factor as a function of ν and γ; (right) twogrid convergence
factor as a function of ν and γ (m1 = m2 = 1).

In space, we consider a full-weighting restriction operator whose symbol is given by

Îk−1
k (θ) =

1
2

[
(1 + cos(θx)) (1− cos(θx)) 0 0

0 0 (1 + cos(θx)) (1− cos(θx))

]
.

For the linear prolongation operator we have Îk
k−1(θ) = Îk−1

k (θ)T . The symbol of the fine
grid operator is

Âk(θ) =




ay(θ(0,0)) 0 −δt/ν 0

0 ay(θ(1,0)) 0 −δt/ν

δt 0 ap(θ(0,0)) 0

0 δt 0 ap(θ(1,0))


 ,

where

ay(θ(p,q)) = 2γ cos(θp
x)− e−iθq

t − 2γ − 1 and ap(θ(p,q)) = 2γ cos(θp
x)− eiθq

t − 2γ − 1.

The symbol of the coarse grid operator follows

Âk−1(θ) =
[

γ cos(2θx)/2− e−iθt − γ/2− 1 −δt/ν
δt γ cos(2θx)/2− eiθt − γ/2− 1

]
.

Notice that on the coarser grid δt remains unchanged while γ → γ/4 by coarsening.

Based on the representation on TGk−1
k by a 4 × 4 matrix T̂G

k−1

k (θ) we can calculate
the convergence factor given by

η(TGk−1
k ) = sup{r(T̂G

k−1

k (θ)) : θ ∈ ([−π/2, π/2)× [−π, π))}.

By Fourier mode analysis the problem of determining the convergence factor of a twogrid
scheme is reduced to that of determining the spectral radius of a 4 × 4 matrix. This task
may be performed using any symbolic package (we use Mathematica). In Figure 9.1 we
report the smoothing factor and the convergence factor depending on the value of ν and on
the value of γ for δt = 1/64. Similar figures are obtained with different choices of time-step
size. We observe that the values of convergence factors predicted by Fourier mode analysis
are very close to those obtained experimentally and reported in Table 9.2.

In case of standard coarsening the analysis performed in [12] is similar to that performed
in Section 5 for the case of two-dimensional elliptic problems, considering the time coordinate
as the second space coordinate.

The values of the smoothing factor and of the convergence factor as functions of ν
and γ are reported in Figure 9.2 (for δt = 1/64). Comparing with the semicoarsening
case the smoothing factor and correspondingly the convergence factor have deteriorated.
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Fig. 9.2. Standard coarsening: (left) smoothing factor as a function of ν and γ; (right) twogrid
convergence factor as a function of ν and γ (m1 = m2 = 1).

Nevertheless, as γ (correspondingly δt) and ν are sufficiently small the convergence factor
improves.

As demonstrated in [19, 22, 11], the convergence performance and behavior of the space-
time multigrid algorithms discussed in this section remain similar also when solving singular
optimal control problems.

We conclude this section discussing the multigrid solution of constrained optimal control
problems. In [11] two multigrid approaches were investigated. The first one considers the
presence of constraints as a generic nonlinearity within the FAS multigrid approach. The
second one uses the primal-dual strategy [8] and defines a primal-dual-multigrid algorithm.
In this section we report further results regarding the former ‘direct’ multigrid approach.

Consider the optimal control problem (9.1) with the control u belonging to the following
admissible set

u ∈ {v ∈ L2(Q) | c1 ≤ v(x) ≤ c2 a.e. in Q}.(9.15)

Existence of a unique solution can be proved [79] and is characterized by the following
optimality system

−∂ty + ∆y = u,(9.16)
∂tp + ∆p + (y − z) = 0,(9.17)

u− sup(c1, inf(c2,
p

ν
)) = 0;(9.18)

see [79, 82].
The discretization scheme (9.8) and (9.9) applies also to (9.16), (9.17), and (9.18) with

the right-hand side of (9.8) being replaced by δt G(pi j m) where

G(pi j m) = max(c1, min(c2,
pi j m

ν
)).(9.19)

Unfortunately the presence of the term (9.19) prevents us from defining E ′ in the obvious way.
Specifically, we cannot differentiate (9.18) with respect to p. To overcome this difficulty we
set G′(p) = 1/ν as in the unconstrained case in those part of the domain where the constrains
are inactive. Whenever a constraint is active we set G′(p) = 0. So the TS-CGS scheme is
as follows

y
(1)
i j m = y

(0)
i j m − (1 + 4γ) ry(w)− δtG′(p) rp(w)

(1 + 4γ)2 + δt2G′(p)
|(0)i j m,

p
(1)
i j Nt−m+2 = p

(0)
i j Nt−m+2 −

(1 + 4γ) rp(w) + δt ry(w)
(1 + 4γ)2 + δt2G′(p)

|(0)i j Nt−m+2,
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where m = 2, . . . , Nt.
Using this relaxation scheme a lack of robustness of the V -cycle with respect to changes

of the value of the weight of the cost of the control may be observed [19]. Specifically, as ν
tends to be smaller the convergence factor of the V -cycle version of our multigrid scheme
worsen. We now show that much better computational properties are obtained when using
the W -cycle version of our algorithm.

Consider the following objective function

z(x, t) = sin(2πt) sin(πx1) sin(πx2).

For the purpose of comparison we report in Table 9.5 results of experiments using the
V -cycle and W -cycle algorithms with semicoarsening. Observe the deterioration of the
convergence factor when reducing the value of ν in the V -cycle case. In the W -cycle case
much better convergence factors can be observed and the algorithm remains competitive
also for moderate small values of ν. The use of W -cycles is also beneficial for standard
coarsening multigrid schemes.

Table 9.5
Convergence factors with semicoarsening on a 128× 128× 128 mesh γ = 128; c1 = −10 and c2 = 10.

ν V (2, 2)-cycle W (2, 2)-cycle
10−4 0.137 0.052
10−6 0.761 0.143

10. Optimal control approach to optical flow computation. In [16, 17] we for-
mulate an optimal control problem for the determination of optical flow. An optical flow
is the field of apparent velocities in a sequence of images. This is a challenging applica-
tion of hyperbolic optimal control problems. Multigrid methods apply to solve the elliptic
sub-system defining the optimality conditions.

Our new framework differs from preceding approaches [5, 6, 52, 75, 107, 108] in that
it does not require differentiation of the data and combines optical flow with image recon-
struction. It can be considered as a control-in-the-coefficients hyperbolic problem with a
cost functional of tracking type.

From the knowledge of the optical flow, information about the spatial arrangement of
objects and the rate of change of this arrangement ought to be obtained. Under suitable
assumptions, we can assume that the image brightness of an object point remains constant
in the images when the object moves. That is, the total time derivative of the brightness at
each point (x1, x2) at time t is zero:

∂y

∂t
+ u

∂y

∂x1
+ v

∂y

∂x2
= 0,(10.1)

where y = y(x1, x2, t) denotes the image brightness at (x1, x2) and t, and ~w = (u, v) repre-
sents the optical flow vector.

We formulate the optimal control problem for optical flow as follows. Consider a se-
quence of image frames {Yk}k=0,N sampled at increasing time steps, tk ∈ [0, T ], k =
0, 2, . . . , N , where t0 = 0 and tN = T . Each frame is assumed to be defined on a rect-
angle which defines the spatial domain Ω. The space-time box in which the optical flow
takes place is Ω× [0, T ]. We define the following optimal control problem:

Find ~w ∈ V (V is a class of admissible optical flow fields) and y = y(~w) such that
{

yt + ~w · ∇y = 0, in Q = Ω× (0, T ],
y(·, 0) = Y0,

(10.2)

and minimize the cost functional

J(y, ~w) =
1
2

∫

Ω

N∑

k=1

|y(x1, x2, tk)− Yk|2dΩ(10.3)

+
α

2

∫

Q

Φ(|∂ ~w

∂t
|2)dq +

β

2

∫

Q

Ψ(|∇u|2 + |∇v|2)dq +
γ

2

∫

Q

|∇ · ~w|2dq.
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Here, α, β, and γ are predefined nonnegative weights. Let us briefly discuss the relevance
of the additive terms in J . The first one is the least-squares term requiring that ~w is
chosen such that y(·, tk, ~w) approximates Yk at the sampling times. Assuming ~w is smooth
with respect to t, we set Φ(s) = s. For the regularization in the spatial direction we use
a Gaussian-type regularization in regions where ~w varies smoothly and bounded variation
type regularization across edges and corners, where ∇~w is large; see, e.g., [70, 91]. These
two criteria lead to the following choice

Ψ(s) =





2
√

s for s ∈ [0, δ),
s + c1 for s ∈ [δ, δ′],

2
√

s + c2 for s ∈ (δ′,∞);
(10.4)

see [16] for all details. In [17] the case Ψ(s) = s is considered.
To motivate the last term in (10.3), consider the case where the velocity field on the

border of a small subregion is uniform. The points in the interior of the subregion should be
assigned the same value too. A way of expressing this property is to penalize by

∫
Q
|∇· ~w|2dq.

From (10.2)-(10.3) we derive the following optimality system

yt + ~w · ∇y = 0, with y(·, 0) = Y0,

pt +∇ · (~wp) =
N−1∑

k=1

[δ(t− tk)(y(·, tk)− Yk)] , with p(·, T ) = −(y(·, T )− YN ),

α
∂2u

∂t2
+ β∇ · [Ψ′(|∇u|2 + |∇v|2)∇u] + γ

∂

∂x1
(∇ · ~w) = p

∂y

∂x1
,(10.5)

α
∂2v

∂t2
+ β∇ · [Ψ′(|∇u|2 + |∇v|2)∇v] + γ

∂

∂x2
(∇ · ~w) = p

∂y

∂x2
,

where δ denotes the Dirac δ-function. The interpretation of the second equation in (10.5) is

pt +∇ · (~wp) = 0, on t ∈ (tk−1, tk), for k = 1, . . . , N,(10.6)
p(·, t+k )− p(·, t−k ) = y(·, tk)− Yk, for k = 1, . . . N − 1.(10.7)

We refer to the first hyperbolic equation of (10.5) as the optical flow constraint (OFC) equa-
tion (marching forward in time). The second equation is the adjoint optical flow equation
(marching backward in time). The last two equations are nonlinear elliptic equations. They
are referred to as optimality condition. Some aspects of the well-posedness of (10.5) in the
case Ψ = I are analyzed in [16].

Concerning boundary conditions for ~w we restrict the admissible optical flow fields to
satisfy prescribed homogeneous Dirichlet boundary conditions on the spatial boundary and
natural boundary conditions at the temporal boundaries of Q.

In the numerical implementation of our method we use the Horn & Schunck scheme [52]
to obtain a starting approximation. Though this scheme was one of the first methods for
determining optical flow, it is still popular and one of the most used methods both in its
original form or with various modifications; see, e.g., [5, 6, 75, 107, 108].

The method of Horn and Schunck [52] combines the optical flow constraint (10.1) with
a global smoothness term, minimizing:

∫

D

(yt + ~w · ∇y)2 + λ2(|∇u|2 + |∇v|2)dx.(10.8)

In the original formulation [52] the domain D is the space domain Ω and all quantities
in (10.8) are considered defined at intermediate time step (DT/2) between two sampled
images, {Yk, Yk+1}. The spatio-temporal derivatives (yx1 , yx2 , yt) are obtained by numerical
differentiation of the sampled image data.

A minimum of (10.8) satisfies necessarily the Euler equations:

λ2∆u− yx1(yt + uyx1 + vyx2) = 0,(10.9)
λ2∆v − yx2(yt + uyx1 + vyx2) = 0,(10.10)
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where ∆ is the Laplace operator and homogeneous Dirichlet boundary conditions are used.
To discretize (10.9) - (10.10) a uniform sampling rate DT is assumed and set equal to
one. The spatial dimension of Ω is given in units of pixels. The distance between pixels
is normalized to be one and the spatial discretization in (10.9) - (10.10) is linked to the
availability of pixel information by setting DX1 = DX2 = 1.

The choice of the regularization parameter λ specifies the degree of smoothness of the
solution. Though there is no “best choice” available, we shall take λ = 0.5 unless specified
otherwise. This is the value suggested in [5].

In [6], examples are given where the use of accurate discretization schemes for differen-
tiation provide wrong results unless the velocity of the pattern (i.e. ~w) is close to the ratio
of the spatial to the temporal sampling, that is, u ≈ DX1/DT and v ≈ DX2/DT . This
may be related to the fact that in order to solve numerically the optical flow equation (10.1)
the following CFL-like condition must be satisfied:

τ ≤ CCFL

max(|u|max/h, |v|max/h)
.(10.11)

Here τ is the time step size, h the spatial mesh size, and 0 < CCFL ≤ 1 is the CFL number.
The discussion above outlines a limitation of the Horn & Schunck scheme which is not

present in our approach, since the time discretization for the numerical realization of (10.5)
and the sampling times for the images are independent.

The numerical difficulties in solving (10.5) are due to the presence of two coupled subsys-
tems with different characteristics: as pointed out above the first two equations of (10.5) are
hyperbolic, the last two are elliptic. To solve (10.5) we combine an explicit time-marching
second-order TVD scheme for the hyperbolic part of the system and a FAS multigrid method
for the elliptic part.

Some details of the discretization are given in Section 3. Regarding the implementation
of the FAS scheme notice that the discretized control equations have strong anisotropy in
the coefficients because usually we have τ << h. For this reason t-line relaxation is chosen.

The coupling between the hyperbolic and the elliptic subsystems is obtained in an outer
loop where each solver is called sequentially and their solutions are used to update the data
for the next subsystem. This outer loop, which we call segregation loop, is repeated a fixed
number of times (Iloop = 10) or until a given convergence criterion is reached.

The method is summarized as follows:
Segregation loop for solving the optimal control problem (10.5).

1. Apply the Horn & Schunck method for a starting approximation to the optical
flow.

2. Solve the optical flow constraint equation to obtain y.
3. Solve (backward) the adjoint optical flow constraint equation to obtain p.
4. Update the right-hand sides of the elliptic system.
5. Apply a few cycles of multigrid to solve the control equations.
6. Go to 2 and repeat Iloop times.

Note that the segregation loop realizes the following sequence of substitutions:

~wold → y(~wold) → p(y(~wold)) → ~wnew.

This iteration is well-posed; see [16].
In the description of numerical experiments with images, we need to define quantities

describing accuracy of optical flow determination, measures of tracking ability and corre-
sponding costs.

In the optical flow community an angular measure of error is used to measure optical
flow accuracy. One considers the pattern displacement as a space-time direction vector
~w = (u, v, 1) in units of (pixel,pixel,frame). The corresponding three-dimensional direction
vector is given by:

ŵ =
1√

1 + u2 + v2
(u, v, 1)T ,
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where T means transpose. The angular error between the correct velocity ~wc (assuming it
is known) and an estimate ~we is as follows [5, 75]

ψE = arccos(ŵc · ŵe).(10.12)

Notice that this represents the space-time orientation error. We denote by ψE
i,j,κ = arccos(ŵc

i,j,κ·
ŵe

i,j,κ) the function (10.12) evaluated at grid point (i, j, κ), i, j = 1, . . . , L, where L is the
number of pixel in each direction, and κ = 1, . . . , K, where K is number of time sub-intervals
of size τ = T/K.

The measure (10.12) of the optical flow error is made global by considering the mean
orientation error:

ψ̃ =
1

KL2

K∑
κ=1

L∑

i,j=1

ψE
i,j,κ,

at the space-time mesh points of the evolving images. On this set of points, we also compute
the maximum modulus of the functions u and v denoted by |u|max and |v|max respectively.
This will help to establish and compare the accuracy of the optical flow with respect to the
maximal velocity, obtained with the optimal control approach and with the Horn & Schunck
method.

In the tables we also report the tracking error, denoted by ||y − Y ||2, and defined by

K∑
κ=1

L∑

i,j=1

(ytk
i,j − Y (x1i, x2j , tk))2.(10.13)

Moreover, with
∑

cost we denote the value of the discrete version to the following expression:

α

2

∫

Q

|∂ ~w

∂t
|2dq +

β

2

∫

Q

Ψ(|∇u|2 + |∇v|2)dq +
γ

2

∫

Q

|∇ · ~w|2dq.(10.14)

Finally, in order to validate the divergence term in the cost functional, we also report the
value of the discrete version of the divergence term.

In the following experiments with synthetic images we consider frames with 64 × 64
(L = 64) pixel and K = 64 time sub-intervals of size τ = T/64.

If, for example, T = 4 we are given five image frames, we have τ = 1/16 and, since
DT = 1, every lt = K/T = 16 time steps a new image frame is given. In the multigrid
solver five levels are used. The coarsest grid is a 4×4×4 space-time grid, refined by halving
the mesh size.

A standard test for optical flow solvers with synthetic images is given by a square moving
with velocity (uc, vc). At time t the frames are defined by means of the following function:

I(x, y, t) =
{

1 + η′ x1
l
t ≤ x1 ≤ x1

r
t and x2

l
t ≤ x2 ≤ x2

u
t ,

η′ otherwise,(10.15)

where x1
l
t and x1

r
t are the x1-coordinates of the left- and right vertical edges of the square

(or rectangle) respectively, and x2
l
t and x2

u
t are the x2-coordinates of the lower- and upper

horizontal edges of the square (or rectangle) respectively. The explicit form in terms of t
of these coordinate functions will be specified later. The function η′ denotes noise which
is realized numerically by adding uniformly distributed random numbers in [−η, η] at pixel
values. The difficulty of this test stems from the fact of severe under-determination: in fact
the flow field is only available along the edges of the cube.

In the experiments that follow, we consider the translating square (or rectangle) on a
sequence of five frames, so that N = 4 and T = 4 (lt = 16). Further (x10, x20) represents
the pixel (20, 20).

A first test case is given by a moving square with (uc, vc) = (1, 1). Let us consider the
images of a square given by x1

l
t = x10 + uct, x1

r
t = x10 + uct + 20, x2

l
t = x20 + vct, and

x2
u
t = x20 + vct + 20. The noise function is η = 0.3 (this corresponds to 30% of maximal

image brightness). Numerical results are depicted in Table 10.1.
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Table 10.1
Case 1 : (uc, vc) = (1, 1) with 30% added noise. Dependence on γ.

Dependence on γ; α = 5.0, and β = 0.25.

γ |u|max, |v|max ψ̄ ||y − Y ||2 ∑
cost ||div(w)||2

0 1.18, 1.25 35.7 209.3 20.2 0
0.25 1.12, 1.15 33.5 221.6 12.3 9.6(-1)
0.5 1.08, 1.08 31.6 233.0 9.5 7.5(-1)
1 1.02, 1.04 28.3 253.2 6.8 5.4(-1)
5 0.91, 0.91 18.3 336.3 3.4 2.1(-1)

H & S 1.62, 1.64 41.66

Table 10.2
Two sample images: (uc, vc) = (1.5, 2) with added 30% noise. Dependence on control weights.

Dependence on α; β = 0.25, and γ = 0.1.

α |u|max, |v|max ψ̄ ||y − Y ||2 ∑
cost ||div(w)||2

0.5 1.59, 2.08 44.1 107.4 20.1 8.5(-1)
1 1.78, 2.27 45.7 104.7 45.6 1.6
5 2.08, 2.34 48.4 98.5 145.5 3.9

Dependence on γ; α = 1.0, and β = 0.25.

γ |u|max, |v|max ψ̄ ||y − Y ||2 ∑
cost ||div(w)||2

0 1.86, 2.34 46.5 102.4 65.1 0
0.25 1.67, 2.16 44.7 107.6 29.2 1.3
0.5 1.53, 2.03 43.5 111.6 16.5 1.0
1 1.39, 1.82 41.8 117.9 7.9 6.9(-1)
2 1.31, 1.58 39.8 127.6 4.0 4.3(-1)

H & S 2.18, 2.28 49.9

The actual choice of “optimal parameters” is a delicate matter due to the lack of an
indisputable measure. In the tables the result printed in bold fonts represents a combination
of a preferable choice of parameters (α, β, γ). The effect of changes of (α, β, γ) on the result
is quite the same as that expected from our experience with inverse problems. Since (uc, vc)
is independent of time, the effect of α is not so significant , as long as α > 0. Increasing
(β, γ) from (0, 0) until a threshold is reached improves the result both as far as the graphical
representation of (uc, vc) is concerned as well as the error ψ̄ = 180 ψ̃/π. However, increasing
(β, γ) also has the effect that the object to be reconstructed, i.e. (uc, vc), is increasingly
diffused and hence underestimated with respect to its size. Increasing γ has the effect of
filling in information available along the edges of the square into its interior.

Similar accurate results are obtained in case (uc, vc) = (1.5, 2). This is a more challeng-
ing situation because the optical flow orientation is not invariant under coordinate change.

Another challenging test is provided by a moving and dilating rectangle. Let us consider
the image of a rectangle given by x1

l
t = x10 + uct, x1

r
t = x10 + 2uct + 20, x2

l
t = x20, and

x2
u
t = x20 + 20. No noise is added. This function represents a square of 20× 20 pixels that

changes to a rectangle linearly with time along the x1 direction: uc = 1.3 (vc = 0).
By considering translation only in one direction we can test to which extend energy

associated to one flow component is diffused to the other component. In Figure 10.1 snap-
shots of the optical flow solution for this case (at t = 2) are shown. We observe that the
v-component computed with Horn & Schunck is far from being zero. On the other hand the
optimal control approach seems to have a reduced ’mixing’ effect and allows a more accurate
velocity estimate also in this case.

Our approach is able to determine optical flow also in the case where only two image
frames are given. In this case, N = 1, T = 1. Control applies through the final observation.
To test the ability of our algorithm, we consider the translating square case with (uc, vc) =
(1.5, 2) and 30% added noise. In Table 10.2 we notice that in case of only two given frames
a smaller value of α than in the multiple image frame sequence gives best results.

We conclude this section reporting results on a known benchmark for verification of
optical flow solvers: the ’Hamburg Taxi Sequence’; see [5]. It consists of a sequence of
frames of a taxi coming from the right in the main road and turning right into a side street
in Hamburg (Germany). The first frame of the Taxi Sequence is depicted in Figure 10.2
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Fig. 10.1. Optical flow for the moving and dilating rectangle. Optical flow results with optimal control
(left) and with Horn & Schunck (right). Optical flow (top); the u component (middle); the v component
(bottom).

(top-left). In the same scene, two dark colored cars are driving in the main road entering
from the left and from the right into the scene. One can also see parked cars, houses, and
trees. The corresponding (irregular) brightness pattern is shown in Figure 10.2 (top-right).

We consider a sequence of five photos of the moving taxi taken at regular intervals
(T = 4). Our algorithm is applied with α = 5.0, β = 0.25, γ = 0.5, and Iloop = 10. In
Figure 10.2 the optical flow computed with the optimal control approach is depicted.

11. Conclusion and outlook. Results of our work on multigrid methods for elliptic,
parabolic, and hyperbolic optimality systems were presented.

In case of linear elliptic problems sharp multigrid convergence estimates were obtained
using local Fourier analysis. A multigrid theory that guarantees convergence of the multigrid
iteration under minimal regularity assumptions was presented. These results show that
collective relaxation of state and adjoint variables is essential to obtain typical multigrid
convergence, which is robust with respect to the value of the weight of the control in the cost
functional. This was proved to be true also in case of multigrid schemes applied to singular
(nonlinear) optimal control problems using appropriate local (collective) Newton steps for
smoothing. Based on this experience a collective projected iterative scheme was proposed
as a smoothing scheme for multigrid applied to constrained optimal control problems. The
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Fig. 10.2. Top: First frame of the Taxi Sequence and the corresponding brightness distribution. Bot-
tom: Optical flow for the Taxi sequence obtained with the optimal control method. On the right, a close-up
of the solution containing the region of the taxi.

robustness of this scheme allowed the investigation of bang-bang control phenomena. In
order to enlarge the range of applicability of our multigrid strategy a new algebraic multigrid
approach was formulated possessing optimal computational complexity.

Similar results were obtained in case of parabolic optimal control problems where the
development of multigrid methods poses additional requirements. Parabolic optimality sys-
tems are characterized by parabolic partial differential equations with opposite orientation.
To solve such problems we considered the space-time parabolic multigrid framework and de-
veloped a new smoothing scheme that allowed the fast solution of singular parabolic optimal
control problems.

The results of the work presented here and in the quoted references demonstrate the
ability of multigrid methods in solving optimal control problems. This fact motivates our
present research activity on multigrid methods for optimality systems which focuses on the
following projects.

An interesting application is eigenvalue optimization; see, e.g., [7]: Consider an elastic
membrane Ω with density ρ. Important issues are the determination of the shape of Ω or
of the function ρ such that the eigenfrequencies of the vibrating membrane satisfy given
conditions. Therefore we need to solve eigenvalue problems with variable (possibly discon-
tinuous) coefficients on general complex domains. For this purpose we present in [25] an
efficient algebraic multigrid eigen-solver that satisfies the above requirements and represents
our first step towards the development of multigrid methods for eigenvalue optimization.

Another application area of interest for us is optimal control of reaction diffusion pro-
cesses [11, 19]. Time-dependent nonlinear reaction-diffusion systems are an essential ingre-
dient in the modelling of chemical reaction processes, in the description of time evolution of
ecological and biological systems, in the modelling of phase-transitions, and in the study of
onset to turbulent behavior; see, e.g., [13, 45] and the references given there.

We consider representative models of reaction-diffusion phenomena provided by lambda
omega systems [48]. These describe two-species reaction diffusion dynamics where the re-
action kinetics exhibit periodic limit cycle behavior. Therefore, they represent a ‘universal
model’ to investigate travelling waves, spiral waves, and turbulent evolution. In [13] we
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investigate the numerical solution of lambda-omega systems by theta-schemes and multi-
grid methods. Using the analysis presented in this reference and the approach given in
[12] we currently investigate the multigrid solution of optimal control problems governed by
lambda-omega systems.

Related to our work on multigrid solution of time-dependent optimal control problems
is also the investigation presented in [24] concerning optimal control of quantum systems;
see, e.g., [43]. These problems require minimizing cost functionals of tracking type where the
state of the system is modelled by Schrödinger equations. The control is typically realized
by laser pulses which enter in the state equation as a multiplicative function of the state
variable. Our purpose is to extend the multigrid approach given in [11, 12, 19] to infinite
dimensional quantum models [89].

In [98] the two-dimensional inviscid incompressible Euler system is reformulated in two
subsystems having elliptic and hyperbolic character, respectively. The elliptic part of the
Euler system consists of the set of Cauchy-Riemann equations. Our contribution to the nu-
merical solution of these equations can be found in [23, 106]. Based on the above results and
our experience with elliptic and hyperbolic optimal control problems we intend to develop
a new framework for the optimal control of incompressible fluids and its efficient numerical
realization by multigrid methods.

In future work we also plan to merge multigrid techniques and globalization strategies
for optimal control problems.
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[96] K. Stüben, Algebraic Multigrid (AMG): An Introduction with Applications, GMD Report 53, March
1999.
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