EINFÜHRUNG IN DIE ALGEBRA Vorlesung SS 2012

Klausur am 27. 6. 2012

1. (8 Punkte)

- a) Formulieren Sie den Struktursatz für endliche abelsche Gruppen
- b) Wieviele abelsche Gruppen der Ordnung 80 gibt es (bis auf Isomorphie)? Schreiben Sie alle auf.

2. **(8 Punkte)**

Wir betrachten den Restklassenring $\mathbb{Z}/(n)$. Zu welchen beiden Aussagen ist die Aussage " $\mathbb{Z}/(n)$ ist ein Körper" äquivalent? Formulieren und beweisen Sie den entsprechenden Satz.

3. (6 Punkte)

a) Sei (G,\cdot) eine Gruppe und $\emptyset \neq H \subseteq G$ eine Teilmenge mit der Eigenschaft "für alle $a,b\in H$ ist $a\cdot b\in H$ ".

Ist H eine Untergruppe von G? Beweis oder Gegenbeispiel.

- b) Richtig oder falsch (ohne Begründung).
 - i) Ist das Ideal $I \triangleleft R$ ist prim, so ist R/I ein Integritätsbereich.
 - ii) $\sqrt{5}$ ist algebraisch unabhängig über dem Unterring \mathbb{Z} von \mathbb{R} .

4. (8 Punkte)

- a) Schreiben Sie die Definition eines Ideals in einem Ring R auf. Geben Sie ein Beispiel für einen nicht kommutativen Ring an.
- b) Sei $M \subseteq \mathbb{R}$ eine Menge und

$$I_M := \{ f : \mathbb{R} \to \mathbb{R} \mid f(x) = 0 \ \forall \ x \in M \}.$$

Zeigen Sie, dass I_M ein Ideal in $Abb(\mathbb{R}, \mathbb{R})$ ist.

Zusatz: Wie sehen die trivialen Ideale in der Form I_M aus?