Discrete and algebraic structures, winter semester 2015/16

K. Baur, M. Kang

October 5, 2016

Contents

I M. Kang 5
1 Standard methods in enumerative combinatorics 7
2 Graph theory 9
II K. Baur 11
3 Multilinear algebra 13
3.1 Multilinear maps and tensor maps 13
3.2 Tensor products and unique factorization 18
3.3 Basic properties of tensors and induced inner products 19
3.4 Induced maps 24
3.5 Some models of tensor products 26
3.6 Exterior spaces 30
3.7 Reminder from linear algebra 36
3.7.1 Reminder on inner products 36
3.7.2 Reminder on Adjoints 37
4 Rings and modules 39
4.1 Basic definitions 39
4.2 Submodules: intersections and sums 42
4.3 Morphisms: exact sequences 45
4.4 Quotient modules; basic isomorphism theorem 56
Notation for Chapters 3 and 4 65

Part I

M. Kang

Chapter 1

Standard methods in enumerative combinatorics

recursions, generating functions, analytical methods

8 CHAPTER 1. STANDARD METHODS IN ENUMERATIVE COMBINATORICS

Chapter 2

Graph theory

matchings, durchlaufbarkeit, graph decomposition, planar graphs, stochastic aspects

Part II

K. Baur

Chapter 3

Multilinear algebra

[Lecture 1, 23.11.2015]

In this chapter, we discuss multilinear maps, tensor maps, tensor products and alternating maps. Multilinear maps can be viewed as a generalization of linear maps between vector spaces.
Some notations are explained at the very end of the document (just before the bibliography).

Unless mentioned otherwise, all vector spaces are finite dimensional vector spaces over some field K. Most of the time we will tacitly assume $K=\mathbb{C}$.

An important idea of this chapter is to convert a multilinear map on a product space into a linear map on the tensor product of its factor spaces and to study the relationship between these two maps.
this is from: classical analysis on normed spaces, Tsoy-Wo Ma. 15-1 Algebraic Tensor Products of Vector Spaces (ca. page 318)

3.1 Multilinear maps and tensor maps

Definition 3.1. Let $V_{1}, V_{2}, \ldots, V_{m}$ and W be vector spaces over a field K. A map $\varphi: V_{1} \times \cdots \times V_{m} \rightarrow W$ is m-multilinear or multilinear if it is linear in every argument, i.e. if

$$
\varphi\left(v_{1}, \ldots, v_{i}+\lambda v_{i}^{\prime}, \ldots, v_{m}\right)=\varphi\left(v_{1}, \ldots, v_{i}, \ldots, v_{m}\right)+\lambda \varphi\left(v_{1}, \ldots, v_{i}^{\prime}, \ldots, v_{m}\right)
$$

holds for all $i=1, \ldots, m$, and for all $\lambda \in K$.
A linear map $f \in \operatorname{Hom}(V, W)$ can be viewed as a 1-multilinear map.
Remark. Linear map and multilinear maps are not the same!
Consider the linear map $f \in \operatorname{Hom}\left(V_{1} \times V_{2}, W\right)$ and a multilinear map $\varphi: V_{1} \times V_{2} \rightarrow W$. f is linear and so,

$$
f\left(v_{1}+v_{1}^{\prime}, v_{2}+v_{2}^{\prime}\right)=f\left(v_{1}, v_{2}\right)+f\left(v_{1}^{\prime}, v_{2}^{\prime}\right)=f\left(v_{1}, 0\right)+f\left(0, v_{2}\right)+f\left(v_{1}^{\prime}, 0\right)+f\left(0, v_{2}^{\prime}\right)
$$

φ is multilinear, and so,
$\varphi\left(v_{1}+v_{1}^{\prime}, v_{2}+v_{2}^{\prime}\right)=\varphi\left(v_{1}, v_{2}+v_{2}^{\prime}\right)+\varphi\left(v_{1}^{\prime}, v_{2}+v_{2}^{\prime}\right)=\varphi\left(v_{1}, v_{2}\right)+\varphi\left(v_{1}, v_{2}^{\prime}\right)+\varphi\left(v_{1}^{\prime}, v_{2}\right)+\varphi\left(v_{1}^{\prime}, v_{2}^{\prime}\right)$
Note that $\varphi\left(v_{1}, 0\right)=0=\varphi\left(0, v_{2}\right)$ but that $f\left(v_{1}, 0\right)$ and $f\left(0, v_{2}\right)$ are not necessarily 0 .
Example 3.2. The following maps are multilinear (please convince yourself of this!)
(a) $f: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ defined by $f(x, y)=x y$.
(b) $\varphi: V^{*} \times V \rightarrow \mathbb{C}$ defined by $\varphi(f, v)=f(v)$.
(c) $\varphi: \mathbb{C}^{m} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ defined by $\varphi(x, y)=x^{T} A y$ for some matrix $A \in \mathbb{C}_{m \times n}$.
(d) $\otimes: \mathbb{C}^{m} \times \mathbb{C}^{n} \rightarrow \mathbb{C}^{m \times n}$ defined by $\otimes(x, y)=x y^{T}$. This is a tensor map (see below).
(e) det: $\mathbb{C}^{n} \times \cdots \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ defined by $\operatorname{det}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det} A$ where A is $\left[x_{1}, \ldots, x_{n}\right]$ the $n \times n$-matrix formed by the column vectors x_{i}.
(f) $f: V_{1} \times \cdots \times V_{m} \rightarrow \mathbb{C}$ defined by $f\left(v_{1}, \ldots, v_{m}\right)=\prod_{i=1}^{m} f_{i}\left(v_{i}\right)$ for given $f_{i} \in V_{i}^{*}$, $i=1, \ldots, m$. ((We write $f=\prod_{i=1}^{m} f_{i}$. Then $\prod_{i=1}^{m} f_{i}\left(v_{1}, \ldots, v_{m}\right)=\prod_{i=1}^{m} f_{i}\left(v_{i}\right)$.))
(g) $g: V_{1}^{*} \times \cdots \times V_{m}^{*} \rightarrow W$ defined by $g\left(f_{1}, \ldots, f_{m}\right)=\prod_{i=1}^{m} f_{i}\left(v_{i}\right)$ for $v_{i} \in V_{i}$ given, $i=1, \ldots, m$.
(h) Let $\varphi: V_{1} \times \cdots \times V_{m} \rightarrow W$ and $\psi: V_{1} \times \cdots \times V_{m} \rightarrow W$ be multilinear. Then $\alpha \varphi+\beta \psi$ is also multilinear (for all $\alpha, \beta \in K)$. So the set $M\left(V_{1}, \ldots, V_{m}, W\right)$ of multilinear maps from $V_{1} \times \cdots \times V_{m}$ to W is a vector space.
Let $\psi: V_{1} \times \cdots \times V_{m} \rightarrow W$ be a multilinear map. If we describe how ψ acts on a basis of $V_{1} \times \cdots \times V_{m}, \psi$ is determined. So let n_{1}, \ldots, n_{m} be the dimensions of V_{i}, $i=1, \ldots, m$, let $E_{i}:=\left\{e_{i 1}, \ldots, e_{i, n_{i}}\right\}$ be a basis of V_{i}. So each $v_{i} \in V_{i}$ can be written as $v_{i}=\sum_{j=1}^{n_{i}} a_{i j} e_{i j}(i=1, \ldots, m)$.

To describe the basis of a product of m vector spaces of dimensions n_{1}, \ldots, n_{m}, we use the following notation. (from ${ }^{5}$ chapter I.1, p. 25,26)

$$
\Gamma:=\Gamma\left(n_{1}, \ldots, n_{m}\right):=\left\{\gamma: \gamma=(\gamma(1), \ldots, \gamma(m)) \mid 1 \leq \gamma(i) \leq n_{i}, i=1, \ldots, m\right\} .
$$

with $|\Gamma|=\prod_{i=1}^{m} n_{i}$. For an example, take $\mathbb{C}^{3} \times \mathbb{C}^{2} \times \mathbb{C}^{2}$, with

$$
\Gamma=\Gamma(3,2,2)=\left\{\begin{array}{l}
(1,1,1),(1,1,2),(1,2,1),(1,2,2), \\
(2,1,1),(2,1,2),(2,2,1),(2,2,2), \\
(3,1,1),(3,1,2),(3,2,1),(3,2,2)
\end{array}\right\}
$$

We can order Γ according to the lexicographic order, as in the example. Moreover, we have (please check):

$$
\begin{equation*}
\prod_{i=1}^{m} \sum_{j=1}^{n_{i}} a_{i j}=\sum_{\gamma \in \Gamma} \prod_{i=1}^{m} a_{i \gamma(i)} \tag{3.1}
\end{equation*}
$$

as will be used later.
From the set-up, we have

$$
\begin{align*}
\psi\left(v_{1}, \ldots, v_{m}\right) & =\psi\left(\sum_{j_{1}=1}^{n_{1}} a_{1, j_{1}} e_{1, j_{1}}, \ldots, \sum_{j_{m}}^{n_{m}} a_{m, j_{m}} e_{m, j_{m}}\right) \\
& =\sum_{j_{1}}^{n_{1}} \cdots \sum_{j_{m}}^{n_{m}} a_{1, j_{1}} \cdots a_{m, j_{m}} \psi\left(e_{1, j_{1}}, \ldots, e_{m, j_{m}}\right) \\
& =\sum_{\gamma \in \Gamma} a_{1, \gamma(1)} \cdots a_{m, \gamma(m)} \psi\left(e_{1, \gamma(1)}, \ldots, e_{m, \gamma(m)}\right) \\
& =\sum_{\gamma \in \Gamma} a_{\gamma} \psi\left(e_{\gamma}\right) \tag{3.2}
\end{align*}
$$

where for $\gamma \in \Gamma$, we write

$$
\begin{align*}
& a_{\gamma}:=\prod_{i=1}^{m} a_{i, \gamma(i)} \in \mathbb{C} \tag{3.3}\\
& e_{\gamma}:=\left(e_{1, \gamma(1)}, \ldots, e_{m, \gamma(m)}\right) \in V_{1} \times \cdots \times V_{m} \tag{3.4}
\end{align*}
$$

so e_{γ} is the basis vector of $V_{1} \times \cdots \times V_{m}$ with label γ.
Then the $\psi\left(e_{\gamma}\right)$ in (3.2) completely determine ψ.
Theorem 3.3 (Multilinear extension). Let $E_{i}=\left\{e_{i, 1}, \ldots, e_{i, n_{i}}\right\}$ be a basis of $V_{i}, i=$ $1 \ldots, m$. Let e_{γ} be as in (3.4). Let w_{γ} in W, for all $\gamma \in \Gamma=\Gamma\left(n_{1}, \ldots, n_{m}\right)$ be arbitrary. Then there exists a unique multilinear map $\varphi: V_{1} \times \cdots \times V_{m} \rightarrow W$ such that $\varphi\left(e_{\gamma}\right)=w_{\gamma}$ for all γ.
Proof. Since we want $\varphi\left(e_{\gamma}\right)=w_{\gamma}$ for all $\gamma \in \Gamma$, we need to define (by (3.2)

$$
\varphi\left(v_{1}, \ldots, v_{m}\right)=\sum_{\gamma \in \Gamma} a_{\gamma} w_{\gamma}
$$

for a_{γ} as in (3.3) and $v_{i}=\sum_{j=1}^{n_{i}} a_{i j} e_{i j}$. Let $v_{i}^{\prime}=\sum_{j=1}^{n_{i}} a_{i j}^{\prime} e_{i j}, i=1, \ldots, m$. From the definition of φ, for $c \in K$,

$$
\begin{aligned}
& \varphi\left(v_{1}, \ldots, v_{i}+c v_{i}^{\prime}, \ldots, v_{m}\right) \\
= & \sum_{\gamma \in \Gamma} a_{1, \gamma(1)} \cdots\left(a_{i, \gamma(i)}+c a_{i, \gamma(i)}^{\prime}\right) \cdots a_{m, \gamma(m)} w_{\gamma} \\
= & \sum_{\gamma \in \Gamma} a_{1, \gamma(1)} \cdots a_{i, \gamma(i)} \cdots a_{m, \gamma(m)} w_{\gamma}+c \sum_{\gamma \in \Gamma} a_{1, \gamma(1)} \cdots a_{i, \gamma(i)}^{\prime} \cdots a_{m, \gamma(m)} w_{\gamma} \\
= & \varphi\left(v_{1}, \ldots, v_{i}, \ldots, v_{m}\right)+c \varphi\left(v_{1}, \ldots, v_{i}^{\prime}, \ldots, v_{m}\right)
\end{aligned}
$$

i.e. φ is multilinear.

Now we show that $\varphi\left(e_{\alpha}\right)=w_{\alpha}$ for all $\alpha \in \Gamma$. [proof skipped in class] For $\alpha \in \Gamma$, write

$$
e_{i, \alpha(i)}=\sum_{j=1}^{n_{j}} \delta_{\alpha(i), j} e_{i j} .
$$

From the definition of φ and $e_{\alpha}=\left(e_{1, \alpha(1)}, \ldots, e_{m, \alpha(m)}\right)$, we have

$$
\varphi\left(e_{\alpha}\right)=\varphi\left(e_{1, \alpha(1)}, \ldots, e_{m, \alpha(m)}\right)=\sum_{\gamma \in \Gamma} \delta_{\alpha(1), 1} \ldots \delta_{\alpha(m), m} w_{\gamma}=\sum_{\gamma \in \Gamma} \delta_{\alpha, \gamma} w_{\gamma}=w_{\alpha}
$$

(with $\delta_{\alpha, \gamma}$ the obvious generalization of the Kronecker delta). So we have established the existence.

Uniqueness: Suppose there is another multilinear map $\psi: V_{1} \times \cdots \times V_{m} \rightarrow W$ such that $\psi\left(e_{\gamma}\right)=w_{\gamma}$ for all $\gamma \in \Gamma$. Then from (3.2) we have (for all $\left(v_{1}, \ldots, v_{m}\right) \in$ $\left.V_{1} \times \cdots \times V_{m}\right)$:

$$
\psi\left(v_{1}, \ldots, v_{m}\right)=\sum_{\gamma \in \Gamma} a_{\gamma} \psi\left(e_{\gamma}\right)=\sum_{\gamma \in \Gamma} a_{\gamma} w_{\gamma}=\varphi\left(v_{1}, \ldots, v_{m}\right)
$$

So $\psi=\varphi$.
Let us point out some differences between linear and multilinear maps. When T : $V \rightarrow W$ is linear, T is completely determined by the $n:=\operatorname{dim} V$ images $T\left(e_{1}\right), \ldots, T\left(e_{n}\right)$ where $E=\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of V. But to determine a multilinear map φ, we need $|\Gamma|=\prod_{i=1}^{m} \operatorname{dim} V_{i}$ images. In general, this is much more than $\operatorname{dim}\left(V_{1} \times \cdots \times V_{m}\right)=$ $\sum_{i=1}^{m} \operatorname{dim} V_{i}$.

Recall Example $3.2(\mathrm{~d})$ with $m=n=2$, i.e. $\otimes: \mathbb{C}^{2} \times \mathbb{C}^{2} \rightarrow \mathbb{C}_{2 \times 2}$ defined by $\otimes(x, y)=$ $x y^{T}$. Since $\operatorname{rk}\left(x y^{T}\right) \leq \min \left\{\operatorname{rk} x, \operatorname{rk} y^{T}\right\} \leq 1$, we have $\operatorname{det}(\otimes(x, y))=0$. But if $x_{1}=(1,0)^{T}$ and $x_{2}:=(0,1)^{T}$, then

$$
\operatorname{det}\left(\otimes\left(x_{1}, x_{1}\right)+\otimes\left(x_{2}, x_{2}\right)\right) \operatorname{det} I_{2}=1
$$

(for I_{2} the identity matrix in $\mathbb{C}_{2,2}$).
Hence $\otimes\left(x_{1}, x_{1}\right)+\otimes\left(x_{2}, x_{2}\right)$ is not in the image of \otimes and $\mathrm{im} \otimes$ is not a subspace.
In general, the image $\operatorname{im} \varphi=\left\{\varphi\left(v_{1}, \ldots, v_{m}\right) \mid v_{i} \in V_{i}, i_{1}, \ldots, m\right\}$ is not necessarily a subspace of W. But we can consider the $\operatorname{span}\langle\operatorname{im} \varphi\rangle$ of the image of φ. Clearly, $\operatorname{dim}\langle\operatorname{im} \varphi\rangle \leq \prod_{i=1}^{m} \operatorname{dim} V_{i}$.

Definition 3.4. The rank of φ is defined to be

$$
\operatorname{rk} \varphi=\operatorname{rank} \varphi=\operatorname{dim}\langle\operatorname{im} \varphi\rangle
$$

The multilinear map φ is called a tensor map if $\operatorname{rk} \varphi=\prod_{i=1}^{m} \operatorname{dim} V_{i}$. In other words, a tensor map is a multilinear map with maximal image span.

Example $3.2(\mathrm{a})$ is a trivial tensor map. Example $3.2(\mathrm{c})$ is a tensor map.
Theorem 3.5. The multilinear map $\varphi: V_{1} \times \cdots \times V_{m} \rightarrow P$ is a tensor map if and only if the set $\left\{\varphi\left(e_{\gamma}\right) \mid \gamma \in \Gamma\right\}$ is linearly independent (for e_{γ} as in (3.4)).
Proof. From (3.2), $\left\langle\varphi\left(e_{\gamma}\right) \mid \gamma \in \Gamma\right\rangle=\langle\operatorname{im} \varphi\rangle$ and $|\Gamma|=\prod_{i=1}^{m} \operatorname{dim} V_{i}$.
Theorem 3.6. Tensor maps exist, i.e. for V_{1}, \ldots, V_{m} there exist W and $\varphi: V_{1} \times \cdots \times$ $V_{m} \rightarrow W$ such that φ is a tensor map.
Proof. By Theorem 3.3, pick W a vector space with $\operatorname{dim} W=\prod_{i=1}^{m} \operatorname{dim} V_{i}$ and let $\left\{w_{\gamma}: \gamma \in \Gamma\right\}$ be a basis so that the $w_{\gamma}(\gamma \in \Gamma)$ determine the multilinear map φ which is obviously a tensor map.

Clearly, tensor maps on $V_{1} \times \cdots \times V_{m}$ are not unique. The study of multilinear maps is reduced to the study of some linear map (not unique) via a tensor map.
Definition 3.7. A multilinear map $\varphi: V_{1} \times \cdots \times V_{m} \rightarrow P$ is said to have the universal factorization property if for any multilinear map $\psi: V_{1} \times \cdots \times V_{m} \rightarrow W$, there is $T \in \operatorname{Hom}(P, W)$ such that $\psi=T \circ \varphi$.

[Lecture 2, 24.11.2015]
Theorem 3.8. The multilinear map $\varphi: V_{1} \times \cdots \times V_{m} \rightarrow P$ is a tensor map if and only if φ has universal factorization property.
Proof. Suppose that φ is a tensor map. Then $\left\{\varphi\left(e_{\gamma}\right) \mid \gamma \in \Gamma\right\}$ is a basis of $\langle\operatorname{im} \varphi\rangle$. There is a unique ${ }^{2} T \in \operatorname{Hom}(\langle\operatorname{im} \varphi\rangle, W)$ such that $T \varphi\left(e_{\gamma}\right)=\psi\left(e_{\gamma}\right)$ for all $\gamma \in \Gamma$. Since $T \varphi$ and ψ are multilinear maps on $V_{1} \times \cdots \times V_{m}$ (Exercise 2 below or Problem 7.1 (a)), Theorem 3.3 implies $T \varphi=\psi$.

Conversely, suppose that φ has the universal factorization property. In particular consider a tensor map ψ on $V_{1} \times \cdots \times V_{m}$, i.e., $\operatorname{dim}\langle\operatorname{im} \psi\rangle=\prod \operatorname{dim} V_{i}$. (Such a map ψ exists by Theorem (3.6).

Then $T \varphi=\psi$ for some linear map T. Thus, $T(\langle\operatorname{im} \varphi\rangle)=\langle\operatorname{im} \psi\rangle$. Hence

$$
\prod_{i} \operatorname{dim} V_{i}=\operatorname{dim}\langle\operatorname{im} \psi\rangle \leq \operatorname{dim}\langle\operatorname{im} \varphi\rangle \leq \prod_{i} \operatorname{dim} V_{i}
$$

So $\operatorname{rk} \varphi=\prod \operatorname{dim} V_{i}$ and φ is a tensor map.
Definition 3.9. A multilinear map $\varphi: V_{1} \times \cdots \times V_{r} \rightarrow W$ with $W=K$ is called a multilinear form or an r-form. If $V_{1}=\cdots=V_{r}=: V$ (and $W=K$), then φ is called an r-form on V or a multilinear form on V.

[^0]
Exercises for Section 3.1

1. Let $V_{1}, \ldots, V_{m}, W_{1}, \ldots, W_{m}$ and W be \mathbb{C}-vector spaces. Let $\varphi: W_{1} \times \cdots \times W_{m} \rightarrow W$ be multilinear and $T_{i}: V_{i} \rightarrow W_{i}$ linear for all i. Define $\psi: V_{1} \times \cdots \times V_{m} \rightarrow W$ by $\psi\left(v_{1}, \ldots, v_{m}\right)=\varphi\left(T_{1} v_{1}, \ldots, T_{m} v_{m}\right)$. Show that ψ is multilinear.
2. Let V_{1}, \ldots, V_{m}, W and W^{\prime} be \mathbb{C}-vector spaces.

Prove that if $\varphi: V_{1} \times \cdots \times V_{m} \rightarrow W$ is multilinear and $T: W \rightarrow W^{\prime}$ is linear, then $T \circ \varphi$ is multilinear.
3. Show that for $n>1$, the determinant function det : $\mathbb{C}^{n} \times \cdots \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ is not a tensor map.
4. Suppose that the multilinear map $\varphi: V_{1} \times \cdots \times V_{m} \rightarrow P$ has the universal factorization property. Show that the linear map T (from the defn of the universal factorization property) is unique if and only if $\langle\operatorname{im} \varphi\rangle=P$.

3.2 Tensor products and unique factorization

Let P be a vector space. If there is a tensor map $\otimes: V_{1} \times \cdots \times V_{m} \rightarrow P$ such that $\langle\operatorname{im} \otimes\rangle=P$, then P is said to be a tensor product of V_{1}, \ldots, V_{m} or a tensor space. It is written as $\otimes_{i=1}^{m} V_{i}$ or as $V_{1} \otimes \cdots \otimes V_{m}$. If $V_{1}=\cdots=V_{m}=: V$, we also write $V^{\otimes m}$. We will see below that all tensor product spaces of V_{1}, \ldots, V_{m} are isomorphic and hence we will just say that $\otimes_{i=1}^{m} V_{i}$ is the tensor product of V_{1}, \ldots, V_{m}. We have

$$
\operatorname{dim}\left(\otimes_{i=1}^{m} V_{i}\right)=\operatorname{dim}\langle\operatorname{im} \otimes\rangle=\prod_{i=1}^{m} \operatorname{dim} V_{i}
$$

The elements of $\otimes_{i=1}^{m} V_{i}$ are tensors. The tensors of the form

$$
\otimes\left(v_{1}, \ldots, v_{m}\right)=: v_{1} \otimes \cdots \otimes v_{m}
$$

are the decomposable tensors (or pure tensors), i.e., tensors in im \otimes are decomposable. The decomposable tensors span $\otimes_{i=1}^{m} V_{i}$, so we can find a basis of decomposable tensors for $\otimes_{i=1}^{m} V_{i}$. The tensors which are not decomposable, i.e., the tensors in $\langle\operatorname{im} \otimes\rangle \backslash \operatorname{im} \otimes$ are called indecomposable tensors. From Theorem 3.6, we get the following.

Theorem 3.10. Let P be a vector space with $\operatorname{dim} P=\prod_{i=1}^{m} \operatorname{dim} V_{i}$. Then there exists $\otimes: V_{1} \times \cdots \times V_{m} \rightarrow P$, so that P is the tensor space.

Theorem 3.11. Tensor spaces of V_{1}, \ldots, V_{m} are isomorphic:
If $P=\otimes_{i=1}^{m} V_{i}$ and $Q=\boxtimes_{i=1}^{m} V_{i}$ are tensor products of V_{1}, \ldots, V_{m}, then there exists an invertible $T \in \operatorname{Hom}(P, Q)$ such that $T \circ \otimes=\boxtimes$.

Proof. Since P and Q are tensor spaces of $V_{1}, \ldots, V_{m}, \operatorname{dim} P=\operatorname{dim} Q$. The sets

$$
\left\{\otimes e_{\gamma} \mid \gamma \in \Gamma\right\}, \quad\left\{\boxtimes e_{\gamma} \mid \gamma \in \Gamma\right\}
$$

are bases of P and Q. We get T by sending basis elements to basis elements. [rest of proof skipped in class]
By Theorem 3.8 (universal factorization property) there exists $T \in \operatorname{Hom}(P, Q)$ such that $T \otimes\left(e_{\gamma}\right)=\boxtimes e_{\gamma}$, for all $\gamma \in \Gamma$. Thus T is invertible and $T \otimes=\boxtimes$.

Theorem 3.12 (Unique factorization property). Let $\psi: V_{1} \times \cdots \times V_{m} \rightarrow W$ be multilinear. Then there exist a unique linear map $T: \otimes_{i=1}^{m} V_{i} \rightarrow W$ such that $\psi=T \circ \otimes$, i.e.,

$$
\psi\left(v_{1}, \ldots, v_{m}\right)=T \otimes\left(v_{1}, \ldots, v_{m}\right)=T\left(v_{1} \otimes \cdots \otimes v_{m}\right) .
$$

Proof. Use Exercise 3.1.4 or Problem 8.2 (a)
In other words, the tensor map on $\otimes_{i=1}^{m} V_{i}$ has the unique factorization property.
Corollary 3.13. Let φ : $V_{1} \times \cdots \times V_{m} \rightarrow P$ be multilinear. Then φ is a tensor map and $\langle\operatorname{im} \varphi\rangle=P$ if and only if φ has the unique universal factorization property.

Exercises for Section 3.2

1. Show that if some $v_{i}=0$, then $v_{1} \otimes \cdots \otimes v_{m}=0$.
2. Let $z \in U \otimes V$ so that z can be represented as $z=\sum_{i=1}^{k} u_{i} \otimes v_{i}$. Prove that if k is the smallest number among all such representations, then $\left\{u_{1}, \ldots, u_{k}\right\}$ and $\left\{v_{1}, \ldots, v_{k}\right\}$ are linearly independent sets.
3. Suppose that $e_{1}, e_{2} \in V$ are linearly independent. Prove that $e_{1} \otimes e_{2}+e_{2} \otimes e_{1} \in$ $V \otimes V$ is indecomposable.
4. Let $P=\otimes_{i=1}^{m} V_{i}$ with tensor map φ and let $T \in \operatorname{Hom}(P, Q)$ be invertible. Prove that $\psi=T \circ \varphi$ is also a tensor map and that Q is the tensor space with tensor $\operatorname{map} \psi$.

3.3 Basic properties of tensors and induced inner products

As before, let V_{1}, \ldots, V_{m} be vector spaces over $K=\mathbb{C}$.
Theorem 3.14. Consider the tensor product $\otimes_{i=1}^{m} V_{i}$ and tensors $u_{1} \otimes \cdots \otimes u_{m}, \ldots, w_{1} \otimes$ $\cdots \otimes w_{m} \in \otimes_{i} V_{i}$.
If $u_{1} \otimes \cdots \otimes u_{m}+\cdots+w_{1} \otimes \cdots \otimes w_{m}=0$ then $\varphi\left(u_{1}, \ldots, u_{m}\right)+\cdots+\varphi\left(w_{1}, \ldots, w_{m}\right)=0$ for any multilinear map $\varphi: V_{1} \times \cdots \times V_{m} \rightarrow W$.

Proof. By Theorem 3.12 we can write $\varphi=T \circ \otimes$ for some $T \in \operatorname{Hom}\left(\otimes_{i=1}^{m} V_{i}, W\right)$. So

$$
\varphi\left(u_{1}, \ldots, u_{m}\right)=T \otimes\left(u_{1}, \ldots, u_{m}\right)=T\left(u_{1} \otimes \cdots \otimes u_{m}\right)
$$

and similarly for all decomposable tensors in the sum. Hence

$$
\begin{aligned}
& \varphi\left(u_{1}, \ldots, u_{m}\right)+\cdots+\varphi\left(w_{1}, \ldots, w_{m}\right) \\
= & T\left(u_{1} \otimes \cdots \otimes u_{m}\right)+\cdots+T\left(w_{1} \otimes \cdots \otimes w_{m}\right) \\
= & T(\underbrace{u_{1} \otimes \cdots \otimes u_{m}+\cdots+w_{1} \otimes \cdots \otimes w_{m}}_{=0}) \\
= & 0
\end{aligned}
$$

[Lecture 3, 30.11.2015]
Theorem 3.15. Let $v_{i} \in V_{i}, i=1, \ldots, m$. Then $v_{1} \otimes \cdots \otimes v_{m}=0$ if and only if there exists i with $v_{i}=0$.

Proof. \Longleftarrow is clear.
\Longrightarrow : Suppose $v_{1} \otimes \cdots \otimes v_{m}=0$ but $v_{i} \neq 0$ for all i. Then for each i there exists $f_{i} \in V_{i}^{*}$ such that $f_{i}\left(v_{i}\right)=1$. Define

$$
\varphi:=\prod_{i=1}^{m} f_{i}: V_{1} \times \cdots \times V_{m} \rightarrow \mathbb{C}
$$

This is a multilinear map (cf. Example 3.2 (f)). Then

$$
\varphi\left(v_{1}, \ldots, v_{m}\right)=\prod_{i=1}^{m} f_{i}\left(v_{i}\right)=1
$$

But by Theorem 3.14, $\varphi\left(v_{1}, \ldots, v_{m}\right)=0$, a contradiction.
Theorem 3.16. Let $u_{1} \otimes \cdots \otimes u_{m}$ and $v_{1} \otimes \cdots \otimes v_{m}$ be in $V_{1} \otimes \cdots \otimes V_{m}$. $u_{1} \otimes \cdots \otimes u_{m}=v_{1} \otimes \cdots \otimes v_{m} \neq 0 \Longleftrightarrow v_{i}=c_{i} u_{i}$ for all $i=1, \ldots, m$ and $\prod_{i=1}^{m} c_{i}=1$.

Proof. \Longleftarrow is clear.
\Longrightarrow : Suppose $u_{1} \otimes \cdots \otimes u_{m}=v_{1} \otimes \cdots \otimes v_{m} \neq 0$. From Theorem 3.15, all u_{i} and v_{i} are non-zero. From Theorem 3.14 we know that

$$
\varphi\left(u_{1}, \ldots, u_{m}\right)=\varphi\left(v_{1}, \ldots, v_{m}\right)
$$

holds for any multilinear map φ from $V_{1} \times \cdots \times V_{m}$ to some \mathbb{C}-vector space W. Suppose that u_{k} and v_{k} are not linearly dependent for some k (i.e. assume that there is an index k such that u_{k} is not a (non-zero) multiple of v_{k}). Then there is $f_{k} \in V_{k}^{*}$ such
that $f_{k}\left(v_{k}\right)=1$ and $f_{k}\left(u_{k}\right)=0$. For $i \neq k$ choose $f_{i} \in V_{i}^{*}$ such that $f_{i}\left(v_{i}\right)=1$. (This is multilinear, cf. Example 3.2(f)). Set $\varphi:=\prod_{i=1}^{m} f_{i}$. Then

$$
\varphi\left(v_{1}, \ldots, v_{m}\right)=\prod_{i=1}^{m} f_{i}\left(v_{i}\right)=1
$$

and since $f_{k}\left(u_{k}\right)=0$

$$
\varphi\left(u_{1}, \ldots, u_{m}\right)=\prod_{i=1}^{m} f_{i}\left(u_{i}\right)=0
$$

contradicting $\varphi\left(u_{1}, \ldots, u_{m}\right)=\varphi\left(v_{1}, \ldots, v_{m}\right)$. Hence for all k there exists $c_{k} \neq 0$ such that $v_{k}=c_{k} u_{k}$. From

$$
0 \neq u_{1} \otimes \cdots \otimes u_{m}=v_{1} \otimes \cdots \otimes v_{m}=\left(\prod_{i=1}^{m} c_{i}\right) u_{1} \otimes \cdots \otimes u_{m}
$$

we have $\prod_{i=1}^{m} c_{i}=1$.
Since the decomposable elements span the tensor space $\otimes_{i=1}^{m} V_{i}$, each $z \in \otimes_{i=1}^{m} V_{i}$ is a linear combination of decomposable tensors. Let k be the smallest number of decomposable tensors in all such linear combinations for z. We call k the rank or the smallest length of z. The rank of $z \neq 0$ is one if and only if z is decomposable.

Theorem 3.17. Assume that $z \in U \otimes V$ can be represented as $z=\sum_{i=1}^{r} u_{i} \otimes v_{i}$ for some $r \geq 1$. Then the smallest length of z is k if and only if $\left\{u_{1}, \ldots, u_{k}\right\}$ and $\left\{v_{1}, \ldots, v_{k}\right\}$ are linearly independent sets, respectively.

Proof. The implication \Longrightarrow is Exercise 2 of Section 3.2 or Problem 8.1 (b).
\Longleftarrow :Assume that $\left\{u_{1}, \ldots, u_{k}\right\}$ and $\left\{v_{1}, \ldots, v_{k}\right\}$ are linearly independent sets. Let $z=$ $\sum_{j=1}^{r} x_{j} \otimes y_{j}$, we show that $k \leq r$. Let $l \in\{1, \ldots, m\}$ be arbitrary. Since the v_{i} are linearly independent, there is $g \in V^{*}$ such that $g\left(v_{l}\right)=1$ and $g\left(v_{j}\right)=0$ for $j \neq l$. Let $f \in U^{*}$ be arbitrary. Then the map $\varphi:=f g: U \times V \rightarrow \mathbb{C}$ is bilinear (cf. Example 3.2 (f)). By assumption,

$$
\sum_{i=1}^{k} u_{i} \otimes v_{i}=\sum_{j=1}^{r} x_{j} \otimes y_{j}
$$

Using Theorem 3.14 for $\varphi=f g$, we have (first equality by the choice of g)

$$
f\left(u_{l}\right)=\sum_{i=1}^{k} f\left(u_{i}\right) g\left(v_{i}\right)=\sum_{j=1}^{r} f\left(x_{j}\right) g\left(y_{j}\right)=f\left(\sum_{j=1}^{r} g\left(y_{i}\right) x_{j}\right)
$$

Since f is arbitrary, we get $u_{l}=\sum_{j=1}^{r} g\left(y_{i}\right) x_{j}$, so u_{l} is in $\left\langle x_{1}, \ldots, x_{r}\right\rangle$ for all $l=1, \ldots, k$. (choosing other linear maps g when l varies). Since $\left\{u_{1}, \ldots, u_{k}\right\}$ is linearly independent, we have $k \leq r$.

We now consider an induced inner product (a reminder on inner products is at the end of the chapter, cf. Subsection 3.7.1) of $\otimes_{i=1}^{m} V_{i}$. Suppose that $(\cdot, \cdot)_{i}$ is an inner product on V_{i} and $E_{i}=\left\{e_{i 1}, \ldots, e_{i n_{i}}\right\}$ is an orthonormal basis of V_{i} for all $i=1, \ldots, m$. We know that

$$
E:=\left\{e_{\gamma}^{\otimes}:=e_{1 \gamma(1)} \otimes \cdots \otimes e_{m \gamma(m)}: \gamma \in \Gamma\right\}
$$

is a basis of $\otimes_{i=1}^{m} V_{i}$, where $\Gamma=\Gamma\left(n_{1}, \ldots, n_{m}\right)$. We would like to have an inner product (\cdot, \cdot) on the tensor product $\otimes_{i=1}^{m} V_{i}$ such that E is an orthonormal basis, i.e.

$$
\left(e_{\alpha}^{\otimes}, e_{\beta}^{\otimes}\right)=\left(e_{1 \alpha(1)} \otimes \cdots \otimes e_{m \alpha(m)}, e_{1 \beta(1)} \otimes \cdots \otimes e_{m \beta(m)}\right)=\delta_{\alpha, \beta}
$$

($\delta_{\alpha, \beta}$ is the generalization of the Kronecker delta to m-tuples).
Such an inner product is unique (Section 3.7.1).
We define

$$
\begin{equation*}
(u, v):=\sum_{\gamma \in \Gamma} a_{\gamma} \overline{b_{\gamma}} \tag{3.5}
\end{equation*}
$$

where $u=\sum_{\gamma \in \Gamma} a_{\gamma} e_{\gamma}^{\otimes}, v=\sum_{\gamma \in \Gamma} b_{\gamma} e_{\gamma}^{\otimes} \in \otimes_{i=1}^{m} V_{i}$. With this defintion, E becomes an ONB (cf. Problem 8.4 (a)). The definition appears to depend on the choice of the basis, but it does not (cf. Problem 7.3).

Theorem 3.18. Let V_{1}, \ldots, V_{m} be inner product spaces with orthonormal bases $E_{i}=$ $\left\{e_{i 1}, \ldots, e_{i, n_{i}}\right\}, i=1, \ldots, m$. The inner product obtained from (3.5) satisfies

$$
\begin{equation*}
\left(u_{1} \otimes \cdots \otimes u_{m}, v_{1} \otimes \cdots \otimes v_{m}\right)=\prod_{i=1}^{m}\left(u_{i}, v_{i}\right)_{i} \tag{3.6}
\end{equation*}
$$

(where $u_{i}, v_{i} \in V_{i}$ for all i and $(\cdot, \cdot)_{i}$ is the inner product on $\left.V_{i}\right)$.
Proof. We write u_{i} and v_{i} in terms of the basis E_{i},

$$
u_{i}=\sum_{j=1}^{n_{i}} a_{i j} e_{i j}, \quad v_{i}=\sum_{j=1}^{n_{i}} b_{i j} e_{i j}, \quad i=1, \ldots, m
$$

Since \otimes is multilinear, from (3.2) we get

$$
\begin{aligned}
& u^{\otimes}:=u_{1} \otimes \cdots \otimes u_{m}=\otimes\left(u_{1}, \ldots, u_{m}\right)=\sum_{\gamma \in \Gamma}(\overbrace{\prod_{i=1}^{m} a_{i \gamma(i)}}^{a_{\gamma}}) e_{\gamma}^{\otimes} \\
& v^{\otimes}:=v_{1} \otimes \cdots \otimes v_{m}=\otimes\left(v_{1}, \ldots, v_{m}\right)=\sum_{\gamma \in \Gamma}(\underbrace{\prod_{i=1}^{m} b_{i \gamma(i)}}_{b_{\gamma}}) e_{\gamma}^{\otimes}
\end{aligned}
$$

By the definition (3.5) of the inner product and since $\prod_{i=1}^{m} \sum_{j=1}^{n_{i}} c_{i j} \stackrel{\sqrt[3.1]]{=}}{\stackrel{y}{\mid}} \sum_{\gamma \in \Gamma} \prod_{i=1}^{m} c_{i \gamma(i)}$,

$$
\begin{aligned}
&\left(u^{\otimes}, v^{\otimes}\right)=\sum_{\gamma \in \Gamma} \prod_{i=1}^{m} a_{i \gamma(i)} \overline{b_{i \gamma(i)}} \\
& \stackrel{(3.1)}{=} \prod_{i=1}^{m} \sum_{j=1}^{n_{i}} a_{i j} \overline{b_{i j}} \\
&=\prod_{i=1}^{m}\left(\sum_{j=1}^{n_{i}} a_{i j} e_{i j}, \sum_{j=1}^{n_{i}} b_{i j} e_{i j}\right)_{i} \\
&=\prod_{i=1}^{m}\left(u_{i}, v_{i}\right)_{i} .
\end{aligned}
$$

(where $(\cdot, \cdot)_{i}$ denotes the inner product on $\left.V_{i}\right)$.
There are many bilinear maps from $\left(\otimes_{i=1}^{k} V_{i}\right) \times\left(\otimes_{i=k+1}^{m} V_{i}\right)$ to $\otimes_{i=1}^{m} V_{i}$ since

$$
\begin{equation*}
\operatorname{dim} \otimes_{i=1}^{m} V_{i}=\prod_{i=1}^{m} n_{i}=\prod_{i=1}^{k} n_{i} \prod_{i=k+1}^{m} n_{i}=\operatorname{dim}\left(\otimes_{i=1}^{k} V_{i}\right) \operatorname{dim}\left(\otimes_{i=k+1}^{m} V_{i}\right) \tag{3.7}
\end{equation*}
$$

What we like is one that maps the pair $\left(v_{1} \otimes \cdots \otimes v_{k}, v_{k+1} \otimes \cdots \otimes v_{m}\right)$ to $v_{1} \otimes \cdots \otimes v_{m}$.
Theorem 3.19. There is a unique multilinear map $\boxtimes:\left(\otimes_{i=1}^{k} V_{i}\right) \times\left(\otimes_{i=k+1}^{m} V_{i}\right) \rightarrow \otimes_{i=1}^{m} V_{i}$ such that

$$
\begin{equation*}
\boxtimes\left(v_{1} \otimes \cdots \otimes v_{k}, v_{k+1} \otimes \cdots \otimes v_{m}\right)=v_{1} \otimes \cdots \otimes v_{m} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(V_{1} \otimes \cdots \otimes V_{k}\right) \boxtimes\left(V_{k+1} \otimes \cdots \otimes V_{m}\right)=V_{1} \otimes \cdots \otimes V_{m} \tag{3.9}
\end{equation*}
$$

Proof. By (3.7), the dimensions are ok, so the tensor map \boxtimes satisfying (3.8) exists (Theorem 3.10) and is unique (Theorem 3.121). From $\langle\mathrm{im} \boxtimes\rangle=\left\langle v_{1} \otimes \cdots \otimes v_{m} \mid v_{i} \in V_{i}\right\rangle=$ $\otimes_{i=1}^{m} V_{i}$, (3.9) follows. (See Exercise no. 4 in 3.3 for details.)
[Lecture 4, 1.12. 2015]
We also write \otimes for \boxtimes in Theorem [3.18, So we can write (3.9) as

$$
\left(V_{1} \otimes \cdots \otimes V_{k}\right) \otimes\left(V_{k+1} \otimes \cdots \otimes V_{m}\right)=V_{1} \otimes \cdots \otimes V_{m}
$$

and (3.8) can be written as

$$
\left(v_{1} \otimes \cdots \otimes v_{k}\right) \otimes\left(v_{k+1} \otimes \cdots \otimes v_{m}\right)=v_{1} \otimes \cdots \otimes v_{m}
$$

Exercises for Section 3.3

1. Suppose that $v_{1}, \ldots, v_{k} \in V$ are linearly independent and let $u_{1}, \ldots, u_{k} \in U$. Prove that $\sum_{i=1}^{k} u_{i} \otimes v_{i}=0$ if and only if $u_{1}=\cdots=u_{k}=0$.
2. Let $v_{1}, \ldots, v_{k} \in V$ and $A \in \mathbb{C}_{k \times k}$. Suppose $A A^{T}=I_{k}$ and $u_{j}=\sum_{i=1}^{k} a_{i j} v_{i}$, $j=1, \ldots, k$. Prove that $\sum_{i=1}^{k} u_{i} \otimes u_{i}=\sum_{i=1}^{k} v_{i} \otimes v_{i}$. (Problem 8.1. (b)).
3. Define $\otimes: \mathbb{C}^{k} \times \mathbb{C}^{n} \rightarrow \mathbb{C}_{k \times n}$ by $x \otimes y:=x y^{T}$. Let \mathbb{C}^{k} and \mathbb{C}^{n} be equipped with the standard inner products. Prove that for any $A, B \in \mathbb{C}_{k \times n}=\mathbb{C}^{k} \otimes \mathbb{C}^{n}$, the induced inner product is given by $(A, B)=\operatorname{tr}\left(B^{*} A\right)$. (notation: $\operatorname{tr}\left(B^{*} A\right)$ is the trace of the square matrix $B^{*} A$)
Cf. Problem 8.4 (b).
4. Let $E_{i}=\left\{e_{i 1}, \ldots, e_{i n_{i}}\right\}$ be a basis of $V_{i}, i=1, \ldots, m$. Define

$$
\varphi:\left(V_{1} \otimes \cdots \otimes V_{k}\right) \times\left(V_{k+1} \otimes \cdots \otimes V_{m}\right) \rightarrow V_{1} \otimes \cdots \otimes V_{m}
$$

by $\varphi\left(e_{1 i_{1}} \otimes \cdots \otimes e_{k i_{k}}, e_{k+1 i_{k+1}} \otimes \cdots \otimes e_{m i_{m}}\right)=e_{1 i_{1}} \otimes \cdots \otimes e_{m i_{m}}$ (with bilinear extension). Show that φ is the tensor map satisfying

$$
\varphi\left(v_{1} \otimes \cdots \otimes v_{k}, v_{k+1} \otimes \cdots \otimes v_{m}\right)=v_{1} \otimes \ldots \otimes v_{m}
$$

(Problem 9.1 (a))
5. Let $z=\sum_{i=1}^{k} u_{i} \otimes v_{i} \otimes w_{i} \in U \otimes V \otimes W$. Prove that if $\left\{u_{1}, \ldots, u_{k}\right\}$ and $\left\{v_{1}, \ldots, v_{k}\right\}$ are linearly independent and $w_{i} \neq 0$ for all i, then k is the smallest length of z.

3.4 Induced maps

In this section, we study $\operatorname{Hom}\left(\otimes_{i=1}^{m} V_{i}, \otimes_{i=1}^{m} W_{i}\right)$. Let $T_{i} \in \operatorname{Hom}\left(V_{i}, W_{i}\right)$ for all i. Then we define a multilinear map from $V_{1} \times \cdots \times V_{m}$ to $\otimes_{i=1}^{m} W_{i}$ by

$$
\varphi\left(v_{1}, \ldots, v_{m}\right):=T_{1} v_{1} \otimes \cdots \otimes T_{m} v_{m}
$$

By Theorem3.12 (with $\otimes_{i=1}^{m} W_{i}$ in the role of W) there is a unique $T \in \operatorname{Hom}\left(\otimes_{i=1}^{m} V_{i}, \otimes_{i=1}^{m} W_{i}\right)$ such that $(\varphi=T \circ \otimes$, i.e. $)$

$$
T\left(v_{1} \otimes \cdots \otimes v_{m}\right)=T_{1} v_{1} \otimes \cdots \otimes T_{m} v_{m}
$$

We denote this T by $T_{1} \otimes \cdots \otimes T_{m}$ and call it the induced map of T_{1}, \ldots, T_{m}, i.e.

$$
\left(\otimes_{i=1}^{m} T_{i}\right)\left(v_{1} \otimes \cdots \otimes v_{m}\right)=T_{1} v_{1} \otimes \cdots \otimes T_{m} v_{m}
$$

(Drawing the corresponding diagram with vector spaces might be helpful).
One can show that $T_{1} \otimes \cdots \otimes T_{m}$ is a tensor (an element) of the tensor product $\otimes_{i=1}^{m} \operatorname{Hom}\left(V_{i}, W_{i}\right)$.
if time: this is in section 3.7 , thm 3.7.2
The main focus of this section is to study the map $T_{1} \otimes \cdots \otimes T_{m} \in \operatorname{Hom}\left(\otimes_{i=1}^{m} V_{i}, \otimes_{i=1}^{m} W_{i}\right)$ as a linear map. We will see how it behaves with respect to composition, how to determine its rank and its adjoint.

Theorem 3.20. Let $S_{i} \in \operatorname{Hom}\left(W_{i}, U_{i}\right), T_{i} \in \operatorname{Hom}\left(V_{i}, W_{i}\right), i=1, \ldots, m$. Then

$$
\left(\otimes_{i=1}^{m} S_{i}\right) \circ\left(\otimes_{i=1}^{m} T_{i}\right)=\otimes_{i=1}^{m}\left(S_{i} \circ T_{i}\right)
$$

(It might be helpful to draw the diagrams with the vector spaces to illustrate the statement).

Proof. It is enough to show the claim on decomposable elements, since $\otimes_{i=1}^{m} V_{i}$ is spanned by them. This is what we do.

$$
\begin{aligned}
\left(\otimes_{i=1}^{m} S_{i}\right)\left(\otimes_{i=1}^{m} T_{i}\right)\left(v_{1} \otimes \cdots \otimes v_{m}\right) & =\left(\otimes_{i=1}^{m} S_{i}\right)\left(T_{1} v_{1} \otimes \cdots \otimes T_{m} v_{m}\right) \\
& =S_{1} T_{1} v_{1} \otimes \cdots \otimes S_{m} T_{m} v_{m} \\
& =\otimes_{i=1}^{m}\left(S_{i} T_{i}\right)\left(v_{1} \otimes \cdots \otimes v_{m}\right)
\end{aligned}
$$

Theorem 3.21. Let $T_{i} \in \operatorname{Hom}\left(V_{i}, W_{i}\right), i=1, \ldots, m$. Then

$$
\operatorname{rk}\left(T_{1} \otimes \cdots \otimes T_{m}\right)=\prod_{i=1}^{m} \operatorname{rk} T_{i}
$$

Proof. Let $\operatorname{rk} T_{i}=k_{i}$ for all i. So there is a basis $\left\{e_{i 1}, \ldots, e_{i k_{i}}, e_{i k_{i}+1}, \ldots, e_{i n_{i}}\right\}$ for V_{i} such that $T_{i} e_{i 1}, \ldots, T_{i} e_{i k_{i}}$ are linearly independent in W_{i} and $T_{i} e_{i k_{i}+1}=\cdots=T_{i} e_{i n_{i}}=0$, $i=1, \ldots, m$. The set $\left\{e_{\gamma}^{\otimes}: \gamma \in \Gamma\left(n_{1}, \ldots, n_{m}\right)\right\}$ is a basis for $\otimes_{i=1}^{m} V_{i}$.

Moreover,

$$
\left(\otimes_{i=1}^{m} T_{i}\right) e_{\gamma}^{\otimes}=T_{1} e_{1 \gamma(1)} \otimes \cdots \otimes T_{m} e_{m \gamma(m)}
$$

so that if $\gamma \notin \Gamma\left(k_{1}, \ldots, k_{m}\right)$, then $\left(\otimes_{i=1}^{m} T_{i}\right) e_{\gamma}^{\otimes}=0$ (as for some $\left.i, \gamma(i)>k_{i}\right)$. Since $T e_{i 1}, \ldots, T e_{i, k_{i}}$ are linearly independent in W_{i} for all i, the vectors

$$
\left(\otimes_{i=1}^{m} T_{i}\right) e_{\gamma}^{\otimes}, \quad \gamma \in \Gamma\left(k_{1}, \ldots, k_{m}\right)
$$

are linearly independent in $\otimes_{i=1}^{m} W_{i}$ (why?), hence

$$
\operatorname{rk} \otimes_{i=1}^{m} T_{i}=\left|\Gamma\left(k_{1}, \ldots, k_{m}\right)\right|=\prod_{i=1}^{m} k_{i}=\prod_{i=1}^{m} \mathrm{rk} T_{i}
$$

The next result describes the adjoint of $T_{1} \otimes \cdots \otimes T_{m}$ viewed as a linear map. For notation/reminder: see Subsection 3.7 .2 at the end of this chapter.

Theorem 3.22. Let $T_{i} \in \operatorname{Hom}\left(V_{i}, W_{i}\right)$, where V_{i} and W_{i} are inner product spaces for $i=1, \ldots, m$. Then

$$
\left(\otimes_{i=1}^{m} T_{i}\right)^{*}=\otimes_{i=1}^{m} T_{i}^{*}
$$

Proof. We use the notation (\cdot, \cdot) for the inner products on all the spaces V_{i}, W_{i}.

$$
\begin{array}{rlr}
\left(\left(\otimes_{i=1}^{m} T_{i}\right) v^{\otimes}, w^{\otimes}\right) & =\left(T_{1} v_{1} \otimes \cdots \otimes T_{m} v_{m}, w_{1} \otimes \cdots \otimes w_{m}\right) \quad \text { (inner product on } \otimes_{i} W_{i} \text {) } \\
& =\prod_{i=1}^{m}\left(T_{i} v_{i}, w_{i}\right) \quad \quad \text { (defin.: inner prod on } \otimes_{i} W_{i} \text { in terms of inner prod on } W_{i} \text { 's) } \\
& =\prod_{i=1}^{m}\left(v_{i}, T_{i}^{*} w_{i}\right) \\
& =\left(v_{1} \otimes \cdots \otimes v_{m}, T_{1}^{*} w_{1} \otimes \cdots \otimes T_{m}^{*} w_{m}\right) \quad \quad \quad \quad \text { (defin. of inner prod on } \otimes_{i} V_{i} \text {) } \\
& =\left(v^{\otimes}, \otimes_{i=1}^{m} T_{i}^{*} w^{\otimes}\right)
\end{array}
$$

Since $\otimes_{i=1}^{m} V_{i}$ is spanned by decomposable tensors, we have the desired result.

Exercises for Section 3.4

1. Prove that
(a) Prove that $T_{1} \otimes \cdots \otimes T_{m}=0$ if and only if some $T_{i}=0$,
(b) $T_{1} \otimes \cdots \otimes T_{m}$ is invertible if and only if all T_{i} are invertible.
2. Let $S_{i}, T_{i} \in \operatorname{Hom}\left(V_{i}, W_{i}\right)$ for $i=1, \ldots, m$. Prove that $\otimes_{i=1}^{m} T_{i}=\otimes_{i=1}^{m} S_{i} \neq 0$ if and only if $T_{i}=c_{i} S_{i} \neq 0$ for $i=1, \ldots, m$ and $\prod_{i=1}^{m} c_{i}=1$.
3. Let $T_{i} \in$ End V_{i} for $i=1, \ldots, m$. Prove that $\otimes_{i=1}^{m} T_{i}$ is invertible if and only if T_{i} is invertible for every i. In this case, $\left(\otimes_{i=1}^{m} T_{i}\right)^{-1}=\otimes_{i=1}^{m} T_{i}^{-1}$.
4. Let $T_{i} \in \operatorname{Hom}\left(V_{i}, W_{i}\right)$ for $i=1, \ldots, m$. Define

$$
\varphi: \operatorname{Hom}\left(V_{1}, W_{1}\right) \times \cdots \times \operatorname{Hom}\left(V_{m}, W_{m}\right) \rightarrow \operatorname{Hom}\left(\otimes_{i=1}^{m} V_{i}, \otimes_{i=1}^{m} W_{i}\right)
$$

by $\varphi\left(T_{1}, \ldots, T_{m}\right)=T_{1} \otimes \cdots \otimes T_{m}$. Prove that φ is multilinear.

Exercise 4 can be used to show that $T_{1} \otimes \cdots \otimes T_{m}$ is an element of a tensor product, namely of $\operatorname{Hom}\left(\otimes_{i=1}^{m} V_{i}, \otimes_{i=1}^{m} W_{i}\right)$.

3.5 Some models of tensor products

[Lecture 5, 8.12. 2015]
We now consider the special case $V_{1}=\cdots=V_{m}$ where all the spaces V_{i} are equal and where the target space is the field \mathbb{C}.

Recall that $M(V, \ldots, V ; \mathbb{C})$ denotes the space of all m-multilinear maps $f: V^{m}:=$ $\times^{m}(V):=V \times \cdots \times V \rightarrow \mathbb{C}$.

The goal is to see that the tensor product $\overbrace{V \otimes \cdots \otimes V}^{m \text { copies }}$ can be viewed as $M(\overbrace{V^{*}, \ldots, V^{*}}^{m \text { copies }} ; \mathbb{C})$ or as $M(V, \ldots, V ; \mathbb{C})$ and that the tensor product $V^{*} \otimes \cdots \otimes V^{*}$ can be understood as $M(\underbrace{V, \ldots, V}_{m \text { copies }} ; \mathbb{C})$.

Let $E=\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of V and let $E^{*}=\left\{f_{1}, \ldots, f_{n}\right\}$ be the dual basis of V^{*}, i.e.,

$$
f_{i}\left(e_{j}\right)=\delta_{i j}, \quad i, j=1, \ldots, n
$$

In this situation we abbreviate the set $\Gamma(\overbrace{n, \ldots, n}^{m \text { times }})$ as

$$
\Gamma(n: m)=\{\gamma: \gamma=(\gamma(1), \ldots, \gamma(m)), 1 \leq \gamma(i) \leq n, i=1, \ldots, m\} .
$$

We write $V^{\otimes m}$ or also $\otimes^{m}(V)$ for the m-fold tensor product $V \otimes \cdots \otimes V$.
Theorem 3.23. 1. The set $\left\{\prod_{i=1}^{m} f_{\alpha(i)}: \alpha \in \Gamma(n: m)\right\}$ is a basis of $M(V, \ldots, V ; \mathbb{C})$.
2. $M(V, \ldots, V ; \mathbb{C})=\left(V^{*}\right)^{\otimes m}$, in other words: there is a tensor map $\otimes: V^{*} \times \cdots \times V^{*} \rightarrow M(V, \ldots, V ; \mathbb{C})$ and $\operatorname{dim} M(V, \ldots, V ; \mathbb{C})=n^{m}$.
3. $M\left(V^{*}, \ldots, V^{*} ; \mathbb{C}\right)=V^{\otimes m}$, in other words: there is a tensor map $\otimes: V \times \cdots \times V \rightarrow M\left(V^{*}, \ldots, V^{*} ; \mathbb{C}\right)$ and $\operatorname{dim} M\left(V^{*}, \ldots, V^{*} ; \mathbb{C}\right)=n^{m}$.

Proof. (1) We first show that the set $S:=\left\{\prod_{i=1}^{m} f_{\alpha(i)}: \alpha \in \Gamma(n: m)\right\}$ spans $M(V, \ldots, V ; \mathbb{C})$. For this, first observe that for each $e_{\beta}=\left(e_{\beta(1)}, \ldots, e_{\beta(m)}\right) \in V \times \cdots \times V$ and $\beta \in \Gamma(n: m)$,

$$
\begin{equation*}
\left(\prod_{i=1}^{m} f_{\alpha(i)}\right) e_{\beta}=\prod_{i=1}^{m} f_{\alpha(i)}\left(e_{\beta(i)}\right)=\delta_{\alpha, \beta} \tag{3.10}
\end{equation*}
$$

Let $f \in M(V, \ldots, V ; \mathbb{C})$. Then we claim we can write f as follows

$$
f=\sum_{\alpha \in \Gamma(n: m)} f\left(e_{\alpha}\right) \prod_{i=1}^{m} f_{\alpha(i)}
$$

where $e_{\alpha}=\left(e_{\alpha(1)}, \ldots, e_{\alpha(m)}\right)$. This works since by (3.10),

$$
\left(\sum_{\alpha \in \Gamma(n: m)} f\left(e_{\alpha}\right) \prod_{i=1}^{m} f_{\alpha(i)}\right)\left(e_{\beta}\right)=\sum_{\alpha \in \Gamma(n: m)} f\left(e_{\alpha}\right) \delta_{\alpha, \beta}=f\left(e_{\beta}\right), \quad \beta \in \Gamma(n: m)
$$

So f can be written as a linear combination of elements of S.

It remains to show that S is a linearly independent set. Assume

$$
\sum_{\alpha \in \Gamma(n: m)} c_{\alpha} \prod_{i=1}^{m} f_{\alpha(i)}=0
$$

Then
$0=\left(\sum_{\alpha \in \Gamma(n: m)} c_{\alpha} \prod_{i=1}^{m} f_{\alpha(i)}\right)\left(e_{\beta}\right)=(\sum_{\alpha \in \Gamma(n: m)} c_{\alpha} \underbrace{\prod_{i=1}^{m} f_{\alpha(i)}\left(e_{\beta}\right)}_{\delta_{\alpha, \beta}})=c_{\beta} \quad$ for every $\beta \in \Gamma(n: m)$
(2) It is easy to see that the map $\otimes:\left(V^{*}\right)^{m}=\times^{m}\left(V^{*}\right) \rightarrow M(V, \ldots, V ; \mathbb{C})$ defined by

$$
\otimes\left(g_{1}, \ldots, g_{m}\right)=\prod_{i=1}^{m} g_{i}
$$

is multilinear. From part (1), $\left\{\prod_{i=1}^{m} f_{\alpha(i)}: \alpha \in \Gamma(n: m)\right\}$ is a basis of $M(V, \ldots, V ; \mathbb{C})$. So

$$
\operatorname{dim} M(V, \ldots, V ; \mathbb{C})=|\Gamma(n: m)|=n^{m}=(\operatorname{dim} V)^{m}=\left(\operatorname{dim} V^{*}\right)^{m}
$$

Therefore, \otimes is a tensor map and $\langle\operatorname{im} \otimes\rangle=M(V, \ldots, V ; \mathbb{C})$, i.e. $M(V, \ldots, V ; \mathbb{C})=\otimes^{m} V^{*}$.
(3) Analoguous to the proof of (2): We can define $\otimes: V^{m} \rightarrow M\left(V^{*}, \ldots, V^{*} ; \mathbb{C}\right)$ by $\otimes\left(v_{1}, \ldots, v_{m}\right)=\prod_{i=1}^{m} v_{i}$ where the latter is defined as follows:

$$
\left(\prod_{i=1}^{m} v_{i}\right)\left(g_{1}, \ldots, g_{m}\right):=\prod_{i=1}^{m} g_{i}\left(v_{i}\right)
$$

By Theorem $3.23(2)$ and (3), we can say that $M(V, \ldots, V ; \mathbb{C})$ is a model for $\left(V^{*}\right)^{\otimes m}$ and that $M\left(V^{*}, \ldots, V^{*}, \mathbb{C}\right)$ is a model for $V^{\otimes m}$.
Another model for $V^{\otimes m}$ is $M(V, \ldots, V ; \mathbb{C})^{*}$, the dual space of $M(V, \ldots, V ; \mathbb{C})$, as we will see now.

Theorem 3.24. $M(V, \ldots, V ; \mathbb{C})^{*}$ is a model for $\otimes^{m} V$, i.e., there is a tensor map \otimes : $V \times \cdots \times V \rightarrow M(V, \ldots, V ; \mathbb{C})^{*}$ and $\operatorname{dim} M(V, \ldots, V ; \mathbb{C})^{*}=n^{m}$.

Proof. For $v_{1}, \ldots, v_{m} \in V$ define $\prod_{i=1}^{m} v_{i} \in M(V, \ldots, V ; \mathbb{C})^{*}$ by

$$
\left(\prod_{i=1}^{m} v_{i}\right) f=f\left(v_{1}, \ldots, v_{m}\right), \quad f \in M(V, \ldots, V ; \mathbb{C})
$$

From Theorem $3.23(1)$, the set $\left\{\prod_{i=1}^{m} f_{\alpha(i)}: \alpha \in \Gamma_{m, n}\right\}$ is a basis of $M(V, \ldots, V ; \mathbb{C})$. Now from (3.10), $\left\{\prod_{i=1}^{m} e_{\alpha(i)}: \alpha \in \Gamma(n: m)\right\}$ is the dual basis of $\left\{\prod_{i=1}^{m} f_{\alpha(i)}: \alpha \in \Gamma(n: m)\right\}$ and thus is a basis of $M(V, \ldots, V ; \mathbb{C})^{*}$. Then define $\otimes: V \times \cdots \times V \rightarrow M(V, \ldots, V ; \mathbb{C})^{*}$ by $\otimes\left(v_{1}, \ldots, v_{m}\right)=\prod_{i=1}^{m} v_{i}$.

Elements of the vector space $M(V, \ldots, V ; \mathbb{C})$ are called contra-variant tensors; elements of $M\left(V^{*}, \ldots, V^{*}, \mathbb{C}\right)$ are called covariant tensors ${ }^{3}$

The tensor space

$$
V_{q}^{p}:=\overbrace{V \otimes \cdots \otimes V}^{p} \otimes \overbrace{V^{*} \otimes \cdots \otimes V^{*}}^{q}
$$

is called a tensor space of type (p, q) (with covariant type of degree p and with contravariant type of degree q). Analoguous to the previous treatment, under some tensor map, $M\left(V^{*}, \ldots, V^{*}, V, \ldots, V ; \mathbb{C}\right)\left(p\right.$ copies of V and q copies of V^{*}, compare this with Theorem (3.23) is a model of V_{q}^{p} as we will indicate now:

Let $E=\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of V and let $E^{*}=\left\{f_{1}, \ldots, f_{n}\right\}$ be the dual basis of V^{*}. Then

$$
\left\{\prod_{i=1}^{p} e_{\alpha(i)} \prod_{j=1}^{q} f_{\beta(j)}: \alpha \in \Gamma(n: p), \beta \in \Gamma(n: q)\right\}
$$

is a basis for

$$
M\left(V^{*}, \ldots, V^{*}, V, \ldots, V ; \mathbb{C}\right) \quad\left(p \text { copies of } V \text { and } q \text { copies of } V^{*}\right)
$$

Define $\otimes: V \times \cdots \times V \times V^{*} \times \cdots \times V^{*} \rightarrow M\left(V^{*}, \ldots, V^{*}, V, \ldots, V ; \mathbb{C}\right)$ by

$$
\otimes\left(e_{\alpha(1)}, \ldots, e_{\alpha(p)}, f_{\beta(1)}, \ldots, f_{\beta(q)}\right)=\prod_{i=1}^{p} e_{\alpha(i)} \prod_{j=1}^{q} f_{\beta(j)}
$$

Then

$$
\begin{aligned}
& \left\{e_{\alpha(1)} \otimes \cdots \otimes e_{\alpha(p)} \otimes f_{\beta(1)} \otimes \cdots \otimes f_{\beta(q)}: \alpha \in \Gamma_{p, n}, \beta \in \Gamma_{q, n}\right\} \\
= & \left\{e_{\alpha}^{\otimes} \otimes f_{\beta}^{\otimes}: \alpha \in \Gamma_{p, n}, \beta \in \Gamma_{q, n}\right\}
\end{aligned}
$$

is a basis of V_{q}^{p}.

Exercises for Section 3.5

1. Define a simple tensor map $\boxtimes:\left(V^{*}\right)^{m} \rightarrow\left(\otimes^{m} V\right)^{*}$ such that $\boxtimes^{m} V^{*}=\left(\otimes^{m} V\right)^{*}$.
2. Let $M\left(V_{1}, \ldots, V_{m} ; W\right)$ be the set of all multilinear maps from $V_{1} \times \cdots \times V_{m}$ to W. Prove that $\operatorname{dim} M\left(V_{1}, \ldots, V_{m} ; W\right)=\operatorname{dim} W \cdot \prod_{i=1}^{m} \operatorname{dim} V_{i}$.
[^1]
3.6 Exterior spaces

now chapter 5 (page 127) in the book? maybe not. or waffle, pages 7-8 and Lerman, pages 710 -and the notes. First following Waffle: Then Serge Lang, XIX, §1
And book by Gallier (diff geo)
In this section, we consider some specific examples of multilinear maps. The starting point is the space of multilinear maps (forms) $M(V, \ldots, V ; K)$ from m copies of the K-vector space V to the field K.

We start by considering a specific notion of multiplication, namely one that relates to area and volume. The basic idea is as follows: Given two vectors v and w, we can form the parallelogram that they span, and write $v \wedge w$ for something as the "area" of the parallelogram. This is not quite the usual notion of area, however, because we want to think of it as not just a single number (in general) but also as having a "two-dimensional direction" (the same way a single vector v both has a size and a direction). That is, if we had a parallelogram pointing in a "different direction", i.e. in a different plane, we would think of it as different.

What would the properties of $v \wedge w$ be. Scaling the entry v or the entry w scales the parallelogram, so it should scale its area. So we expect, for scalars c, to have $(c v) \wedge w=c(v \wedge w)=v \wedge(c w)$. So the operation \wedge should be bilinear. Another property of \wedge would be, that for any vector $v, v \wedge v$ should be 0 - if the vectors point in the same direction, the "parallelogram" they span is just a line segment and has no area. These are the only two properties we really need.

As before, vector spaces are finite dimensional and defined are over some field K mostly over \mathbb{C} or over the real numbers \mathbb{R}.
Definition 3.25. Let V be a vector space. Then the exterior square (product) $\bigwedge^{2}(V)$ of V is the quotient of $V \otimes V$ by the subspace U spanned by the elements $v \otimes v$ for all $v \in V$. We write $v \wedge w$ for the image of $v \otimes w$ under the quotient map $V \otimes V \rightarrow \bigwedge^{2}(V)$.

What does $\bigwedge^{2}(V)$ look like? First observation (consequence of $v \wedge v=0$):

$$
0=(v+w) \wedge(v+w)=v \wedge v+v \wedge w+w \wedge v+w \wedge w=v \wedge w+w \wedge v
$$

So for any v and $w, v \wedge w=-w \wedge v$. The operation \wedge is thus anti-commutative or alternating.
[Lecture 6, 15.12. 2015]
In terms of a basis of V, say $\left\{e_{i}\right\}_{i}$, we have that the set $\left\{e_{i} \otimes e_{j}\right\}_{i j}$ is a basis of $V \otimes V$. In $\bigwedge^{2}(V)$, we have $e_{i} \wedge e_{i}=0$ and $e_{i} \wedge e_{j}=-e_{j} \wedge e_{i}$. So $\bigwedge^{2}(V)$ can be spanned by the elements $e_{i} \wedge e_{j}$ for $i<j$. We can show that they are linearly independent:

Theorem 3.26. Suppose $\left\{e_{i}\right\}_{i=1, \ldots, n}$ is a basis for V. Then $\left\{e_{i} \wedge e_{j}\right\}_{1 \leq i<j \leq n}$ is a basis for $\bigwedge^{2}(V)$. In particular, $\operatorname{dim} \bigwedge^{2}(V)=\binom{n}{2}$.

Proof. The idea behind the proof is that $\Lambda^{2}(V)$ is the "free" (or "universal") vector space in which you can multiply two elements of V in an anti-commutative way, so to
show that the $e_{i} \wedge e_{j}$ (for $i<j$) are linearly independent, you have to construct some vector space with such a multiplication in which they are linearly independent.

We define a vector space E as follows: an element of E is a formal linear combination of symbols $e_{i j}$ for $i<j$. So the set $\left\{e_{i j}\right\}_{i<j}$ is a basis of E.
We define a map $T: V \otimes V \rightarrow E$ by $T\left(e_{i} \otimes e_{j}\right)=e_{i j}$ if $i<j, T\left(e_{i} \otimes e_{j}\right)=-e_{j i}$ if $i>j$, and $T\left(e_{i} \otimes e_{i}\right)=0$. We want to show that T gives a map $S: \bigwedge^{2}(V) \rightarrow E$; it suffices to show that $T(v \otimes v)=0$ for all $v \in V$. Let $v=\sum c_{i} e_{i}$; then

$$
v \otimes v=\sum_{i j} c_{i} c_{j} e_{i} \otimes e_{j}=\sum_{i} c_{i}^{2} e_{i} \otimes e_{i}+\sum_{i<j} c_{i} c_{j}\left(e_{i} \otimes e_{j}+e_{j} \otimes e_{i}\right)
$$

We thus see that $T(v \otimes v)=0$. Hence T gives a map $S: \bigwedge^{2}(V) \rightarrow E$ which sends $e_{i} \wedge e_{j}$ to $e_{i j}$. Since the $e_{i j}$ (for $i<j$) are linearly independent in E by construction, this implies that the $e_{i} \wedge e_{j}$ (for $i<j$) are linearly independent, and hence a basis.

One thing to note about $\bigwedge^{2}(V)$ (as we know about $\bigotimes^{2}(V)$) is that not every element is of the form $v \wedge w$. (That is, not every "area vector" is just an area in some plane; it can also be a sum of areas in different planes.) For example, if $\left\{e_{i}\right\}$ is a basis of V, $\operatorname{dim} V \geq 4$, then $e_{1} \wedge e_{2}+e_{3} \wedge e_{4}$ cannot be simplified to a single $v \wedge w$.

Definition 3.27. Let $r \geq 0$ be an integer, and V be a vector space. Then the r th exterior power of $V, \bigwedge^{r}(V)$ is the quotient of $V \otimes \cdots \otimes V$ (with r factors) by the subspace U spanned by all tensors $v_{1} \otimes \cdots \otimes v_{r}$ for which two of the v_{i} are equal.
Elements of $\bigwedge^{r}(V)$ are alternating r-tensors or alternating tensors of degree r. Elements of the form $u_{1} \wedge \cdots \wedge u_{r}$ with $u_{i} \in V$ are called simple or decomposable alternating r tensors.
The exterior algebra $\bigwedge(V)$ is the direct sum $\bigoplus_{r \geq 0} \bigwedge^{r}(V)$. It is also called the Grassmann algebra or the alternating algebra.

Remark 3.28. (1) The exterior algebra is an algebra over the field K. This means, $\bigwedge(V)$ is a K-vector space with a bilinear product, it is a set with multiplication, addition and scalar multiplication by elements of the field. (Note that it is finite dimensional, since we assumed that V is finite dimensional, cf. Theorem 3.31).
(2) We could have worked with modules over a commutative ring instead (and this is also done when introducing tensor products, exterior product, etc.), so replacing V and K with a module E over a commutative ring R and considered r-multilinear maps from E^{r} to the field K. The tensor product $E^{\otimes m}$ and the exterior product $\bigwedge^{r}(E)$ are also modules for R.

By definition, there is an r-multilinear map $V^{r} \rightarrow \bigwedge^{r}(V)$ (called canonical) obtained from the composition

$$
\begin{equation*}
V^{r} \longrightarrow V^{\otimes r} \longrightarrow V^{\otimes r} / U=\bigwedge^{r}(V) \tag{3.11}
\end{equation*}
$$

The map is alternating (should be clear). We also have:

Theorem 3.29 (Universal property of the r th exterior power of a vector space). Let U and V be vector spaces. If $f: V^{r} \rightarrow W$ is r-multilinear and alternating, there exists a unique linear map $f^{\prime}: \bigwedge^{r}(V) \rightarrow W$ such that $f=f^{\prime} \circ \wedge^{r}$, i.e. making the diagram

commutative.
The proof of this works analoguously as the proofs for the statements about tensor products (Theorems 3.8 and 3.12), so we can omit it.

Proof. By the the universal property of tensor maps of Theorem 3.8 and by Theorem 3.12, there is a unique linear map $\tilde{f}: V^{\otimes r} \rightarrow W$ such that $\tilde{f}\left(v_{1} \otimes \cdots \otimes v_{r}\right)=$ $f\left(v_{1}, \ldots, f_{r}\right)$. Since f is alternating, \tilde{f} vanishes on the subspace U from Definition 3.27. Hence it induces $f^{\prime}: V^{\otimes r} / U \rightarrow W$ is as desired.

This induced map vanishes on the subspace U (spanned by all the tensors with repeated entry), hence it induces f^{\prime}.

Corollary 3.30. The space of r-linear alternating maps $\operatorname{Alt}^{r}(V ; W)=\left\{f: V^{r} \rightarrow W\right.$: f is alternating $\}$ is isomorphic to $\operatorname{Hom}\left(\wedge^{r}(V), W\right)$. In particular, if $W=K$, this yields an isomorphism $\left(\wedge^{r}(V)\right)^{*} \cong \operatorname{Alt}^{r}(V ; K)$.

We think of an element of $\bigwedge^{r}(V)$ as some sort of " r-dimensional volume vector". Similarly as for $r=2$, one can show the following:

Theorem 3.31. Let $\left\{e_{i}\right\}_{i=1, \ldots, n}$ be a basis for V and $r \geq 0$. Then
$\left\{e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{r}}\right\}_{i_{1}<\cdots<i_{r}}$ is a basis for $\bigwedge^{r}(V)$. In particular, $\operatorname{dim} \bigwedge^{r}(V)=\binom{n}{r}$.
Proof. The claims can be shown analoguosly as the statements of Theorem 3.26.
Example 3.32. Let V be a vector space with basis $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Then

	basis
$\bigwedge^{0}(V)$	$\{1\}$
$\bigwedge^{1}(V)$	$\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$
$\bigwedge^{2}(V)$	$\left\{v_{1} \wedge v_{2}, v_{1} \wedge v_{3}, v_{1} \wedge v_{4}, v_{2} \wedge v_{3}, v_{2} \wedge v_{4}, v_{3} \wedge v_{4}\right\}$
$\bigwedge^{3}(V)$	$\left\{v_{1} \wedge v_{2} \wedge v_{3}, v_{1} \wedge v_{2} \wedge v_{4}, v_{1} \wedge v_{3} \wedge v_{4}, v_{2} \wedge v_{3} \wedge v_{4}\right\}$
$\bigwedge^{4}(V)$	$\left\{v_{1} \wedge v_{2} \wedge v_{3} \wedge v_{4}\right\}$

We now consider special values of r more generally (using Theorem 3.31):

- $\bigwedge^{0}(V)=K$, since the "empty" tensor product is K.
- $\Lambda^{1}(V)=V$.
- $\bigwedge^{n}(V)$ is 1-dimensional, spanned by $e_{1} \wedge \cdots \wedge e_{n}$ for any basis $\left\{e_{i}\right\}_{i}$ of V.
- $\operatorname{dim} \bigwedge^{r}(V)=0$ if $r>n$.

Remark 3.33. Note that given any linear map $T: V \rightarrow W$ between two vector spaces, we get a linear map $\bigwedge^{r} T: \bigwedge^{r}(V) \rightarrow \bigwedge^{r}(W)$ by setting $\bigwedge^{r} T\left(v_{1} \wedge \cdots \wedge v_{r}\right)=T\left(v_{1}\right) \wedge$ $\cdots \wedge T\left(v_{r}\right)$ (and extending linearly to $\bigwedge^{r}(V)$). To see that this is well-defined, we note that this map is multilinear and vanishes if there exist $i \neq j$ with $v_{i}=v_{j}$. (Intuitively, the idea is that given a linear map, it also gives us a way to turn r-dimensional volumes into r-dimensional volumes.) This can be extended to a map $\bigwedge(T): \bigwedge(V) \rightarrow \bigwedge(W)$, by setting $\wedge(T)\left(x_{1} \wedge \cdots \wedge x_{t}\right)=T\left(x_{1}\right) \wedge \cdots \wedge T\left(x_{t}\right)$ for any x_{1}, \ldots, x_{t} in V (any $\left.t \geq 0\right)$. (The map $\bigwedge(T)$ is a homomorphism of graded K-algebras.)

Now in particular, we can consider the case $W=V$ and $r=n=\operatorname{dim} V$. In this case we have a map T from V to itself. What is T doing to (n-dimensional) volume in V ? The space $\bigwedge^{n}(V)$ is 1-dimensional, so $\bigwedge^{n}(T)$ is a linear map from a 1-dimensional space to itself. Any such map is multiplication by some scalar, and this is independent of the choice of basis of V. This scalar is what T multiplies volumes by, from a geometric point of view.

Definition 3.34. Let $T: V \rightarrow V$ be a linear map and $n=\operatorname{dim} V$. Then the determinant $\operatorname{det}(T)$ is the scalar such that $\bigwedge^{n} T$ is multiplication by $\operatorname{det}(T)$.

Recall that the exterior algebra of V is $\bigwedge(V)=\oplus_{m \geq 0} \bigwedge^{m}(V)$. It is graded by the degree of alternating tensors.

Since V is finite dimensional, say of dimension d, we actually have

$$
\bigwedge(V)=\bigoplus_{m=0}^{d} \bigwedge^{m}(V)
$$

and since each $\bigwedge^{m}(V)$ has dimension $\binom{d}{m}$, we deduce that

$$
\operatorname{dim}(\bigwedge(V))=\sum_{m=0}^{d}\binom{d}{m}=2^{d}=2^{\operatorname{dim}(V)}
$$

[Lecture 7, 16.12. 2015]
Remark 3.35. There is a linear map $\mu^{\prime}: \bigwedge^{r}(V) \otimes \bigwedge^{s}(V) \rightarrow \bigwedge^{r+s}(V)$ induced by the (bilinear) multiplication map $\mu: \bigwedge^{r}(V) \times \bigwedge^{s}(V) \rightarrow \bigwedge^{r+s}(V)$ (cf. Definition 3.7), defined on pairs of decomposable alternating tensors as follows

$$
\mu\left(v_{1} \wedge \cdots \wedge v_{r}, w_{1} \wedge \cdots \wedge w_{s}\right)=v_{1} \wedge \cdots \wedge v_{s} \wedge w_{1} \wedge \cdots \wedge w_{s}
$$

and extended to all of $\bigwedge^{r}(V) \times \bigwedge^{s}(V)$. We write $\mu(x, y)$ (with $x \in \bigwedge^{r}(V), y \in \bigwedge^{s}(V)$) as $x \wedge y$. waffle ex. 3.6:
Geometrically, this corresponds to combining an r-dimensional volume with an s-dimensional volume to get an $r+s$-dimensional volume. We write $x \wedge y$ for $\mu(x, y)$.

The multiplication

$$
\bigwedge^{m}(V) \times \bigwedge^{n}(V) \rightarrow \bigwedge^{m+n}(V)
$$

is skew-symmetric in the following sense:
Theorem 3.36. For all $\alpha \in \bigwedge^{m}(V)$ and for all $\beta \in \Lambda^{n}(V)$, we have

$$
\beta \wedge \alpha=(-1)^{m n} \alpha \wedge \beta
$$

Proof. Since $v \wedge u=-u \wedge v$ for all $u, v \in V$, the claim follows by induction.
Remark 3.37. 6 lines of text at the end of page 776 Note that $\alpha \wedge \alpha=0$ for every simple tensor $\alpha=u_{1} \wedge \cdots \wedge u_{n}$. What about $\alpha \wedge \alpha=0$ for an arbitrary element $\alpha \in \Lambda(V)$?. If $\operatorname{dim}(V) \leq 3$, one can show that $\alpha \wedge \alpha=0$ for all $\alpha \in \bigwedge(V)$. In dimension 4, this is not true anymore, e.g. if $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ is a basis for V, and if $\alpha=u_{1} \wedge u_{2}+u_{3} \wedge u_{4}$, we have

$$
\begin{aligned}
\alpha \wedge \alpha & =\left(u_{1} \wedge u_{2}+u_{3} \wedge u_{4}\right) \wedge\left(u_{1} \wedge u_{2}+u_{3} \wedge u_{4}\right) \\
& =\cdots=u_{1} \wedge u_{2} \wedge u_{3} \wedge u_{4}+u_{3} \wedge u_{4} \wedge u_{1} \wedge u_{2} \\
& =2 u_{1} \wedge u_{2} \wedge u_{3} \wedge u_{4}
\end{aligned}
$$

Pairings

Definition 3.38. Let V and W be vector spaces. A pairing is a bilinear map $\langle\rangle:, V \times W \rightarrow K$. The pairing is non-degenerate if

$$
\begin{aligned}
& \left\langle v_{0}, w\right\rangle=0 \forall w \in W \Longrightarrow v_{0}=0 \\
& \left\langle v, w_{0}\right\rangle=0 \forall v \in V \Longrightarrow w_{0}=0
\end{aligned}
$$

An example for a non-degenerate pairing is the so-called evaluation map:

$$
V^{*} \times V \rightarrow K, \quad(f, v) \mapsto f(v)
$$

Theorem 3.39. If $b: V \times W \rightarrow K,(v, w) \mapsto b(v, w)$, is a non-degenerate pairing, then $V \cong W^{*}$ and $W \cong V^{*}$

Proof. Define the map $f: V \rightarrow W^{*}$ as follows

$$
(f(v))(w)=b(v, w)
$$

This map is linear and

$$
\operatorname{ker} f=\{v \in V: f(v)=0\}=\{v \in V: b(v, w)=0 \forall w \in W\}=\{0\} .
$$

(Note that $f(v)=0$ means that $f(v)$ is the zero map.) The last equality follows from the non-degeneracy of the pairing. So $\operatorname{dim} V \leq \operatorname{dim} W^{*}=\operatorname{dim} W$. Similarly, define a linear map $g: W \rightarrow V^{*}$ by $g(w)(v)=b(v, w)$. Its kernel is also 0 . So $\operatorname{dim} W \leq$ $\operatorname{dim} V^{*}$, therefore $\operatorname{dim} V^{*}=\operatorname{dim} V=\operatorname{dim} W^{*}=\operatorname{dim} W$ and we get that f and g are isomorphisms.

Corollary 3.40. Let $1 \leq k \leq n$. The map $\langle\cdot, \cdot\rangle: \bigwedge^{k}\left(V^{*}\right) \times \bigwedge^{k}(V) \rightarrow K$ given by

$$
\left\langle v_{1}^{*} \wedge \cdots \wedge v_{k}^{*}, v_{1} \wedge \cdots \wedge v_{k}\right\rangle=\operatorname{det}\left(v_{i}^{*}\left(v_{j}\right)\right)
$$

gives a non-degenerate pairing, hence

$$
\bigwedge^{k}\left(V^{*}\right) \cong \bigwedge^{k}(V)
$$

(The pairing is defined in simple alternating tensors - and then extended to all of $\left.\bigwedge^{k}\left(V^{*}\right) \times \bigwedge^{k}(V)\right)$

Proof. Let $b:\left(V^{*}\right)^{k} \times V^{k} \rightarrow K$ be (the $2 k$-linear map) defined (on simple elements) by

$$
b\left(v_{1}^{*}, \ldots, v_{k}^{*}, v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(v_{i}^{*}\left(v_{j}\right)_{i j}\right)
$$

For fixed $\left(v_{1}^{*}, \ldots, v_{k}^{*}\right)$ in $\left(V^{*}\right)^{k}, b$ is alternating in the v_{j} 's. So there is a map $\bar{b}:\left(V^{*}\right)^{k} \times$ $\bigwedge^{k}(V) \rightarrow K$ with

$$
\left(v_{1}^{*}, \ldots, v_{k}^{*}, v_{1} \wedge \cdots \wedge v_{k}\right) \mapsto \operatorname{det}\left(l_{i}\left(v_{j}\right)\right)
$$

(Theorem 3.29). Similarly, for fixed $v_{1} \wedge \cdots \wedge v_{k}$ in $\bigwedge^{k}(V), \bar{b}$ is alternating in the v_{i}^{*} 's (and k-linear), so there exists a pairing $b^{\prime}: \bigwedge^{k}\left(V^{*}\right) \times \bigwedge^{k}(V) \rightarrow K$.
To check non-degeneracy, evaluate the pairing on the respective bases. The claim then follows from Theorem 3.39.

Remark 3.41. Explicitely, every element $v_{1}^{*} \wedge \cdots \wedge v_{k}^{*} \in \bigwedge^{k}\left(V^{*}\right)$ defines a k-linear alternating map by setting

$$
v_{1}^{*} \wedge \cdots \wedge v_{k}^{*}\left(v_{1}, \ldots, v_{k}\right):=\operatorname{det}\left(l_{i}\left(v_{j}\right)_{i j}\right)
$$

for all $\left(v_{1}, \ldots, v_{k}\right) \in V^{k}$. In particular,

$$
v_{1}^{*} \wedge v_{2}^{*}\left(v_{1}, v_{2}\right)=v_{1}^{*}\left(v_{1}\right) v_{2}^{*}\left(v_{2}\right)-v_{1}^{*}\left(v_{2}\right) v_{2}^{*}\left(v_{1}\right) .
$$

Exercises for Section 3.6

1. Identify $\wedge^{2}\left(\mathbb{R}^{3}\right)$ with \mathbb{R}^{3} by identifying $e_{1} \wedge e_{2}$ with $e_{3}, e_{2} \wedge e_{3}$ with e_{1} and $e_{3} \wedge e_{1}$ with e_{2}. Show that under this identification, the exterior product $v \wedge w \in \Lambda^{2}\left(\mathbb{R}^{3}\right)=\mathbb{R}^{3}$ is the same as the cross product $u \times w \in \mathbb{R}^{3}$.
2. exercise 3.2 of Waffle

Let V have basis $\left\{e_{1}, e_{2}\right\}$ and let $T: V \rightarrow V$ be given by $T\left(e_{1}\right)=a e_{1}+c e_{2}$ and $T\left(e_{2}\right)=b e_{1}+d e_{2}$. Compute $\bigwedge^{2} T: \bigwedge^{2}(V) \rightarrow \bigwedge^{2}(V)$ in terms of this basis. What is $\operatorname{det}(T)$?

3. Exercise 3.4 of Waffle

Let $\operatorname{Sym}^{2}(V)$ be the quotient of $V \otimes V$ by the subspace spanned by elements of the form $v \otimes w-w \otimes v$. We write $v w$ for the image of $v \otimes w$ under the quotient $\operatorname{map} V \otimes V \rightarrow \operatorname{Sym}^{2}(V)$. If $\left\{e_{i}\right\}$ is a basis for V, show that $\left\{e_{i} e_{j}\right\}_{i \leq j}$ is a basis for $\operatorname{Sym}^{2}(V)$.
Hint: imitate the proof of theorem 3.26
4. Exercise 3.7 of Waffle

Let $x \in \bigwedge^{r}(V), y \in \bigwedge^{s}(V)$ and $z \in \bigwedge^{t}(V)$. Show that $(x \wedge y) \wedge z=x \wedge(y \wedge z)$ and that $x \wedge y=(-1)^{r s} y \wedge x$ where $x \wedge y$ is defined as in Lemma 3.35.
5. Proposition 29.20 of Gallier

For any vector space V, the vectors $u_{1}, \ldots, u_{n} \in V$ are linearly independent iff $u_{1} \wedge \cdots \wedge u_{n} \neq 0$.

3.7 Reminder from linear algebra

3.7.1 Reminder on inner products

Let V be a vector space over \mathbb{C}. An inner product on V is a function $(\cdot, \cdot): V \times V \rightarrow \mathbb{C}$ such that

1. $(u, v)=\overline{(v, u)}$ for all $u, v \in V$.
2. $\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}, u\right)=\alpha_{1}\left(v_{1}, u\right)+\alpha_{2}\left(v_{2}, u\right)$ for all $v_{i}, u \in V, \alpha_{i} \in \mathbb{C}$.
3. $(v, v) \geq 0$ for all $v \in V$ and $(v, v)=0$ if and only if $v=0$.
V is then called an inner product space. The norm induced by the inner product is defined as

$$
\|v\|=\sqrt{(v, v)}, \quad v \in V
$$

Vectors v with $\|v\|=1$ are unit vectors. Two vectors $u, v \in V$ are orthogonal if $(u, v)=0$, denoted by $u \perp v$. A basis $E=\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthogonal basis, if the vectors are pairwise orthogonal. It is orthonormal, if $\left(e_{i}, e_{j}\right)=\delta_{i j}$.

Fact:

Let $F:=\left\{f_{1}, \ldots, f_{n}\right\}$ be a basis of the \mathbb{C}-vector space V. Then there exists a unique inner product (\cdot, \cdot) on V such that F is an orthonormal basis. (cf. Problem 7.3 (a))

Proof of this fact: Let (\cdot, \cdot) be an inner product with ONB $E=\left\{e_{1}, \ldots, e_{n}\right\}$. Define $S \in \operatorname{End} V$ by $S f_{i}=e_{i}$. The endomorphism S is invertible. (Why? please give an argument - e.g. by definition, S has rank $n=\operatorname{dim} V$). Set $T:=S^{*} S>0$. (positive semidefiniteness, i.e. $S^{*} S \geq 0$, holds for any homomorphism between inner produc spaces. Positive definiteness, i.e. $S^{*} S>0$, holds for invertible homomorphisms. View S as a
square matrix. Then the adjoint S^{*} of S is the complex conjugate transpose of S.) So $\langle u, v\rangle:=(T u, v)$ is an inner product. (Fact: For $T \in$ End $V,\langle u, v\rangle:=(T u, v)$ defines an inner product if and only if T is pos. definite w.r.t. (\cdot, \cdot)). The elements f_{1}, \ldots, f_{n} form an ONB w.r.t. $\langle\cdot, \cdot\rangle$. Uniqueness: straightforward.

Exercise:

Let $E=\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of V. For any $u=\sum_{i=1}^{n} a_{i} e_{i}$ and $v=\sum_{i=1}^{n} b_{i} e_{i}$, show that $(u, v):=\sum_{i=1}^{n} a_{i} \overline{b_{i}}$ is the unique inner product on V so that E is an orthonormal basis (cf. Problem 7.3 (b)).

3.7.2 Reminder on Adjoints

Let V, W be inner product spaces with inner products $(\cdot, \cdot)_{V}$ and $(\cdot, \cdot)_{W}$ respectively. For each $T \in \operatorname{Hom}(V, W)$, the adjoint of T is $S \in \operatorname{Hom}(W, V)$ such that $(T v, w)_{W}=(v, S w)_{V}$ for all $v \in V, w \in W$ and is denoted by T^{*}. Clearly, $\left(T^{*}\right)^{*}=T$.

Fact:

Let W, V be inner product spaces. Each $T \in \operatorname{Hom}(V, W)$ has a unique adjoint.
This is Theorem 1.4.1 in 固. To prove it, use thm 1.3.4 of 園: we can find an ONB w.r.t. $(\cdot, \cdot)_{V}$. Let $E=\left\{e_{1}, \ldots, e_{n}\right\}$ be an ONB of V. Then for $w \in W$, one defines $S \in \operatorname{Hom}(W, V)$ by

$$
S w:=\sum_{i=1}^{n}\left(w, T e_{i}\right)_{W} e_{i} .
$$

etc. And show uniqueness.
And then another fact:
If E and $F=\left\{f_{1}, \ldots, f_{m}\right\}$ are ONB's of the inner product spaces V and W and $T \in \operatorname{Hom}(V, W)$ with matrix A representing T w.r.t. the bases E and F, then T^{*} is represented by A^{*} (the complex conjugate transpose of the matrix A), a matrix w.r.t. the bases F and E.

Chapter 4

Rings and modules

Modules over rings generalize the concept of vector spaces over a field. Every vector space has a basis, but for modules, this is not always the case.

4.1 Basic definitions

Recall that a ring R (with unit) is a set with two operations, denoted + and $\cdot, R \times R \rightarrow R$, such that
R1 $(R,+)$ is a commutative group.
R2 The multiplication is associative and has a unit element.
R3 for all $x, y, z \in R$, we have $(x+y) z=x z+y z$ and $z(x+y)=z x+z y$.
The last condition is called the distributivity.
The unit element for the addition is denoted by 0 or 0_{R}, the unit element for multiplication by 1 or 1_{R}.
Definition 4.1. Let R be a ring. A left module over R or a left R-module M is an abelian group, usually written additively, together with an operation of R on M, such that for all $r, s \in R$ and $x, y \in M$, we have

$$
(r+s) x=r x+s x, \quad r(x+y)=r x+r y, \quad r(s x)=(r s) x \quad \text { and } \quad 1_{R} x=x
$$

As an exercise: check that $a(-x)=-(a x)$ and $0_{R} x=0_{M}, a 0_{M}=0_{M}$ (for arbitrary $a \in R, x \in M)$.

Right R-modules are defined analogously. We will work with left R-modules unless mentioned otherwise. There are cases where it is important to distinguish between the action of R from left and the one from right. In the following examples, switching from left to right modules can mostly be done by a simple notational change. This is not the case in Example 4.2(f).
Example 4.2. (a) If M is a vector space over a field K, then M is a K-module.
(b) Any ring R is a module over itself. Informally: elements of a ring can be added and subtracted (abelian group part of definition), we can multiply every $r \in R$ by $x \in R$ and the distributivity yields the conditions for R-modules.
(c) Let $(R,+, \cdot)=(\mathbb{Z},+, \cdot)$ where + and \cdot are addition and multiplication of integers, R is commutative. Every abelian group A is a \mathbb{Z}-module. Addition and subtraction are carried out according to the group structure of A; the key point is that we can multiply $x \in A$ by the integer n. If $n>0, n x=x+x+\cdots+x$ (n times); if $n<0$, then $n x=-x-x-\cdots-x(|n|$ times $)$. Concrete examples:
Let $M_{1}=\mathbb{Z}, M_{2}=\langle a\rangle=a \mathbb{Z}=\{\ldots,-2 a,-a, 0, a, 2 a, \ldots\}$ and $M_{3}=\mathbb{Z} / a \mathbb{Z}$ for $a \geq 0$. Then the M_{i} are abelian groups and left and right \mathbb{Z}-modules.
(d) Let R be any ring and R^{n} the set of all n-tuples with components in R. Then R^{n} is an R-module with the usual definitions of addition and scalar multiplication (e.g. $\left.r\left(x_{1}, \ldots, x_{n}\right)=\left(r x_{1}, \ldots, r x_{n}\right)\right)$.
(e) Let $M=R_{m, n}$ be the set of all $m \times n$ matrices with entries in R. Then M is an R-module, where addition is ordinary matrix addition and multiplication of the scalar $c \in R$ by the matrix A means multiplication of each entry of A by c.
(f) Let I be a left ideal of the ring R; then I is a left R-module (if $x \in I$ and $r \in R$, then $r x$ belongs to I, but $x r$ is not necessarily in I ! Similarly, a right ideal is a right R-module, and a two-sided ideal is both a left and a right R-module.
(g) Let J be a two-sided ideal of R. Then the factor $\operatorname{ring} R / J$ is a module over A : if $r \in R$ and $r+J$ is a coset of J in R, then one defines the operation to be $r(x+J)=r x+J$. This defines an R-module structure on R / J. We will do this more generally below: if M is a module and N a submodule (cf. Definition 4.7), we can define the quotient module M / N. (Section 4.4, see Definition 4.37 and discussion afterwards).
(h) An additive group consisting of 0 alone is a module over any ring.
[Lecture 8, 11.1.2016]
Definition 4.3. Let R be a commutative ring (with unit). An R-algebra (an algebra over R) is an R-module A together with composition $A \times A \rightarrow A,(x, y) \mapsto x y$ called multiplication which is distributive over addition and is linked to the action of R on A by the identities

$$
a(x y)=(a x) y=x(a y) \quad \forall a \in R, \forall x, y \in A
$$

If the multiplication above satisfies additional conditions, we obtain different types of algebras: If the multiplication is associative, then A is called an associative algebra. (In this case, A is a ring under the addition and multiplication). If the multiplication is commutative, A is a commutative algebra. If A contains a multiplicative identity element, A is unitary. A unitary associative algebra in which every non-zero element has an inverse is called a division algebra.

Example 4.4. \mathbb{C} is a division algebra over \mathbb{R}.

Example 4.5. Let R be a commutative ring (with unit). Let $R^{\mathbb{N}}$ be the set of all maps $f: \mathbb{N} \rightarrow R$ (i.e. the set of all sequences of elements of R), with 0 included in \mathbb{N}. Endow $R^{\mathbb{N}}$ with the obvious addition, namely for $f, g \in R^{\mathbb{N}}$ let $f+g$ be defined by

$$
(f+g)(n)=f(n)+g(n)
$$

$R^{\mathbb{N}}$ with this addition is an abelian group. We define $R \times R^{\mathbb{N}} \rightarrow R^{\mathbb{N}}$ by $(r, f) \mapsto r f$, where $r f \in R^{\mathbb{N}}$ is the element given by

$$
(r f)(n)=r f(n)
$$

This makes $R^{\mathbb{N}}$ into an R-module. We now make it into an R-algebra, we need to define a multiplication for this:
Given $f, g \in R^{\mathbb{N}}$, define the product map $f g: \mathbb{N} \rightarrow R$ by

$$
(f g)(n)=\sum_{i=0}^{n} f(i) g(n-i)
$$

One checks that this makes $R^{\mathbb{N}}$ a R-algebra. It is called the algebra of formal power series with coefficients in R. mehr text dazu: seiten 5,6 von Blyth

Example 4.6. If R is a ring (with 1), then the set $R_{n, n}$ of $n \times n$-matrices over R is a unitary associative R-algebra.

Exercises for Section 4.1

1. Let M be an abelian group and let End M be the set of all endomorphisms on M, i.e. the set of all group homomorphisms $f: M \rightarrow M$. Show that End M is an abelian group under the operation $(f, g) \mapsto f+g$ where $(f+g)(x):=f(x)+g(x)$.
Show also that
1) (End $M,+, \circ$) is a ring with unit;
2) M is an End M-module under the action End $M \times M \rightarrow M$ given by $(f, m) \mapsto$ $f \cdot m=f(m)$;
3) if R is a ring (with unit) and $\mu: R \rightarrow$ End M a ring morphism with $\mu\left(1_{R}\right)=\operatorname{id}_{M}$, then M is an R-module under the action $R \times M \rightarrow M$ given by $(\lambda, m) \mapsto \lambda m=$ $(\mu(\lambda))(m)$.
2. Let G be a finite abelian group with $|G|=m$. Show that if $n, t \in \mathbb{Z}$ then

$$
n \equiv t \quad \bmod m \Longrightarrow n g=t g \quad \forall g \in G
$$

Deduce that G is a $\mathbb{Z} / m \mathbb{Z}$-module under the action $\mathbb{Z} / m \mathbb{Z} \times G \rightarrow G$ given by $(n+m \mathbb{Z}, g) \mapsto n g$. Conclude that every finite abelian group whose order is a prime p can be regarded as a vector space over a field of p elements.
3. what exactly is $P_{n}(R)$??

If R is a commutative ring (with unit) show that the set $P_{n}(R)$ of all polynomials over R of degree less than or equal to n is an R-module. Show also that the set $P(R)$ of all polynomials over R is a unitary associative R-algebra.
4. If A is a ring (with unit) define its centre to be

$$
Z(A):=\{x \in A: x y=y x \forall y \in A\}
$$

Show that $Z(A)$ is a ring (with unit). If R is a commutative ring (with unit) prove that A is a unitary associative R-algebra if and only if there is a 1-preserving (sending 1_{R} to $1_{Z(A)}$) ring morphism $\varphi: R \rightarrow Z(A)$.
(Hint: \Longrightarrow : denoting the action of R on A by $(r, a) \mapsto r \cdot a$, define φ by $\varphi(r)=r \cdot 1_{A}$. \Longleftarrow : Define an action by $(r, a) \mapsto r \cdot a=\varphi(r) a$.)

4.2 Submodules; intersections and sums

Definition 4.7. By a submodule of an R-module M we mean a subgroup N of M that is stable under the action of R on M, in the sense that if $x \in N$ and $r \in R$, then $r x \in N$.

A non-empty subset N of an R-module M is a submodule of M if and only if

$$
x-y \in N \quad \text { and } \quad r x \in N \forall x, y \in N, r \in R \quad \text { ("submodule criterion") }
$$

These two conditions are equivalent to the condition

$$
r x+s y \in N \quad \forall r, s \in R, x, y \in N
$$

(check the equivalence yourself)
if the first two conditions hold, then $r x \in N$ and $s y=(-s) y \in N$, hence $r x-s y \in N$. If the 3 rd condition holds, then for $r=1_{R}$ and $s=-1_{R}$, we obtain $x-y \in N$, and for $s=0_{R}$, we obtain $r x \in N$.

Definition 4.8. A non-empty subset B of an R-algebra A is a subalgebra of A if

$$
x-y \in B, x y \in B, r x \in B \quad \forall x, y \in B, \forall r \in R
$$

Example 4.9. Let R be a ring (with unit) and consider R as an R-module (as in Example 4.2 (b)). The submodules of R are precisely the left ideals of R. Similarly, if we consider R as a right R-module, then the submodules of R are precisely the right ideals of R.

Example 4.10. If G is an abelian group, then the submodules of the \mathbb{Z}-module G are the subgroups of G.

Theorem 4.11. If $\left(M_{i}\right)_{i \in I}$ is a family of submodules of an R-module M, then $\bigcap_{i \in I} M_{i}$ is a submodule of M.

proof skipped in class

Proof. First observe that $\bigcap_{i \in I} M_{i} \neq \emptyset$, since every M_{i} is a subgroup of M and hence contains the identity element 0_{M}. Since each M_{i} is a submodule, we have

$$
\begin{aligned}
x, y \in \bigcap_{i \in I} M_{i} & \Longrightarrow x, y \in M_{i} \forall i \in I \\
& \Longrightarrow x-y \in M_{i} \forall i \in I \\
& \Longrightarrow x-y \in \bigcap_{i \in I} M_{i}
\end{aligned}
$$

and

$$
x \in \bigcap_{i \in I} M_{i}, r \in R \Longrightarrow r x \in M_{i} \quad \forall i \in I \Longrightarrow r x \in \bigcap_{i \in I} M_{i}
$$

Consequently, $\bigcap_{i \in I} M_{i}$ is a submodule of M.
Now let S be a subset of an R-module M, possibly $S=\emptyset$ and consider the collection of all submodules of M that contain S. By Theorem 4.11, the intersection of this collection is again a submodule of M and it contains S. It is the smallest submodule of M containing S. We call it the submodule generated by S, denoted $\langle S\rangle$. We can give an explicit description of this submodule:

$$
\langle S\rangle= \begin{cases}\left\{0_{M}\right\}(\text { the zero submodule }) & \text { if } S=\emptyset \tag{4.1}\\ \text { all linear combinations (over } R) \text { of elements of } S & \text { else }\end{cases}
$$

Definition 4.12. The R-module M is generated by the subset S of M (S is a set of generators for M) if $\langle S\rangle=M$. By a finitely generated R-module we mean an R-module which has a finite set of generators.

Let $\left(M_{i}\right)_{i \in I}$ be a family of submodules of an R-module M. We consider the submodule $\left\langle\cup_{i \in I} M_{i}\right\rangle$ generated by $\cup_{i \in I} M_{i}$. It is the smallest submodule of M containing every M_{i}. It is often called (by abuse of notation) the submodule generated by the family $\left(M_{i}\right)_{i \in I}$. It can be characterised as in the theorem below. For this, let $\mathcal{P}^{*}(I)$ be the set of all non-empty finite subsets of the set I.

Theorem 4.13. Let $\left(M_{i}\right)_{i \in I}$ be a family of submodules of an R-module M. Then the submodule generated by $\cup_{i \in I} M_{i}$ consists of all finite sums of the form $\sum_{j \in J} m_{j}$ where $J \in \mathcal{P}^{*}(I)$ and $m_{j} \in M_{j}$.

Proof. A linear combination of elements of $\cup_{i \in I} M_{i}$ is precisely a sum of the form $\sum_{j \in J} m_{j}$ for some $J \in \mathcal{P}^{*}(I)$. The result is thus an immediate consequence of the description of $\langle S\rangle$ in (4.1).

Because of Theorem 4.13, we call the submodule generated by the family $\left(M_{i}\right)_{i \in I}$ the sum of the family and denote it by $\sum_{i \in I} M_{i}$. If I is finite, say $I=\{1,2, \ldots, n\}$, we often write $\sum_{i=1}^{n} M_{i}$ or $M_{1}+M_{2}+\cdots+M_{n}$.

We have two immediate consequences of this:

Corollary 4.14. (1) (Commutativity of \sum) If $\sigma: I \rightarrow I$ is a bijection then

$$
\sum_{i \in I} M_{i}=\sum_{i \in I} M_{\sigma(i)}
$$

(2) (Associativity of \sum) If $\left(I_{k}\right)_{k \in A}$ is a family of non-empty subsets of I with $I=\cup_{k \in A} I_{k}$ then

$$
\sum_{i \in I} M_{i}=\sum_{k \in A}\left(\sum_{i \in I_{k}} M_{i}\right)
$$

proof skipped in class
Proof. (1) is clear.
(2) A typical element of the right-hand side is $\sum_{k \in J}\left(\sum_{i \in J_{k}} m_{i}\right)$ with $J_{k} \in \mathcal{P}^{*}\left(I_{k}\right)$ and $J \in \mathcal{P}^{*}(A)$. By associativity of addition in M this can be written as $\sum_{i \in K} m_{i}$ where $K=\cup_{k \in J} J_{k} \in \mathcal{P}^{*}(I)$. Thus the right-hand side is contained in the left-hand side.

As for the converse inclusion, a typical element of the left-hand side is $\sum_{i \in I} m_{i}$ where $J \in \mathcal{P}^{*}(I)$. Now $J=J \cap I=\cup_{k \in A}\left(J \cap I_{k}\right)$ so that if we define $J_{k}=J \cap I_{K}$ we have $J_{k} \in \mathcal{P}^{*}\left(I_{k}\right)$ and, by the associativity of addition in $M, \sum_{i \in J} m_{i}=\sum_{k \in B}\left(\sum_{i \in J_{k}} m_{i}\right)$ where $B \in \mathcal{P}^{*}(A)$. Thus the left-hand side is contained in the right-hand side.

If we take $A=\{1,2\}$ in (2) of Corollary 4.14 and set $I_{1}=\{i\}, I_{2}=I \backslash I_{1}$, we obtain as a further corollary, for all $i \in I$, the following:

$$
\sum_{i \in I} M_{i}=M_{i}+\sum_{j \neq i} M_{j}
$$

Note that $\cup_{i \in I} M_{i}$ need not be a submodule of M, so in general, $\sum_{i \in I} M_{i} \neq \cup_{i \in I} M_{i}$: Take $I=\{1,2\}$, let M_{1} and M_{2} be the subspaces of the vector space \mathbb{R}^{2} given by $M_{1}=\{(x, 0): x \in \mathbb{R}\}$ and $M_{2}=\{(0, y): y \in \mathbb{R}\}$. We have $M_{1}+M_{2}=\mathbb{R}^{2}$ whereas $M_{1} \cup M_{2} \subsetneq \mathbb{R}^{2}$.

Let M be an R-module, let A and B be submodules of M. Then $A+B$ is the smallest submodule of M containing both A and $B . A \cap B$ is the largest submodule of M contained in A and in B. The set of submodules of M, ordered by set inclusion, is therefore such that every two-element subset $\{A, B\}$ has a supremum (namely $A+B$) and an infimum (namely $A \cap B$). We say that the set of submodules of M forms a lattice. An important property of this lattice is that it is modular, in the following sense:
Theorem 4.15 (Modular law). If M is an R-module and if A, B, C are submodules of M with $C \subseteq A$ then

$$
A \cap(B+C)=(A \cap B)+C
$$

Proof. Since $C \subseteq A$ we have $A+C=A$. Now $(A \cap B)+C \subseteq A+C$ and $(A \cap B)+C \subseteq B+C$ and so we have

$$
(A \cap B)+C \subseteq(A+C) \cap(B+C)=A \cap(B+C)
$$

To obtain the reverse inclusion, let $a \in A \cap(B+C)$. Then $a \in A$ and there exists $b \in B$, $c \in C$ such that $a=b+c$. Since $C \subseteq A$ we have $c \in A$ and therefore $b=a-c \in A$. Consequently, $b \in A \cap B$ and so $a=b+c \in(A \cap B)+C$.

Exercises for Section 4.2

1. Let M be an R-module. If S is a non-empty subset of M, define the annihilator of S in R to be

$$
\operatorname{Ann}_{R} S=\left\{r \in R: r x=0_{M} \forall x \in S\right\}
$$

Show that $\operatorname{Ann}_{R} S$ is a left ideal of R and that it is a two-sided ideal whenever S is a submodule of M.
2. Describe the kernel of the ring morphism μ from Exercise 1 (3) to Section 4.1,
3. Prove that the ring of endomorphisms of the abelian group \mathbb{Z} is isomorphic to the ring \mathbb{Z}, and that the ring of endomorphisms of the abelian group \mathbb{Q} is isomorphic to the field \mathbb{Q}.
(Hint: Use Exercise 1 to Section 4.1 and Exercise 2 above. Note that if $f \in \operatorname{End} \mathbb{Z}$ then $f=\mu(f(1))$.)
4. Let M be an R-module. If $r, s \in R$ show that

$$
r-s \in \operatorname{Ann}_{R} M \Longrightarrow r x=s x \forall x \in M
$$

Deduce that M can be considered as an $R / \operatorname{Ann}_{R} M$-module. Show that the annihilator of M in $R / \operatorname{Ann}_{R} M$ is zero.

4.3 Morphisms; exact sequences

[Lecture 9, 12.1.2016]

In the theory of groups, group homomorphisms preserve the group structure. In K-vector spaces, K-linear maps preserve the vector space structure. In ring theory, ring morphisms preserve the ring structure. We now define structure-preserving maps between modules over a ring.

Definition 4.16. If M and N are R-modules, then $f: M \rightarrow N$ is a R-morphism if
(1) $f(x+y)=f(x)+f(y) \quad \forall x, y \in M$;
(2) $f(r x)=r f(x) \quad \forall x \in M, \forall r \in R$.

An R-morphism is a R-monomorphism if it is injective and it is an R-epimorphism if it is surjective. It is an R-isomorphism if it is bijective. An R-morphism $f: M \rightarrow M$ is often called an R-endomorphism.

If f is an R-morphism $f: M \rightarrow N$ we have $f\left(0_{M}\right)=0_{N}$ and $f(-x)=-f(x)$ for all $x \in M$.

Example 4.17. If M and N are abelian groups regarded as \mathbb{Z}-modules then a \mathbb{Z} morphism $f: M \rightarrow N$ is simply a group homomorphism. more in blyth, ex. 3.1

Example 4.18. Let M be an R-module and $n>0$. Then M^{n} is also an R-module $(n$ copies of $M)$. For $1 \leq i \leq n$, the map $p r_{i}: M^{n} \rightarrow M$ described by

$$
p r_{i}\left(x_{1}, \ldots, x_{n}\right)=x_{i}
$$

is an R-epimorphism, the i-th projection of M^{n} onto M.
Next we describe how R-morphisms $f: M \rightarrow N$ induce maps between the lattices of submodules (cf. discussion above Theorem 4.15).

Theorem 4.19. Let $f: M \rightarrow N$ be a morphism between R-modules. Then for every submodule X of M, the set $f(X)$ is a submodule of N and for every submodule Y of N, the set $f^{-1}(Y)$ is a submodule of M.

Proof. Note first that $f(X)$ and $f^{-1}(Y)$ are not empty, the first, since X contains 0_{M} and so $f\left(0_{M}\right)=0_{N} \in f(X)$. Analoguously, $0_{M} \in f^{-1}(Y)$.

Since f is in particular a group homomorphism from M to N, and since as submodules, X and Y are subgroups of M and N respectively, we get that the image $f(X)$ is a subgroup of N and that the preimage $f^{-1}(Y)$ is a subgroup of M (facts about group homomorphisms, introductory algebra course, e.g. [2, Satz 2.13]). The only thing that remains to be checked is that $f(X)$ and $f^{-1}(Y)$ are stable under the action of R (in M or in N respectively).

So let $y \in f(X)$. There exists $x \in M$ such that $f(x)=y$. For $r \in R$ arbitrary, we then have

$$
r y=r f(x)^{f R \text {-morph. }}=f(r x) \in f(X)
$$

Now if $x \in f^{-1}(Y)$, then $f(x) \in Y$. For $r \in R$ arbitrary, we have

$$
f(r x)^{f R \text {-morph. }}=r f(x) \in Y \quad(Y \text { is a submodule of } N), \text { hence } r x \in f^{-1}(Y)
$$

In particular, $\operatorname{im} f=f(M)$ is a submodule of N and $\operatorname{ker} f=f^{-1}\left(\left\{0_{N}\right\}\right)$ is a submodule of M.

We write $\mathcal{L}(M)$ for the lattice of submodules of M. By Theorem 4.19, we can define maps $f^{\rightarrow}: \mathcal{L}(M) \rightarrow \mathcal{L}(N)$ and $f^{\leftarrow:}: \mathcal{L}(N) \rightarrow \mathcal{L}(M)$ through $f^{\rightarrow}: X \mapsto f(X)$, $f^{\leftarrow}: Y \mapsto f^{-1}(Y)$. We will often simply write f for $f^{\rightarrow}: \mathcal{L}(M) \rightarrow \mathcal{L}(N)$ and f^{-1} for the $\operatorname{map} f^{\leftarrow}: \mathcal{L}(N) \rightarrow \mathcal{L}(M)$.

These maps are inclusion-preserving: if X_{1}, X_{2} are submodules of M such that $X_{1} \subseteq X_{2}$, then $f^{\rightarrow}\left(X_{1}\right) \subseteq f^{\rightarrow}\left(X_{2}\right)$; if Y_{1}, Y_{2} are submodules of N with $Y_{1} \subseteq Y_{2}$, then $f \leftarrow\left(Y_{1}\right) \subseteq f \leftarrow\left(Y_{2}\right)$.

Lemma 4.20. Let $f: M \rightarrow N$ be an R-morphism. If A is a submodule of M and $B a$ submodule of N then
(a) $f\left(f^{-1}(B)\right)=B \cap \operatorname{im} f$;
(b) $f^{-1}(f(A))=A+\operatorname{ker} f$.

Proof. One can show more generally that the following two properties hold:
(a') $f\left(A \cap f^{-1}(B)\right)=f(A) \cap B$
and that
(b^{\prime}) $f^{-1}(B+f(A))=f^{-1}(B)+A$.
(a) then follows by setting $A=M$ in (a^{\prime}), (b) follows from (b') by taking $B=\left\{0_{N}\right\}$. For $\left(a^{\prime}\right)$: First note that $f\left(f^{-1}(B)\right) \subseteq B$ since for $y \in f^{-1}(B), f(y) \in B$. Since $f=f^{\rightarrow}$ is inclusion-preserving, \subseteq follows.
To obtain \supseteq, let $y \in \overline{f(A) \cap B}$. Then $y=f(a)$ for some $a \in A$ and $y \in B$. Since $f(a) \in B$ we have $a \in f^{-1}(B)$, so $a \in f^{-1}(B) \cap A$, hence $y \in f\left(A \cap f^{-1}(B)\right)$.
For $\left(b^{\prime}\right)$: We have $A \subseteq f^{-1}(f(A))$ since for $a \in A$, we have $f(a) \in f(A)$. Since $f^{-1}=f^{\leftarrow}$ is inclusion-preserving, we get \supseteq.
To obtain \subseteq, let $x \in f^{-1}(B+f(A))$. Then $f(x) \in B+f(A)$ and so $f(x) \in B$ and $f(x)=f(A)$ for some $a \in A$. This gives $x-a \in \operatorname{ker} f=f^{-1}\left(\left\{0_{N}\right\}\right) \subseteq f^{-1}(B)$ and therefore $x \in f^{-1}(B)+A$.

Just as with group homorphisms, we can compose R-morphisms to obtain new R morphisms. The basic facts concerning this are the following:
(a) If $f: M \rightarrow N$ and $g: N \rightarrow P$ are R-morphisms, then the composition $g \circ f: M \rightarrow$ P is also an R-morphism.
(To see this: we know this is true for group homomorphisms. So one only need to check that for all $r \in R$, for all $x \in M$, we have $(g \circ f)(r x)=\cdots=r(g \circ f)(x)$.)
(b) If $f: M \rightarrow N$ and $g: N \rightarrow P$ are R-epimorphisms, then so is $g \circ f$.
(c) If $f: M \rightarrow N$ and $g: N \rightarrow P$ are R-monomorphisms, then so is $g \circ f$.
(d) If $g \circ f$ is an epimorphism, then so is g.
(e) If $g \circ f$ is a monomorphism, then so is f.

Concerning compositions of morphisms, there are two 'diagram-completion' problems that we will consider now:

If we are given a diagram with R-modules and R-morphisms A_{1}, B_{1}, C_{1} and f_{1}, g_{1}, under which conditions does there exist a morphism $h_{1}: B_{1} \rightarrow C_{1}$ such that $h_{1} \circ f_{1}=g_{1}$? The dual problem is a diagram as on the right, with modules A_{2}, B_{2}, C_{2} and morphisms f_{2}, g_{2} : what are the conditions ensuring the existence of a morphism $h_{2}: C_{2} \rightarrow B_{2}$ such
that $f_{2} \circ h_{2}=g_{2}$?

We first consider these questions on the level of sets and maps between them.
Theorem 4.21. (a) Let A, B, C be non-empty sets, $f: A \rightarrow B, g: A \rightarrow C$ maps. Then the following conditions are equivalent:
(1) There exists a map $h: B \rightarrow C$ with $h \circ f=g$;
(2) $f(x)=f(y) \Longrightarrow g(x)=g(y) \quad$ for all $x, y \in A$
(b) Let A, B, C be non-empty sets and $f: B \rightarrow A, g: C \rightarrow A$ maps. Then the following conditions are equivalent:
(3) There exists a map $h: C \rightarrow B$ such that $f \circ h=g$;
(4) $\operatorname{im} g \subseteq \operatorname{im} f$.
(do the proof?)
Proof. (a) The implication (1) $\Longrightarrow(2)$ is clear.
For $(1) \Longleftarrow(2)$ consider the subset G of $\operatorname{im} f \times C$ given by

$$
G:=\{(x, z): y=f(x), z=g(x) \text { for some } x \in A\}
$$

The subset G is non empty, as for any $x \in A,(f(x), g(x)) \in G$. Now given any $y \in \operatorname{im} f$ there is a unique $z \in C$ such that $(y, z) \in G$. In fact, if $y=f(x)$, choose $z=g(x)$ to see that such an element z exists. To see that it is unique, suppose that $(y, z) \in G$ and that $\left(y, z^{\prime}\right) \in G$. By the definition of G, we have $y=f(x)=f\left(x^{\prime}\right)$ and $z=g(x), z^{\prime}=g\left(x^{\prime}\right)$ for some $x, x^{\prime} \in A$. From this, by (2), $g(x)=g\left(x^{\prime}\right)$, and so $z=z^{\prime}$.

We can therefore define a map $t: \operatorname{im} f \rightarrow C$ as follows:

$$
t(f(x)):=g(x) \quad \forall x \in A
$$

We need to extend this to a map on all of B : With this, we can construct $h: B \rightarrow C$:

$$
h(y)= \begin{cases}t(y) & \text { if } y \in \operatorname{im} f \\ \text { some } c \in C & \text { otherwise }\end{cases}
$$

Then for every $x \in A$ we have $h(f(x))=t(f(x))=g(x)$, and so $h \circ f=g$.
Similarly, the implication $(3) \Longrightarrow(4)$ is clear.
For (4) $\Longleftarrow(3)$: If (4) holds, then for every $x \in C$ there exists $y \in B$ such that $g(x)=f(y)$. Given any $x \in C$, choose one of these $y \in B$ and label it y_{x} (by the axiom of choice), i.e. y_{x} is an element of B with $g(x)=f\left(y_{x}\right)$. This gives us a map $h: C \rightarrow B$ by setting $h(x)=y_{x}$. This satisfies $f(h(x))=f\left(y_{x}\right)=g(x)$, hence $f \circ h=g$.

Corollary 4.22. (a) If A, B are non-empty sets and $f: A \rightarrow B$ is a map, then the following statements are equivalent:
(α) f is injective;
(β) there exists $g: B \rightarrow A$ such that $g \circ f=\operatorname{id}_{A}$;
$(\gamma) f$ is left cancellable, in the sense that for every non-empty set C and all maps $h, k: C \rightarrow A$,

$$
f \circ h=f \circ k \Longrightarrow h=k .
$$

(b) If A, B are non-empty sets and $f: A \rightarrow B$ is a map, then the following statements are equivalent:
$\left(\alpha^{\prime}\right) f$ is surjective;
(β^{\prime}) there exists $g: B \rightarrow A$ such that $f \circ g=\operatorname{id}_{B}$;
$\left(\gamma^{\prime}\right) f$ is right cancellable, in the sense that for every non-empty set C and all maps $h, k: B \rightarrow C$,

$$
h \circ f=k \circ f \Longrightarrow h=k .
$$

Proof. $(\alpha) \Longleftrightarrow(\beta)$ is immediate from $(1) \Longleftrightarrow(2)$.
The implication $(\beta) \Longrightarrow(\gamma)$ is straightforward (try it out!), $(\gamma) \Longrightarrow(\alpha)$ requires more work. $\left(\alpha^{\prime}\right) \Longleftrightarrow\left(\beta^{\prime}\right)$ is immediate from $(3) \Longleftrightarrow(4)$.
$\left(\beta^{\prime}\right) \Longrightarrow\left(\gamma^{\prime}\right)$ is straightforward, $\left(\gamma^{\prime}\right) \Longrightarrow\left(\alpha^{\prime}\right)$ requires more work.
Most work: $(\gamma) \Longrightarrow(\alpha)$ and $\left(\gamma^{\prime}\right) \Longrightarrow\left(\alpha^{\prime}\right)$
For details: This is the Corollary on page 20 in [3].
The statements from Theorem 4.21 and Corollary 4.22 cannot be made into moduletheoretic results by simply replacing "non-empty set" by R-module and "map" by R morphisms. The following examples illustrates this.

Example 4.23. Consider the diagram of \mathbb{Z}-modules and \mathbb{Z}-morphisms

in which $\mathrm{id}_{\mathbb{Z}}$ is the identity morphism and $\times 2$ the \mathbb{Z}-morphism acting as $n \mapsto 2 n$. By Theorem 4.21 (a) there is a $\operatorname{map} h: \mathbb{Z} \rightarrow \mathbb{Z}$ such that $h \circ(\times 2)=\mathrm{id}_{\mathbb{Z}}$. But no such \mathbb{Z}-morphism can exist: Suppose h were such a \mathbb{Z}-morphism. Then for every $n \in \mathbb{Z}$, we would have $2 h(n)=h(2 n)=n$. In particular, $2 h(1)=1$; and this is impossible, since the equation $2 x=1$ has no solution in \mathbb{Z}.

Example 4.24. Let p be a prime, consider the subgroup \mathbb{Q}_{p} of \mathbb{Q} defined as follows

$$
\mathbb{Q}_{p}:=\left\{x \in \mathbb{Q}: x=\frac{k}{p^{n}} \text { for some } k \in \mathbb{Z} \text { and some } n \in \mathbb{N}\right\} .
$$

Note that \mathbb{Z} is a subgroup of \mathbb{Q}_{p}. We can thus form the quotient group $\mathbb{Q}_{p} / \mathbb{Z}$. As abelian groups, they are \mathbb{Z}-modules. Consider the diagram

of \mathbb{Z}-modules and \mathbb{Z}-morphisms, where f is defined as $x \mapsto p x$. Since for all $k \in \mathbb{Z}$ and for all $n \in \mathbb{Z}$ we have

$$
\frac{k}{p^{n}}+\mathbb{Z}=p\left(\frac{k}{p^{n+1}}+\mathbb{Z}\right)
$$

we see that $\operatorname{im} f=\mathbb{Q}_{p} / \mathbb{Z}=$ imid. By Theorem 4.21 (b) there is therefore a map $h: \mathbb{Q}_{p} / \mathbb{Z} \rightarrow \mathbb{Q}_{p} / \mathbb{Z}$ such that $f \circ h=\mathrm{id}$. However, no such \mathbb{Z}-morphism can exist: If h were such a \mathbb{Z}-morphism, we would have

$$
\begin{aligned}
\frac{1}{p}+\mathbb{Z}=f\left(h\left(\frac{1}{p}+\mathbb{Z}\right)\right) & =p\left(h\left(\frac{1}{p}+\mathbb{Z}\right)\right) \\
& =h\left(p\left(\frac{1}{p}+\mathbb{Z}\right)\right)=h(1+\mathbb{Z})=0+\mathbb{Z}
\end{aligned}
$$

which is nonsense since $x+\mathbb{Z}=0+\mathbb{Z}$ if and only if $x \in \mathbb{Z}$.
[Lecture 10, 18.1.2016]
In certain situation, there are module-theoretic analogues of Theorem 4.21, The following two are examples of such. 3 will give more later.

Theorem 4.25. Consider the diagram

of R-modules and R-morphisms in which f is an R-epimorphism. Then the following are equivalent:
(1) there is a unique R-morphism $h: B \rightarrow C$ such that $h \circ f=g$;
(2) $\operatorname{ker} f \subseteq \operatorname{ker} g$.

Moreover, such an R-morphism h is a monomorphism if and only if $\operatorname{ker} f=\operatorname{ker} g$.
Proof. (1) $\Longrightarrow(2)$: Suppose that (1) holds, take $x \in \operatorname{ker} f$. Then $g(x)=h(f(x))=$ $h(0)=0$.
$(2) \Longrightarrow(1):$ Suppose that $\operatorname{ker} f \subseteq \operatorname{ker} g$. Given $x, y \in A$ we have

$$
\begin{aligned}
f(x)=f(y) & \Longrightarrow f(x-y)=f(x)-f(y)=0_{B} \\
& \Longrightarrow x-y \in \operatorname{ker} f \subseteq \operatorname{ker} g \\
& \Longrightarrow g(x)-g(y)=g(x-y)=0_{C} \\
& \Longrightarrow g(x)=g(y)
\end{aligned}
$$

By Theorem 4.21 (a) we can therefore define a map $h: B \rightarrow C$ such that $h \circ f=g$. Since f is surjective, it follows by Corollary 4.22 that f is right cancellable and so h is unique. It remains to show that h is an R-morphism. Since f is surjectiv ${ }^{1} \sqrt{1}$, this follows from the equalities

$$
\begin{aligned}
h(f(x)+f(y)) & =h(f(x+y))=g(x+y)=g(x)+g(y)=h(f(x))+h(f(y)) \\
h(r f(x)) & =h(f(r x))=g(r x)=r g(x)=r h(f(x))
\end{aligned}
$$

(for all $x, y \in A, r \in R$).
To the last statement: if h is injective, then since $g(x)=h(f(x))$ we have

$$
x \in \operatorname{ker} g \Longrightarrow f(x) \in \operatorname{ker} h=\left\{0_{B}\right\} \Longrightarrow x \in \operatorname{ker} f
$$

and so we have equality in (2). Conversely, suppose that $\operatorname{ker} g=\operatorname{ker} f$ and let $x \in \operatorname{ker} h$. Since f is surjective we have $x=f(y)$ for some $y \in A$ and so $0_{B}=h(x)=h(f(y))=g(y)$ and so $y \in \operatorname{ker} g=\operatorname{ker} f$. From this, $x=f(y)=0_{B}$ and h is injective.

Only the proof of Theorem 4.25 was done in class, the proof of 4.26 was omitted.
Theorem 4.26. Consider the diagram

of R-modules and R-morphisms in which f is an R-monomorphism. Then the following are equivalent:
(1) there is a unique R-morphism $h: C \rightarrow B$ such that $f \circ h=g$;
(2) $\operatorname{im} g \subseteq \operatorname{im} f$.

Moreover, such an R-morphism h is an epimorphism if and only if $\operatorname{im} g=\operatorname{im} f$.
Proof. $(1) \Longrightarrow(2)$: If (1) holds then $g(c)=f(h(c)) \in \operatorname{im} f$ for every $c \in C$.
$(2) \Longrightarrow(1)$: If (2) holds then by Theorem4.21 (b) there is a map $h: C \rightarrow B$ such that $f \circ h=g$. Since f is injective, it follows by Corollary 4.22 that f is left cancellable and so h is unique. Now for all $c, d \in C$ and $r \in R$ we have the equalities

$$
\begin{aligned}
f(h(c+d)) & =g(c+d)=g(c)+g(d)=f(h(c))+f(h(d))=f(h(c)+h(d)) \\
f(h(r c)) & =g(r c)=r g(c)=r f(h(c))=f(r h(c))
\end{aligned}
$$

Since f is injective ${ }^{2}$, we deduce that $h(c+d)=h(c)+h(d)$ and $h(r c)=r h(c)$, so that h is indeed an R-morphism.

[^2]For the last claim: if h is surjective, then for every $b \in B$ there exists $b \in B$ with $b=h(c)$. So $f(b)=f(h(c))=g(c)$ and we have $\operatorname{im} f \subseteq \operatorname{im} g$.

Conversely, if $\operatorname{im} f=\operatorname{im} g$, then for every $b \in B$ there exists $c \in C$ such that $f(b)=$ $g(c)=f(h(c))$ whence $b=h(c)$, since f is injective. Consequently, h is surjective.

It is costumary to say, in the situations of Theorems 4.25 and 4.26, that the diagrams commute. This notion is often used for diagrams of sets and maps (groups and homomorphisms, R-modules and R-morphisms, etc.) between them, it is a convenient abbreviation.

Definition 4.27. Given a diagram of sets and maps we say that the diagram is commutative if all compositions of maps between a starting set to an ending set are equal.

Example. The triangle

is commutative if and only if $h \circ f=g$. The diagram

is commutative if and only if $f^{\prime} \circ \alpha=\beta \circ f$ and $g^{\prime} \circ \beta=\gamma \circ g$, i.e. if and only if each of the squares commutes.

Another important concept is the following.
Definition 4.28. A sequence of modules and morphisms is a diagram of the form

$$
\ldots \longrightarrow M_{i-1} \xrightarrow{f_{i-1}} M_{i} \xrightarrow{f_{i}} M_{i+1} \longrightarrow \ldots
$$

The sequence is said to be exact at M_{i} if $\operatorname{im} f_{i-1}=\operatorname{ker} f_{i}$. The sequence is exact if it is exact at each M_{i}.

The zero module is usually written as 0 in a sequence of modules and morphisms. From the definition, we have:

Theorem 4.29. Let $f: M \rightarrow N$ be an R-morphism and let $0 \rightarrow M, N \rightarrow 0$ denote the inclusion map and the zero map respectively. Then f is
(1) a monomorphism iff $0 \longrightarrow M \xrightarrow{f} N$ is exact;
(2) an epimorphism iff $M \xrightarrow{f} N \longrightarrow 0$ is exact;
(3) an isomorphism iff $0 \longrightarrow M \xrightarrow{f} N \longrightarrow 0$ is exact.

Example 4.30. If $f: A \rightarrow B$ is a group homomorphism of abelian groups, then we have the exact sequence

$$
0 \longrightarrow \operatorname{ker} f \xrightarrow{\iota} A \xrightarrow{\pi} A / \operatorname{ker} f \longrightarrow 0
$$

where ι is the inclusion map and π is the natural epimorphism. Likewise, we have the exact sequence

$$
0 \longrightarrow \operatorname{im} f \longrightarrow B \longrightarrow B / \operatorname{im} f \longrightarrow 0
$$

An exact sequence of the form

$$
0 \longrightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \longrightarrow 0
$$

is called a short exact sequence.
In an exact sequence, the composition of two successive morphisms is the zero morphism. The converse is not true in general, as $f_{i} \circ f_{i-1}=0$ is equivalent to $\operatorname{im} f_{i-1} \subseteq \operatorname{ker} f_{i}$. Sequences (of modules and morphisms) with $f_{i} \circ f_{i-1}=0$ for all i are called semi-exact ${ }^{3}$.

The following result is a useful property of the kernel of an R-morphism. It illustrates the notions we have just introduced.

Theorem 4.31. Given the diagram of R-modules and R-morphisms

with exact row and with $g \circ \alpha=0$ there is a unique R-morphism $h: A \rightarrow X$ such that the completed diagram is commutative.

Proof. Since $g \circ \alpha=0$ and since the row is exact we have that $\operatorname{im} \alpha \subseteq \operatorname{ker} g=\operatorname{im} f$. The morphism f is injective (Theorem 4.29) and so the result follows from Theorem4.26.

Theorem 4.32. Let $f: M \rightarrow N$ be an R-morphism. If $\iota: \operatorname{ker} f \rightarrow M$ is the inclusion map then
(1) $f \circ \iota=0$;
(2) if P is an R-module and if $g: P \rightarrow M$ is an R-morphism such that $f \circ g=0$ then there is a unique R-morphism $\beta: P \rightarrow \operatorname{ker} f$ such that the following diagram is commutative:

[^3]Proof. (1) is clear and (2) is covered by Theorem 4.31
It can be shown that the pair $(\operatorname{ker} f, \iota)$ is characterised by the properties of Theorem 4.32, exercise 3.5 of 3.

We now present an example of a technique known as diagram chasing.
Theorem 4.33 (The four lemma). Suppose that the diagram of modules and morphisms

is commutative and has exact rows. Then the following holds:
(1) If α, γ are epimorphisms and δ is a monomorphism then β is an epimorphism;
(2) If α is an epimorphism and β, δ are monomorphisms then γ is a monomorphism.

Proof. (1) Let $b^{\prime} \in B^{\prime}$. Since γ is surjective, there exists $c \in C$ such that $g^{\prime}\left(b^{\prime}\right)=\gamma(c)$. By the commutativity of the right-hand square we have

$$
\delta(h(c))=h^{\prime}(\gamma(c))=h^{\prime}\left(g^{\prime}\left(b^{\prime}\right)\right)=0
$$

since $h^{\prime} \circ g^{\prime}=0$. Thus $h(c) \in \operatorname{ker} \delta=0$ and so $h(c)=0$ giving $c \in \operatorname{ker} h=\operatorname{im} g$ so that $c=g(b)$ for some $b \in B$. Then, by the commutativity of the middle square,

$$
g^{\prime}\left(b^{\prime}\right)=\gamma(c)=\gamma(g(b))=g^{\prime}(\beta(b))
$$

Consequently, $b^{\prime}-\beta(b) \in \operatorname{ker} g^{\prime}=\operatorname{im} f^{\prime}$, so that $b^{\prime}-\beta(b)=f^{\prime}\left(a^{\prime}\right)$ for some $a^{\prime} \in A^{\prime}$. Since α is surjective, there exists $a \in A$ with $a^{\prime}=\alpha(a)$. Now the commutativity of the left-hand square yields $b^{\prime}-\beta(b)=f^{\prime}(\alpha(a))=\beta(f(a))$. We thus have

$$
b^{\prime}=\beta(b)+\beta(f(a))=\beta(b+f(a)) \in \operatorname{im} \beta
$$

and β is surjective.
part (2) is analoguous and thus was skipped in class
(2) Let $c \in \operatorname{ker} \gamma$. Then $\delta(h(c))=h^{\prime}(\gamma(c))=h^{\prime}(0)=0$ and so $h(c) \in \operatorname{ker} \delta=0$. Thus $c \in \operatorname{ker} h=\operatorname{im} g$ so that $c=g(b)$ for some $b \in B$. Now $0=\gamma(c)=\gamma(g(b))=g^{\prime}(\beta(b))$ so $\beta(b) \in \operatorname{ker} g^{\prime}=\operatorname{im} f^{\prime}$ whence $\beta(b)=f^{\prime}\left(a^{\prime}\right)$ for some $a^{\prime} \in A^{\prime}$. Now $a^{\prime}=\alpha(a)$ for some $a \in A$, so $\beta(b)=f^{\prime}(\alpha(a))=\beta(f(a))$. Since β is a monomorphism, we deduce that $b=f(a)$ whence $c=g(b)=g(f(a))=0$ since $f \circ g=0$.

Theorem 4.34 (The five lemma). Suppose that the diagram of modules and morphisms

is commutative and has exact rows. If $\alpha_{1}, \alpha_{2}, \alpha_{4}$ and α_{5} are isomorphisms, then so is α_{3}.

Proof. Applying Theorem 4.33 (1) to the right-hand three squares shows that α_{3} is an epimorphism. Applying Theorem 4.33 (2) to the left-hand three squares shows that α_{3} is a monomorphism.

Corollary 4.35. Suppose that the diagram of modules and morphisms

is commutative and has exact rows. If α and γ are isomorphisms, then so is β.
Proof. Take $A=A^{\prime}=E=E^{\prime}=0$ in Theorem4.34
[Lecture 11, 19.1.2016]

Exercises for Section 4.3

1. Let R be a commutative ring (with unit). Prove that a map $f: R \times R \rightarrow R$ is an R-morphism if and only if there exist $\alpha, \beta \in R$ such that

$$
f(x, y)=\alpha x+\beta y \quad \text { for all } x, y \in R
$$

2. If A and B are submodules of an R-module M, establish a short exact sequence

$$
0 \longrightarrow A \cap B \xrightarrow{\gamma} A \times B \xrightarrow{\pi} A+B \longrightarrow 0
$$

(Hint: Observe that the 'obvious' definitions of γ and π, namely $\gamma(x)=(x, x)$ and $\pi(x, y)=x+y$ do not work. Try $\pi(x, y)=x-y)$
3. A short exact sequence of the form

$$
(f, E, g): \quad 0 \longrightarrow A \xrightarrow{f} E \xrightarrow{g} B \longrightarrow 0
$$

is called an extension of A by B.
(a) Given any R-modules A and B show that at least one extension of A by B exists.
(b) Two extensions $\left(f_{1}, E_{1}, g_{1}\right)$ and $\left(f_{2}, E_{2}, g_{2}\right)$ of A and B are said to be equivalent if there exists an R-morphism $h: E_{1} \rightarrow E_{2}$ such that $h \circ f_{1}=f_{2}$ and $g_{2} \circ h=g_{1}$. Prove that such an R-morphism is an isomorphism.
(c) Show that there the following two are non-equivalent short exact sequences

$$
\begin{array}{r}
0 \longrightarrow \mathbb{Z}_{2} \longrightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{4} \longrightarrow \mathbb{Z}_{4} \longrightarrow 0 \\
0 \longrightarrow \mathbb{Z}_{2} \longrightarrow \mathbb{Z}_{8} \longrightarrow \mathbb{Z}_{4} \longrightarrow 0
\end{array}
$$

i.e. that these are extensions of \mathbb{Z}_{2} by \mathbb{Z}_{4} that are not equivalent.

4.4 Quotient modules; basic isomorphism theorem

In this section, we will see an important way of constructing new modules from old ones. This arises from the following problem: Suppose that M is an R-module and that E is an equivalence relation on M. Precisely when can we define operations on the set M / E of equivalence classes so that M / E becomes an R-module with the natural surjection $\pi: M \rightarrow M / E$? This important question is settled in the following result, in which we denote the class of x modulo E by $[x]_{E}$.

Theorem 4.36. Let M be an R-module and E an equivalence relation on M. The following statements are equivalent:
(1) there is a unique addition $\left([x]_{E},\left[y[E) \mapsto[x]_{E}+[y]_{E}\right.\right.$ and a unique R-action $\left(r,[x]_{E}\right) \mapsto r[x]_{E}$ such that M / E is an R-module and the natural surjection is an R epimorphism, i.e. the following identities hold:

$$
[x]_{E}+[y]_{E}=[x+y]_{E}, \quad r[r]_{E}=[r x]_{E} \quad \forall x, y \in M \quad \forall r \in R
$$

(2) E is compatible with the structure of M, in the sense that

$$
\begin{aligned}
x \equiv a \quad \bmod E, y \equiv b \quad \bmod E & \Longrightarrow x+y \equiv a+b \quad \bmod E \\
x \equiv a \quad \bmod E, r \in R & \Longrightarrow r x \equiv r a \quad \bmod E
\end{aligned}
$$

(3) There is a submodule M_{E} of M such that

$$
x \equiv y \quad \bmod E \Longleftrightarrow x-y \in M_{E}
$$

Proof. $(1) \Longleftrightarrow(2)$ is immediate on applying Theorem 4.21 to the diagram

(for $h=$ "addition") where f is the map $(x, y) \mapsto\left([x]_{E},[y]_{E}\right)$ and g is given by $(x, y) \mapsto$ $[x+y]_{E}$ and to the diagram

with f^{\prime} given by $(r, x) \mapsto\left(r,[x]_{E}\right)$ and g^{\prime} by $(r, x) \mapsto[r x]_{E}$. The uniqueness of these operations follows from the fact that both vertical maps are surjective and so are right cancellable.
$(2) \Longrightarrow(3)$: Suppose that E is compatible with the structure of M. Then $[0]_{E}$ (the class of 0 modulo E) is a submodule of M. In fact, if $x \equiv 0 \bmod E$ and $y \equiv 0 \bmod E$
then, by compatibility, $x-y \equiv 0-0=0 \bmod E$ and if $x \equiv 0 \bmod E$ and $r \in R$ then $r x \equiv r 0=0 \bmod E$. Moreover, we have

$$
\begin{array}{ll}
\Longrightarrow: & x \equiv y \quad \bmod E \Longrightarrow x-y \equiv y-y=0 \quad \bmod E \\
\Longleftarrow & x-y \equiv 0 \quad \bmod E \Longrightarrow x=(x-y)+y \equiv 0+y=y \quad \bmod E
\end{array}
$$

so that $x \equiv y \bmod E \Longleftrightarrow x-y \in[0]_{E}$.
$(3) \Longrightarrow(2)$: Suppose that M_{E} is a submodule of M such that $x \equiv y \bmod E$ is equivalent to $x-y \in M_{E}$. Then from $x \equiv a \bmod E$ and $y \equiv b \bmod E$ we have $x-a \in M_{E}$ and $y-b \in M_{E}$ so that, M_{E} being a submodule, $x+y-(a+b)=\in M_{E}$ whence $x+y \equiv a+b \bmod E$. Similarly, from $x \equiv a \bmod E$ we have $r x-r a=r(x-a) \in M_{E}$ for all $r \in R$ so that $r x \equiv r a \bmod E$. Thus E is compatible with the structure of M.

Definition 4.37. In the situation of Theorem 4.36 we say that M / E is the quotient module of M by the compatible equivalence relation E.

If we identify equivalence relations on M that yield the same quotient set, we get a bijection from the set of compatible equivalences on M to the set of submodules of M : For every compatible equivalence relation E on M define $\varphi(E)$ to be the submodule $[0]_{E}$.
(a) That φ is surjective follows from the fact that if N is a submodule of M then the relation F given by

$$
x \equiv y \quad \bmod F \Longleftrightarrow x-y \in N
$$

is (as can be checked) a compatible equivalence relation on M with

$$
x \equiv 0 \quad \bmod F \Longleftrightarrow x \in N
$$

so that $\varphi(F)=[0]_{F}=N$.
(b) That φ is also injective results from the fact that if E and F are compatible equivalence relations on M such that $\varphi(E)=\varphi(F)$ then $[0]_{E}=[0]_{F}$ and so, by Theorem 4.36 (3), $x \equiv y \bmod E$ is equivalent to $x \equiv y \bmod F$, whence $E=F$ by the agreed identification.

Because of this bijection, it is standard practice to write M / N for the quotient module M / E where N is the submodule corresponding to E (namely $N=[0]_{E}$). This abuse of notation yields a corresponding abuse of language: M / N is called the quotient module of M by the submodule N. In this case the equivalence class of x will be written $[x]_{N}$. Note that, as in the case of quotient groups, $[x]_{N}$ coincides with the coset $x+N=$ $\{x+n: n \in N\}$: we have

$$
\begin{aligned}
y \in[x]_{N} & \Longleftrightarrow[y]_{N}=[x]_{N} \\
& \Longleftrightarrow x-y \in N \\
& \Longleftrightarrow y=x+n \text { for some } n \in N
\end{aligned}
$$

We now consider the question of how to identify the submodules of a quotient module.

Theorem 4.38 (Correspondence theorem). If N is a submodule of an R-module M then there is an inclusion-preserving bijection from the set of submodules of M / N to the set of the submodules of M that contain N.

Proof. Suppose that A is a submodule of M that contains N. Then the set

$$
A / N:=\left\{[a]_{N}: a \in A\right\}
$$

is a submodule of M / N. Consider the map ψ from the set of all such submodules A to the set of submodules of M / N described by $\psi(A)=A / N$. Since ψ so defined is the restriction (to the set of submodules that contain N) of the natural surjection π_{N}, it is clear that ψ is inclusion-preserving.

We observe from Corollary 4.22 (applied to $f=\psi$) that if $N \subseteq A$ then

$$
\pi_{N}^{-1}(\psi(A))=\pi_{N}^{-1}\left(\pi_{N}(A)\right) \stackrel{L m \underline{(4.20}(b)}{=} A+\operatorname{ker} \pi_{N}=A+N=A
$$

So part (β) from Corollary 4.22 holds. Consequently, ψ is injective.
We now observe that if P is any submodule of M / N then, again by Corollary 4.22,
so part $\left(\beta^{\prime}\right)$ of Corollary 4.22 holds. Consequently, ψ is also surjective.
Corollary 4.39. Every submodule of M / N is of the form A / N where A is a submodule of M that contains N

Our aim now is to consider certain induced morphisms from one quotient module to another, and to establish some fundamental isomorphisms.

Theorem 4.40. Let $f: M \rightarrow N$ be an R-morphism. If A and B are submodules of M and N respectively then the following statements are equivalent:
(1) $f(A) \subseteq B$:
(2) There is a unique R-morphism $f_{*}: M / A \rightarrow N / B$ such that the diagram

is commutative.
Moreover, when such an R-morphism f_{*} exists, it is
(a) a monomorphism if and only if $A=f^{-1}(B)$;
(b) an epimorphism if and only if $B+\operatorname{im} f=N$.

Proof. Applying Theorem 4.25 to the diagram

$$
\begin{aligned}
& M \xrightarrow{\pi_{B} \circ f} N / B \\
& \pi_{A} \\
& M / A
\end{aligned}
$$

we see that (2) holds if and only if

$$
k e r \pi_{A} \subseteq \operatorname{ker}\left(\pi_{B} \circ f\right)
$$

Now

$$
x \in \operatorname{ker} \pi_{A} \Longleftrightarrow[x]_{A}=[0]_{A} \Longleftrightarrow x \in A,
$$

and similarly

$$
x \in \operatorname{ker}\left(\pi_{B} \circ f\right) \Longleftrightarrow[f(x)]_{B}=[0]_{B} \Longleftrightarrow f(x) \in B
$$

Thus we see that (2) holds if and only if $x \in A$ implies $f(x) \in B$, which is (1).
Last part skipped in class.
As for the last statements, we observe that $f(A) \subseteq B$ is equivalent to $A \subseteq f^{-1}(B)$ and that therefore

$$
\begin{aligned}
\operatorname{ker} f_{*} & =\left\{[x]_{A}: f(x) \in B\right\} \\
& =\left\{[x]_{A}: x \in f^{-1}(B)\right\} \\
& =f^{-1}(B) / A,
\end{aligned}
$$

so that f_{*} is injective if and only if $A=f^{-1}(B)$.
Finally,

$$
\operatorname{im} f_{*}=\left\{[f(x)]_{B}: x \in M\right\}
$$

and so f_{*} is surjective if and only if for every $n \in N$ there exists $x \in M$ with

$$
[n]_{B}=[f(x)]_{B},
$$

which is equivalent to the condition that for every $n \in N$ there exists $m \in M$ with

$$
n-f(x) \in B
$$

which is equivalent to $N=B+\operatorname{im} f$.

[Lecture 12, 25.1.2016]

If $f: M \rightarrow N$ is an R-morphism then we shall denote by $f^{+}: M \rightarrow \operatorname{im} f$ which is given by the same prescription as f, namely $f(x)=f^{+}(x)$. Note that although f and f^{+}have the same effect on elements of M, we distinguish between them since they have different arrival sets. f^{+}is by definition surjective, f need not be.

Theorem 4.41 (First isomorphism theorem). If $f: M \rightarrow N$ is an R-isomorphism then there is a unique R-morphism $\psi: M / \operatorname{ker} f \rightarrow \operatorname{im} f$ such that the diagram

is commutative
Proof. Applying Theorem4.40 in the case where $N=\operatorname{im} f, B=\left\{0_{N}\right\}$ and $A=\operatorname{ker} f$ we obtain the existence of a unique R-morphism $\psi: M / \operatorname{ker} f \rightarrow \operatorname{im} f$ such that $\psi \circ \pi=f^{+}$. Since f^{+}is surjective, so is ψ. Moreover,

$$
\text { ker } f=f^{-1}\{0\}=f^{-1}(B)
$$

and so ψ is also injective. Thus ψ is an isomorphism.
Corollary 4.42. If $M \rightarrow N$ is an R-morphism then there is an inclusion-preserving bijection from the set of submodules of $\operatorname{im} f$ to the set of submodules of M that contain ker f

Proof. Immediate by Theorem 4.38
Corollary 4.43 (Canonical decomposition of morphisms). Every morphism can be expressed as the composite of an epimorphism, an isomorphism, and a monomorphism.

Proof. With the above notation, the diagram

is commutative, ι being the natural inclusion. It follows from this that $f=\iota \circ \psi \circ \pi$.
Although the above decomposition is called canonical (or natural) it is by no means unique, but if

$$
M \xrightarrow{\alpha} A \xrightarrow{\beta} B \xrightarrow{\gamma} N
$$

is another such decomposition of f then necessarily $A \cong M / \operatorname{ker} f$ and $B \cong \operatorname{im} f$. see exercise 4.6

Theorem 4.44 (Second isomorphism theorem). If M is an R-module and if N, P are submodules of M such that $P \subseteq N$ then N / P is a submodule of M / P and there is a unique R-isomorphism

$$
h: M / N \longrightarrow(M / P) /(N / P)
$$

such that the following diagram is commutative:

Proof. We know by Corollary 4.39 that N / P is a submodule of M / P. Since $\pi_{P}(N)=$ $\left\{[n]_{P}: n \in N\right\}=N / P$, we can apply Theorem 4.40 to the above diagram to obtain the existence of a unique R-morphism $h: M / N \rightarrow(M / P) /(N / P)$ making the diagram commutative. Now since, by the commutativity, $h \circ \pi_{N}$ is an epimorphism, so is h. To show that h is also a monomorphism, it suffices to note that $\pi_{P}^{-1}(N / P)=N$ and appeal to Theorem 4.40 again.

The third isomorphism theorem is a consequence of the following.
Given an R-module M and a submodule A of M, it is clear that we have an exact sequence

$$
0 \longrightarrow A \xrightarrow{\iota_{A}} M \xrightarrow{\pi_{A}} M / A \longrightarrow 0
$$

in which ι is the natural inclusion and π_{A} the natural surjection. This generalises to arbitrary R-modules the situation of Example 4.30 in which the abelian groups are considered as \mathbb{Z}-modules.

Theorem 4.45. If A and B are submodules of an R-module M then there is a commutative diagram (with exact rows and columns) of the form

Proof. Let ι_{A} be the natural inclusion. Then we have $\iota_{A}(A \cap B) \subseteq B$ and so we can apply Theorem 4.40 to obtain the commutative diagram

Considering likewise the inclusion $\iota_{B}: B \rightarrow M$ we obtain a similar commutative diagram. These diagrams can be joined together and extended to form all but the bottom righthand corner of the big diagram, namely

We can complete the bottom right-hand corner by defining maps $\psi_{B}: M / A \rightarrow M /(A+$ $B)$ and $\psi_{A}: M / B \rightarrow M /(A+B)$ by

$$
\psi_{B}\left([x]_{A}\right):=[x]_{A+B}, \quad \psi_{A}\left([x]_{B}\right):=[x]_{A+B} .
$$

It is clear that ψ_{B} and ψ_{A} are R-morphisms which make the completed diagram commutative.

We now show that the bottom row

$$
0 \longrightarrow A /(A \cap B) \xrightarrow{\left(\iota_{A}\right)_{*}} M / B \xrightarrow{\psi_{A}} M /(A+B) \longrightarrow 0
$$

is exact. By symmetry, the right-hand column will then also be exact. Since ψ_{A} is surjective and since $\left(\iota_{A}\right)_{*}$ is injective (Theorem 4.40) it only remains to show that $\operatorname{im}\left(\iota_{A}\right)_{*}=\operatorname{ker} \psi_{A}$. For this purpose, we note that $\operatorname{im}\left(\iota_{A}\right)_{*}=\left\{[x]_{B}: x \in A\right\}$ and $\operatorname{ker} \psi_{A}:\left\{[x]_{B}: x \in A+B\right\}$. Observing that

$$
x \in A+B \Longrightarrow x=a+b \text { for some } a \in A \text {, some } b \in B \Longrightarrow[x]_{B}=[a+b]_{B}=[a]_{B}
$$

we obtain $\operatorname{ker} \psi_{A} \subseteq \operatorname{im}\left(\iota_{A}\right)_{*}$ and by observing that

$$
x \in A \Longrightarrow x=a \text { for some } a \in A \Longrightarrow[x]_{B}=[a]_{B}=[a+b]_{B}
$$

we obtain the reverse inclusion.
Corollary 4.46 (Third isomorphism theorem). If A and B are submodules of an R module M then

$$
A /(A \cap B) \cong(A+B) / B
$$

Proof. Since A and B are submodules of $A+B$ we can apply the above in the case where $M=A+B$. The bottom row of the diagram becomes

$$
0 \longrightarrow A /(A \cap B) \longrightarrow(A+B) / B \longrightarrow(A+B) /(A+B) \longrightarrow 0
$$

Since $(A+B) /(A+B)$ is a zero module, the exactness of this row together with Theorem 4.29 (3) gives the required isomorphism.

The lectures went only up to the third isomorphism theorem and then stopped
The last of the isomorphism theorems that are often used is the Butterfly Lemma (or Lemma of Zassenhaus). It uses the Hasse diagram, a diagram with non-horizontal edges where an ascending line segment from A to B means that A is a submodule of B.
Theorem 4.47 (Butterfly Lemma). Let M be an R-module with submodules $N, P, N^{\prime}, P^{\prime}$ such that $N \subseteq P$ and $N^{\prime} \subseteq P^{\prime}$. Then relative to the Hasse diagram

the following quotient modules are isomorphic

$$
\frac{N+\left(P \cap P^{\prime}\right)}{N+\left(P \cap N^{\prime}\right)} \cong \frac{P \cap P^{\prime}}{\left(N \cap P^{\prime}\right)+\left(N^{\prime} \cap P\right)} \cong \frac{N^{\prime}+\left(P \cap P^{\prime}\right)}{N^{\prime}+\left(P \cap P^{\prime}\right)}
$$

Proof. The proof uses the modular law (Theorem4.15), the third isomorphism theorem (Corollary 4.46) for $A=P \cap P^{\prime}$ and $B=N+\left(P \cap N^{\prime}\right)$ and the second isomorphism theorem (Theorem 4.44). For details: [3, §4]

Exercises for Section 4.4

1. An R-module is cyclic if it is generated by a singleton subset. Let $M=R x$ be a cyclic R-module. Recall that the annihilator of x is the submodule $\operatorname{Ann}_{R}(\{x\})=$ $\{r \in R: r x=0\}$. Prove that $M \cong R / \operatorname{Ann}_{R}(\{x\})$.
Deduce that if R is a principal ideal domain (a commutative integral domain in which every ideal is generated by a singleton subset) and if $x \in R$ is such that $\operatorname{Ann}_{R}(x)=p^{k} R$ for some $p \in R$ (see exercise 2.2) then the only submodules of M are those in the chain

$$
0=p^{k} M \subset p^{k-1} M \subset \cdots \subset p M \subset p^{0}=M
$$

(Hint: use the correspondence theorem)
check whether its really $x \in R$ might be - as $M \cong R / \operatorname{Ann}_{R} x$
2. Let $f: M \rightarrow N$ be an R-morphism and suppose that f can be expressed as the composite map

$$
M \xrightarrow{\alpha} A \xrightarrow{\beta} B \xrightarrow{\gamma} N
$$

where α is an epimorphism, β an isomorphism and γ a monomorphism. Prove that $A \cong M / \operatorname{ker} f$ and $B \cong \operatorname{im} f$.
3. Let R be a commutative unitary ring and let $R_{n}[X]$ be the R-module of all polynomials of dgree at most n with coefficients in R. Show that, for $n \geq 1$,

$$
R_{n-1}[X] \cong R_{n}[X] / R
$$

(Hint: Consider the differentiation map)

Notation for Chapters 3 and 4

- Let V and W be vector spaces over the field K. We write $\operatorname{Hom}(V, W)$ for the space of K-linear maps between V and W (or Homomorphisms between V and W). We write $\operatorname{End}(V)$ for $\operatorname{Hom}(V, V)$, the space of endomorphisms of V.
- $\mathbb{C}_{m, n}$ the space of $m \times n$-matrices over \mathbb{C}. If R is a ring (with unit), $R_{m, n}$ is the space of $m \times n$-matrices over R.
- $x \in V, V$ vector space: x^{T} the transpose of x (similar for matrices).
- $\left[x_{1}, \ldots, x_{n}\right]$ for the matrix formed by the column vectors $x_{i} \in \mathbb{C}^{m}$.
- $V^{m}=\times^{m}(V)=V \times \cdots \times V$ for the product of m factors of the vector space V.
- $M\left(V_{1}, \ldots, V_{m}, W\right)$ the set of multilinear maps from $V_{1} \times \cdots \times V_{m}$ to W.
- The space of r-linear alternating maps, $\operatorname{Alt}^{r}(V ; W):=\left\{f: V^{r} \rightarrow W: f\right.$ is alternating $\}$.
- Let V_{1}, \ldots, V_{m} be K-vector spaces of dimensions n_{1}, \ldots, n_{m}. Then we define $\Gamma\left(n_{1}, \ldots, n_{m}\right):=\left\{\gamma: \gamma=(\gamma(1), \ldots, \gamma(m)) \mid 1 \leq \gamma(i) \leq n_{i}, i=1, \ldots, m\right\}$, sometimes abbreviated as Γ. This notation helps enumerating basis vectors of the tensor product of m vector spaces of dimensions n_{1}, \ldots, n_{m}.
If $V_{1}=\cdots=V_{m}=: V$ we have $n_{1}=\cdots=n_{m}=n$ for $n:=\operatorname{dim} V$; in this case we just write $\Gamma(n: m)$:
$\Gamma(n: m)=\{\gamma: \gamma=(\gamma(1), \ldots, \gamma(m)), 1 \leq \gamma(i) \leq n, i=1, \ldots, m\}$.
- Consider $V_{1} \otimes \cdots \otimes V_{m}$ for \mathbb{C}-vector spaces V_{i} of dimension n_{i}, and where $E_{i}=$ $\left\{e_{i 1}, \ldots, e_{i n_{i}}\right\}$ is a basis of V_{i} for $i=1, \ldots, m$. Let $\gamma \in \Gamma=\Gamma\left(n_{1}, \ldots, n_{m}\right)$. We write
e_{γ}^{\otimes} for the basis vector $e_{1 \gamma(1)} \otimes \cdots \otimes e_{m \gamma(m)}$.
For $\left(u_{1}, \ldots, u_{m}\right) \in V_{1} \times \cdots \times V_{m}$ we write
$u^{\otimes}:=u_{1} \otimes \cdots \otimes u_{m}\left(\right.$ which is, by definition, $\left.\otimes\left(u_{1}, \ldots, u_{m}\right)\right)$.
- $V^{\otimes m}=\otimes^{m}(V)=V \otimes \cdots \otimes V$ (m copies of V in the tensor product) and $\left(V^{*}\right)^{\otimes m}=\otimes^{m}\left(V^{*}\right)=V^{*} \otimes \cdots \otimes V^{*}\left(m\right.$ copies of $\left.V^{*}\right)$.
- Let I be a set. We write $\mathcal{P}^{*}(I)$ for the set of all non-empty finite subsets of I.
- Let R be a ring (with unit), let M be a (left) R-module. We write $\mathcal{L}(M)$ for the lattice of submodules of M.
- $\mathbb{N}=\{0,1,2,3, \ldots\}=\mathbb{Z}_{\geq 0}$.

Bibliography

The bibliography is not meant to be exhaustive, a lot of the material can be found in textbooks. This is only a very short list, some of the texts are used in proofs.
[1] R. Ash, Abstract Algebra: The Basic Graduate Year
[2] K. Baur, Einführung in die Algebra, Lecture notes, Summer semester 2014, available at http://www.uni-graz.at/~baurk/lehre/Vorlesung-ss2014.html
[3] T. S. Blyth, Module Theory: An approach to linear algebra
[4] S. Lang, Algebra, Graduate Texts in Mathematics, Springer.
[5] T.-Y. Tam, Multilinear Algebra, Lecture notes, Auburn University, 2011

[^0]: ${ }^{1}$ note that T may depend on ψ.
 ${ }^{2}$ This is a fact from linear algebra: if V and W are K-vector spaces with a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V and if w_{1}, \ldots, w_{n} are vectors in W. Then there exists a unique homomorphism $T: V \rightarrow W$ such that $T\left(v_{i}\right)=w_{i}$ for all i.

[^1]: ${ }^{3}$ contravariant vectors: under a base change using the invertible matrix A, the entries of a contravariant vector change with the inverse A^{-1} of the matrix of the base change. Under this base change, covariant vectors change with A.

[^2]: ${ }^{1}$ compare with Example 4.23
 ${ }^{2}$ compare with Example 4.24

[^3]: ${ }^{3}$ compare with the notion of a chain complex.

