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Chapter 3

Multilinear algebra

[Lecture 1, 23.11.2015]
In this chapter, we discuss multilinear maps, tensor maps, tensor products and alternat-
ing maps. Multilinear maps can be viewed as a generalization of linear maps between
vector spaces.

Some notations are explained at the very end of the document (just before the bibliog-
raphy).

Unless mentioned otherwise, all vector spaces are finite dimensional vector spaces
over some field K. Most of the time we will tacitly assume K = C.

An important idea of this chapter is to convert a multilinear map on a product space
into a linear map on the tensor product of its factor spaces and to study the relationship
between these two maps.

this is from: classical analysis on normed spaces, Tsoy-Wo Ma. 15-1 Algebraic Tensor
Products of Vector Spaces (ca. page 318)

3.1 Multilinear maps and tensor maps

Definition 3.1. Let V1, V2, . . . , Vm and W be vector spaces over a field K. A map
ϕ : V1 × · · · × Vm → W is m-multilinear or multilinear if it is linear in every argument,
i.e. if

ϕ(v1, . . . , vi + λv′i, . . . , vm) = ϕ(v1, . . . , vi, . . . , vm) + λϕ(v1, . . . , v
′
i, . . . , vm)

holds for all i = 1, . . . ,m, and for all λ ∈ K.

A linear map f ∈ Hom(V,W ) can be viewed as a 1-multilinear map.

Remark. Linear map and multilinear maps are not the same!
Consider the linear map f ∈ Hom(V1 × V2,W ) and a multilinear map ϕ : V1 × V2 →W .
f is linear and so,

f(v1 + v′1, v2 + v′2) = f(v1, v2) + f(v′1, v
′
2) = f(v1, 0) + f(0, v2) + f(v′1, 0) + f(0, v′2)

13



14 CHAPTER 3. MULTILINEAR ALGEBRA

ϕ is multilinear, and so,

ϕ(v1+v
′
1, v2+v

′
2) = ϕ(v1, v2+v

′
2)+ϕ(v

′
1, v2+v

′
2) = ϕ(v1, v2)+ϕ(v1, v

′
2)+ϕ(v

′
1, v2)+ϕ(v

′
1, v
′
2)

Note that ϕ(v1, 0) = 0 = ϕ(0, v2) but that f(v1, 0) and f(0, v2) are not necessarily 0.

Example 3.2. The following maps are multilinear (please convince yourself of this!)

(a) f : C×C → C defined by f(x, y) = xy.

(b) ϕ : V ∗ × V → C defined by ϕ(f, v) = f(v).

(c) ϕ : Cm×Cn → C defined by ϕ(x, y) = xTAy for some matrix A ∈ Cm×n.

(d) ⊗ : Cm×Cn → Cm×n defined by ⊗(x, y) = xyT . This is a tensor map (see below).

(e) det : Cn× · · · × Cn → C defined by det(x1, . . . , xn) = detA where A is [x1, . . . , xn]
the n× n-matrix formed by the column vectors xi.

(f) f : V1 × · · · × Vm → C defined by f(v1, . . . , vm) =
∏m
i=1 fi(vi) for given fi ∈ V ∗i ,

i = 1, . . . ,m. ((We write f =
∏m
i=1 fi. Then

∏m
i=1 fi(v1, . . . , vm) =

∏m
i=1 fi(vi). ))

(g) g : V ∗1 × · · · × V ∗m → W defined by g(f1, . . . , fm) =
∏m
i=1 fi(vi) for vi ∈ Vi given,

i = 1, . . . ,m.

(h) Let ϕ : V1×· · ·×Vm →W and ψ : V1×· · ·×Vm →W be multilinear. Then αϕ+βψ
is also multilinear (for all α, β ∈ K). So the set M(V1, . . . , Vm,W ) of multilinear
maps from V1 × · · · × Vm to W is a vector space.

Let ψ : V1 × · · · × Vm → W be a multilinear map. If we describe how ψ acts on
a basis of V1 × · · · × Vm, ψ is determined. So let n1, . . . , nm be the dimensions of Vi,
i = 1, . . . ,m, let Ei := {ei1, . . . , ei,ni

} be a basis of Vi. So each vi ∈ Vi can be written as
vi =

∑ni

j=1 aijeij (i = 1, . . . ,m).
To describe the basis of a product of m vector spaces of dimensions n1, . . . , nm, we

use the following notation. (from [5] chapter I.1, p.25,26)

Γ := Γ(n1, . . . , nm) := {γ : γ = (γ(1), . . . , γ(m)) | 1 ≤ γ(i) ≤ ni, i = 1, . . . ,m}.

with |Γ| =
∏m
i=1 ni. For an example, take C3×C2×C2, with

Γ = Γ(3, 2, 2) =







(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2),
(2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2),
(3, 1, 1), (3, 1, 2), (3, 2, 1), (3, 2, 2)







We can order Γ according to the lexicographic order, as in the example. Moreover, we
have (please check):

m∏

i=1

ni∑

j=1

aij =
∑

γ∈Γ

m∏

i=1

aiγ(i) (3.1)
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as will be used later.
From the set-up, we have

ψ(v1, . . . , vm) = ψ(

n1∑

j1=1

a1,j1e1,j1 , . . . ,
nm∑

jm

am,jmem,jm)

=

n1∑

j1

· · ·
nm∑

jm

a1,j1 · · · am,jmψ(e1,j1 , . . . , em,jm)

=
∑

γ∈Γ

a1,γ(1) · · · am,γ(m)ψ(e1,γ(1), . . . , em,γ(m))

=
∑

γ∈Γ

aγψ(eγ) (3.2)

where for γ ∈ Γ, we write

aγ :=

m∏

i=1

ai,γ(i) ∈ C (3.3)

eγ := (e1,γ(1), . . . , em,γ(m)) ∈ V1 × · · · × Vm (3.4)

so eγ is the basis vector of V1 × · · · × Vm with label γ.
Then the ψ(eγ) in (3.2) completely determine ψ.

Theorem 3.3 (Multilinear extension). Let Ei = {ei,1, . . . , ei,ni
} be a basis of Vi, i =

1 . . . ,m. Let eγ be as in (3.4). Let wγ in W , for all γ ∈ Γ = Γ(n1, . . . , nm) be arbitrary.
Then there exists a unique multilinear map ϕ : V1×· · ·×Vm →W such that ϕ(eγ) = wγ
for all γ.

Proof. Since we want ϕ(eγ) = wγ for all γ ∈ Γ, we need to define (by (3.2)

ϕ(v1, . . . , vm) =
∑

γ∈Γ

aγwγ

for aγ as in (3.3) and vi =
∑ni

j=1 aijeij. Let v′i =
∑ni

j=1 a
′
ijeij , i = 1, . . . ,m. From the

definition of ϕ, for c ∈ K,

ϕ(v1, . . . , vi + cv′i, . . . , vm)

=
∑

γ∈Γ

a1,γ(1) · · · (ai,γ(i) + ca′i,γ(i)) · · · am,γ(m)wγ

=
∑

γ∈Γ

a1,γ(1) · · · ai,γ(i) · · · am,γ(m)wγ + c
∑

γ∈Γ

a1,γ(1) · · · a
′
i,γ(i) · · · am,γ(m)wγ

= ϕ(v1, . . . , vi, . . . , vm) + cϕ(v1, . . . , v
′
i, . . . , vm)

i.e. ϕ is multilinear.
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Now we show that ϕ(eα) = wα for all α ∈ Γ. [proof skipped in class]
For α ∈ Γ, write

ei,α(i) =

nj∑

j=1

δα(i),jeij .

From the definition of ϕ and eα = (e1,α(1), . . . , em,α(m)), we have

ϕ(eα) = ϕ(e1,α(1), . . . , em,α(m)) =
∑

γ∈Γ

δα(1),1 . . . δα(m),mwγ =
∑

γ∈Γ

δα,γwγ = wα

(with δα,γ the obvious generalization of the Kronecker delta). So we have established
the existence.

Uniqueness: Suppose there is another multilinear map ψ : V1 × · · · × Vm → W
such that ψ(eγ) = wγ for all γ ∈ Γ. Then from (3.2) we have (for all (v1, . . . , vm) ∈
V1 × · · · × Vm):

ψ(v1, . . . , vm) =
∑

γ∈Γ

aγψ(eγ) =
∑

γ∈Γ

aγwγ = ϕ(v1, . . . , vm)

So ψ = ϕ.

Let us point out some differences between linear and multilinear maps. When T :
V → W is linear, T is completely determined by the n := dimV images T (e1), . . . , T (en)
where E = {e1, . . . , en} is a basis of V . But to determine a multilinear map ϕ, we need
|Γ| =

∏m
i=1 dimVi images. In general, this is much more than dim(V1 × · · · × Vm) =

∑m
i=1 dimVi.

Recall Example 3.2(d) withm = n = 2, i.e. ⊗ : C2×C2 → C2×2 defined by ⊗(x, y) =
xyT . Since rk(xyT ) ≤ min{rkx, rk yT } ≤ 1, we have det(⊗(x, y)) = 0. But if x1 = (1, 0)T

and x2 := (0, 1)T , then

det(⊗(x1, x1) +⊗(x2, x2)) det I2 = 1

(for I2 the identity matrix in C2,2).
Hence ⊗(x1, x1) +⊗(x2, x2) is not in the image of ⊗ and im⊗ is not a subspace.
In general, the image imϕ = {ϕ(v1, . . . , vm) | vi ∈ Vi, i1, . . . ,m} is not necessarily
a subspace of W . But we can consider the span 〈imϕ〉 of the image of ϕ. Clearly,
dim〈imϕ〉 ≤

∏m
i=1 dimVi.

Definition 3.4. The rank of ϕ is defined to be

rkϕ = rankϕ = dim〈imϕ〉

The multilinear map ϕ is called a tensor map if rkϕ =
∏m
i=1 dimVi. In other words, a

tensor map is a multilinear map with maximal image span.
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Example 3.2(a) is a trivial tensor map. Example 3.2(c) is a tensor map.

Theorem 3.5. The multilinear map ϕ : V1 × · · · × Vm → P is a tensor map if and only
if the set {ϕ(eγ) | γ ∈ Γ} is linearly independent (for eγ as in (3.4)).

Proof. From (3.2), 〈ϕ(eγ) | γ ∈ Γ〉 = 〈imϕ〉 and |Γ| =
∏m
i=1 dimVi.

Theorem 3.6. Tensor maps exist, i.e. for V1, . . . , Vm there exist W and ϕ : V1 × · · · ×
Vm →W such that ϕ is a tensor map.

Proof. By Theorem 3.3, pick W a vector space with dimW =
∏m
i=1 dimVi and let

{wγ : γ ∈ Γ} be a basis so that the wγ (γ ∈ Γ) determine the multilinear map ϕ which
is obviously a tensor map.

Clearly, tensor maps on V1×· · ·×Vm are not unique. The study of multilinear maps
is reduced to the study of some linear map (not unique) via a tensor map.

Definition 3.7. A multilinear map ϕ : V1 × · · · × Vm → P is said to have the universal
factorization property if for any multilinear map ψ : V1 × · · · × Vm → W , there is
T ∈ Hom(P,W ) such that ψ = T ◦ ϕ. 1

V1 × · · · × Vm
ϕ //

ψ
&&▼▼

▼▼
▼▼

▼▼
▼▼

▼
P

∃ T~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

W

[Lecture 2, 24.11.2015]

Theorem 3.8. The multilinear map ϕ : V1 × · · · × Vm → P is a tensor map if and only
if ϕ has universal factorization property.

Proof. Suppose that ϕ is a tensor map. Then {ϕ(eγ) | γ ∈ Γ} is a basis of 〈imϕ〉. There
is a unique2 T ∈ Hom(〈imϕ〉,W ) such that Tϕ(eγ) = ψ(eγ) for all γ ∈ Γ. Since Tϕ
and ψ are multilinear maps on V1 × · · · × Vm (Exercise 2 below or Problem 7.1 (a)),
Theorem 3.3 implies Tϕ = ψ.

Conversely, suppose that ϕ has the universal factorization property. In particular
consider a tensor map ψ on V1 × · · · × Vm, i.e. , dim〈imψ〉 =

∏
dimVi. (Such a map ψ

exists by Theorem 3.6).
Then Tϕ = ψ for some linear map T . Thus, T (〈imϕ〉) = 〈imψ〉. Hence

∏

i

dimVi = dim〈imψ〉 ≤ dim〈imϕ〉 ≤
∏

i

dimVi

So rkϕ =
∏

dimVi and ϕ is a tensor map.

Definition 3.9. A multilinear map ϕ : V1 × · · · × Vr → W with W = K is called a
multilinear form or an r-form. If V1 = · · · = Vr =: V (and W = K), then ϕ is called an
r-form on V or a multilinear form on V .

1note that T may depend on ψ.
2This is a fact from linear algebra: if V and W are K-vector spaces with a basis {v1, . . . , vn} of V

and if w1, . . . , wn are vectors in W . Then there exists a unique homomorphism T : V → W such that
T (vi) = wi for all i.
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Exercises for Section 3.1

1. Let V1, . . . , Vm, W1, . . . ,Wm and W be C-vector spaces.
Let ϕ :W1 × · · · ×Wm →W be multilinear and Ti : Vi →Wi linear for all i.
Define ψ : V1 × · · · × Vm →W by ψ(v1, . . . , vm) = ϕ(T1v1, . . . , Tmvm).
Show that ψ is multilinear.

2. Let V1, . . . , Vm, W and W ′ be C-vector spaces.
Prove that if ϕ : V1 × · · ·×Vm → W is multilinear and T : W → W ′ is linear, then
T ◦ ϕ is multilinear.

3. Show that for n > 1, the determinant function det : Cn × · · · × Cn → C is not a
tensor map.

4. Suppose that the multilinear map ϕ : V1 × · · · × Vm → P has the universal fac-
torization property. Show that the linear map T (from the defn of the universal
factorization property) is unique if and only if 〈imϕ〉 = P .

3.2 Tensor products and unique factorization

Let P be a vector space. If there is a tensor map ⊗ : V1 × · · · × Vm → P such that
〈im⊗〉 = P , then P is said to be a tensor product of V1, . . . , Vm or a tensor space. It is
written as ⊗m

i=1Vi or as V1 ⊗ · · · ⊗ Vm. If V1 = · · · = Vm =: V , we also write V ⊗m. We
will see below that all tensor product spaces of V1, . . . , Vm are isomorphic and hence we
will just say that ⊗m

i=1Vi is the tensor product of V1, . . . , Vm. We have

dim(⊗m
i=1Vi) = dim〈im⊗〉 =

m∏

i=1

dimVi

The elements of ⊗m
i=1Vi are tensors. The tensors of the form

⊗(v1, . . . , vm) =: v1 ⊗ · · · ⊗ vm

are the decomposable tensors (or pure tensors), i.e., tensors in im⊗ are decomposable.
The decomposable tensors span ⊗m

i=1Vi, so we can find a basis of decomposable tensors
for ⊗m

i=1Vi. The tensors which are not decomposable, i.e., the tensors in 〈im⊗〉 \ im⊗
are called indecomposable tensors. From Theorem 3.6, we get the following.

Theorem 3.10. Let P be a vector space with dimP =
∏m
i=1 dimVi. Then there exists

⊗ : V1 × · · · × Vm → P , so that P is the tensor space.

Theorem 3.11. Tensor spaces of V1, . . . , Vm are isomorphic:
If P = ⊗m

i=1Vi and Q = ⊠
m
i=1Vi are tensor products of V1, . . . , Vm, then there exists an

invertible T ∈ Hom(P,Q) such that T ◦ ⊗ = ⊠.
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Proof. Since P and Q are tensor spaces of V1, . . . , Vm, dimP = dimQ. The sets

{⊗eγ | γ ∈ Γ}, {⊠eγ | γ ∈ Γ}

are bases of P and Q. We get T by sending basis elements to basis elements. [rest of
proof skipped in class]
By Theorem 3.8 (universal factorization property) there exists T ∈ Hom(P,Q) such that
T ⊗ (eγ) = ⊠eγ , for all γ ∈ Γ. Thus T is invertible and T⊗ = ⊠.

Theorem 3.12 (Unique factorization property). Let ψ : V1 × · · · × Vm → W be mul-
tilinear. Then there exist a unique linear map T : ⊗m

i=1Vi → W such that ψ = T ◦ ⊗,
i.e.,

ψ(v1, . . . , vm) = T ⊗ (v1, . . . , vm) = T (v1 ⊗ · · · ⊗ vm).

Proof. Use Exercise 3.1.4 or Problem 8.2 (a)

In other words, the tensor map on ⊗m
i=1Vi has the unique factorization property.

Corollary 3.13. Let ϕ : V1×· · ·×Vm → P be multilinear. Then ϕ is a tensor map and
〈imϕ〉 = P if and only if ϕ has the unique universal factorization property.

Exercises for Section 3.2

1. Show that if some vi = 0, then v1 ⊗ · · · ⊗ vm = 0.

2. Let z ∈ U ⊗ V so that z can be represented as z =
∑k

i=1 ui ⊗ vi. Prove that if
k is the smallest number among all such representations, then {u1, . . . , uk} and
{v1, . . . , vk} are linearly independent sets.

3. Suppose that e1, e2 ∈ V are linearly independent. Prove that e1 ⊗ e2 + e2 ⊗ e1 ∈
V ⊗ V is indecomposable.

4. Let P = ⊗m
i=1Vi with tensor map ϕ and let T ∈ Hom(P,Q) be invertible. Prove

that ψ = T ◦ ϕ is also a tensor map and that Q is the tensor space with tensor
map ψ.

3.3 Basic properties of tensors and induced inner products

As before, let V1, . . . , Vm be vector spaces over K = C.

Theorem 3.14. Consider the tensor product ⊗m
i=1Vi and tensors u1⊗· · ·⊗um, . . . , w1⊗

· · · ⊗wm ∈ ⊗iVi.
If u1 ⊗ · · · ⊗ um+ · · ·+w1 ⊗ · · · ⊗wm = 0 then ϕ(u1, . . . , um) + · · ·+ϕ(w1, . . . , wm) = 0
for any multilinear map ϕ : V1 × · · · × Vm →W .
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Proof. By Theorem 3.12 we can write ϕ = T ◦ ⊗ for some T ∈ Hom(⊗m
i=1Vi,W ). So

ϕ(u1, . . . , um) = T ⊗ (u1, . . . , um) = T (u1 ⊗ · · · ⊗ um)

and similarly for all decomposable tensors in the sum. Hence

ϕ(u1, . . . , um) + · · ·+ ϕ(w1, . . . , wm)

= T (u1 ⊗ · · · ⊗ um) + · · ·+ T (w1 ⊗ · · · ⊗ wm)

= T (u1 ⊗ · · · ⊗ um + · · · +w1 ⊗ · · · ⊗ wm
︸ ︷︷ ︸

=0

)

= 0

[Lecture 3, 30.11.2015]

Theorem 3.15. Let vi ∈ Vi, i = 1, . . . ,m. Then v1 ⊗ · · · ⊗ vm = 0 if and only if there
exists i with vi = 0.

Proof. ⇐= is clear.
=⇒: Suppose v1 ⊗ · · · ⊗ vm = 0 but vi 6= 0 for all i. Then for each i there exists fi ∈ V ∗i
such that fi(vi) = 1. Define

ϕ :=
m∏

i=1

fi : V1 × · · · × Vm → C

This is a multilinear map (cf. Example 3.2 (f)). Then

ϕ(v1, . . . , vm) =

m∏

i=1

fi(vi) = 1

But by Theorem 3.14, ϕ(v1, . . . , vm) = 0, a contradiction.

Theorem 3.16. Let u1 ⊗ · · · ⊗ um and v1 ⊗ · · · ⊗ vm be in V1 ⊗ · · · ⊗ Vm.
u1 ⊗ · · · ⊗ um = v1 ⊗ · · · ⊗ vm 6= 0 ⇐⇒ vi = ciui for all i = 1, . . . ,m and

∏m
i=1 ci = 1.

Proof. ⇐= is clear.
=⇒: Suppose u1 ⊗ · · · ⊗ um = v1 ⊗ · · · ⊗ vm 6= 0. From Theorem 3.15, all ui and vi are
non-zero. From Theorem 3.14 we know that

ϕ(u1, . . . , um) = ϕ(v1, . . . , vm).

holds for any multilinear map ϕ from V1 × · · · × Vm to some C-vector space W .
Suppose that uk and vk are not linearly dependent for some k (i.e. assume that there is
an index k such that uk is not a (non-zero) multiple of vk). Then there is fk ∈ V ∗k such
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that fk(vk) = 1 and fk(uk) = 0. For i 6= k choose fi ∈ V ∗i such that fi(vi) = 1. (This is
multilinear, cf. Example 3.2 (f)). Set ϕ :=

∏m
i=1 fi. Then

ϕ(v1, . . . , vm) =

m∏

i=1

fi(vi) = 1

and since fk(uk) = 0

ϕ(u1, . . . , um) =

m∏

i=1

fi(ui) = 0,

contradicting ϕ(u1, . . . , um) = ϕ(v1, . . . , vm). Hence for all k there exists ck 6= 0 such
that vk = ckuk. From

0 6= u1 ⊗ · · · ⊗ um = v1 ⊗ · · · ⊗ vm = (
m∏

i=1

ci)u1 ⊗ · · · ⊗ um

we have
∏m
i=1 ci = 1.

Since the decomposable elements span the tensor space ⊗m
i=1Vi, each z ∈ ⊗m

i=1Vi is
a linear combination of decomposable tensors. Let k be the smallest number of decom-
posable tensors in all such linear combinations for z. We call k the rank or the smallest
length of z. The rank of z 6= 0 is one if and only if z is decomposable.

Theorem 3.17. Assume that z ∈ U⊗V can be represented as z =
∑r

i=1 ui⊗vi for some
r ≥ 1. Then the smallest length of z is k if and only if {u1, . . . , uk} and {v1, . . . , vk} are
linearly independent sets, respectively.

Proof. The implication =⇒ is Exercise 2 of Section 3.2 or Problem 8.1 (b).

⇐=: Assume that {u1, . . . , uk} and {v1, . . . , vk} are linearly independent sets. Let z =
∑r

j=1 xj ⊗ yj, we show that k ≤ r. Let l ∈ {1, . . . ,m} be arbitrary. Since the vi are
linearly independent, there is g ∈ V ∗ such that g(vl) = 1 and g(vj) = 0 for j 6= l. Let
f ∈ U∗ be arbitrary. Then the map ϕ := fg : U × V → C is bilinear (cf. Example 3.2
(f)). By assumption,

k∑

i=1

ui ⊗ vi =

r∑

j=1

xj ⊗ yj

Using Theorem 3.14 for ϕ = fg, we have (first equality by the choice of g)

f(ul) =
k∑

i=1

f(ui)g(vi) =
r∑

j=1

f(xj)g(yj) = f(
r∑

j=1

g(yi)xj)

Since f is arbitrary, we get ul =
∑r

j=1 g(yi)xj , so ul is in 〈x1, . . . , xr〉 for all l = 1, . . . , k.
(choosing other linear maps g when l varies). Since {u1, . . . , uk} is linearly independent,
we have k ≤ r.
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We now consider an induced inner product (a reminder on inner products is at the
end of the chapter, cf. Subsection 3.7.1) of ⊗m

i=1Vi. Suppose that (·, ·)i is an inner
product on Vi and Ei = {ei1, . . . , eini

} is an orthonormal basis of Vi for all i = 1, . . . ,m.
We know that

E := {e⊗γ := e1γ(1) ⊗ · · · ⊗ emγ(m) : γ ∈ Γ}

is a basis of ⊗m
i=1Vi, where Γ = Γ(n1, . . . , nm). We would like to have an inner product

(·, ·) on the tensor product ⊗m
i=1Vi such that E is an orthonormal basis, i.e.

(e⊗α , e
⊗
β ) = (e1α(1) ⊗ · · · ⊗ emα(m), e1β(1) ⊗ · · · ⊗ emβ(m)) = δα,β

(δα,β is the generalization of the Kronecker delta to m-tuples).
Such an inner product is unique (Section 3.7.1).

We define

(u, v) :=
∑

γ∈Γ

aγbγ (3.5)

where u =
∑

γ∈Γ aγe
⊗
γ , v =

∑

γ∈Γ bγe
⊗
γ ∈ ⊗m

i=1Vi. With this defintion, E becomes an
ONB (cf. Problem 8.4 (a)). The definition appears to depend on the choice of the basis,
but it does not (cf. Problem 7.3).

Theorem 3.18. Let V1, . . . , Vm be inner product spaces with orthonormal bases Ei =
{ei1, . . . , ei,ni

}, i = 1, . . . ,m. The inner product obtained from (3.5) satisfies

(u1 ⊗ · · · ⊗ um, v1 ⊗ · · · ⊗ vm) =

m∏

i=1

(ui, vi)i (3.6)

(where ui, vi ∈ Vi for all i and (·, ·)i is the inner product on Vi).

Proof. We write ui and vi in terms of the basis Ei,

ui =

ni∑

j=1

aijeij , vi =

ni∑

j=1

bijeij, i = 1, . . . ,m.

Since ⊗ is multilinear, from (3.2) we get

u⊗ := u1 ⊗ · · · ⊗ um =⊗ (u1, . . . , um) =
∑

γ∈Γ

(

aγ
︷ ︸︸ ︷
m∏

i=1

aiγ(i)

)

e⊗γ

v⊗ := v1 ⊗ · · · ⊗ vm =⊗ (v1, . . . , vm) =
∑

γ∈Γ

( m∏

i=1

biγ(i)

︸ ︷︷ ︸

bγ

)

e⊗γ
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By the definition (3.5) of the inner product and since
∏m
i=1

∑ni

j=1 cij
(3.1)
=

∑

γ∈Γ

∏m
i=1 ciγ(i),

(u⊗, v⊗) =
∑

γ∈Γ

m∏

i=1

aiγ(i)biγ(i)

(3.1)
=

m∏

i=1

ni∑

j=1

aijbij

=

m∏

i=1

(

ni∑

j=1

aijeij ,

ni∑

j=1

bijeij)i

=
m∏

i=1

(ui, vi)i.

(where (·, ·)i denotes the inner product on Vi).

There are many bilinear maps from (⊗k
i=1Vi)× (⊗m

i=k+1Vi) to ⊗m
i=1Vi since

dim⊗m
i=1Vi =

m∏

i=1

ni =

k∏

i=1

ni

m∏

i=k+1

ni = dim(⊗k
i=1Vi) dim(⊗m

i=k+1Vi). (3.7)

What we like is one that maps the pair (v1 ⊗ · · · ⊗ vk, vk+1 ⊗ · · · ⊗ vm) to v1 ⊗ · · · ⊗ vm.

Theorem 3.19. There is a unique multilinear map ⊠ : (⊗k
i=1Vi)×(⊗m

i=k+1Vi) → ⊗m
i=1Vi

such that

⊠(v1 ⊗ · · · ⊗ vk, vk+1 ⊗ · · · ⊗ vm) =v1 ⊗ · · · ⊗ vm (3.8)

and

(V1 ⊗ · · · ⊗ Vk)⊠ (Vk+1 ⊗ · · · ⊗ Vm) =V1 ⊗ · · · ⊗ Vm (3.9)

Proof. By (3.7), the dimensions are ok, so the tensor map ⊠ satisfying (3.8) exists
(Theorem 3.10) and is unique (Theorem 3.12). From 〈im⊠〉 = 〈v1⊗· · ·⊗vm | vi ∈ Vi〉 =
⊗m
i=1Vi, (3.9) follows. (See Exercise no. 4 in 3.3 for details.)

[Lecture 4, 1.12. 2015]

We also write ⊗ for ⊠ in Theorem 3.18. So we can write (3.9) as

(V1 ⊗ · · · ⊗ Vk)⊗ (Vk+1 ⊗ · · · ⊗ Vm) = V1 ⊗ · · · ⊗ Vm

and (3.8) can be written as

(v1 ⊗ · · · ⊗ vk)⊗ (vk+1 ⊗ · · · ⊗ vm) = v1 ⊗ · · · ⊗ vm.
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Exercises for Section 3.3

1. Suppose that v1, . . . , vk ∈ V are linearly independent and let u1, . . . , uk ∈ U . Prove
that

∑k
i=1 ui ⊗ vi = 0 if and only if u1 = · · · = uk = 0.

2. Let v1, . . . , vk ∈ V and A ∈ Ck×k. Suppose AAT = Ik and uj =
∑k

i=1 aijvi,

j = 1, . . . , k. Prove that
∑k

i=1 ui ⊗ ui =
∑k

i=1 vi ⊗ vi. (Problem 8.1. (b)).

3. Define ⊗ : Ck ×Cn → Ck×n by x⊗ y := xyT . Let Ck and Cn be equipped with the
standard inner products. Prove that for any A,B ∈ Ck×n = Ck ⊗Cn, the induced
inner product is given by (A,B) = tr(B∗A). (notation: tr(B∗A) is the trace of the
square matrix B∗A)
Cf. Problem 8.4 (b).

4. Let Ei = {ei1, . . . , eini
} be a basis of Vi, i = 1, . . . ,m. Define

ϕ : (V1 ⊗ · · · ⊗ Vk)× (Vk+1 ⊗ · · · ⊗ Vm) → V1 ⊗ · · · ⊗ Vm

by ϕ(e1i1 ⊗ · · · ⊗ ekik , ek+1ik+1
⊗ · · · ⊗ emim) = e1i1 ⊗ · · · ⊗ emim (with bilinear

extension). Show that ϕ is the tensor map satisfying

ϕ(v1 ⊗ · · · ⊗ vk, vk+1 ⊗ · · · ⊗ vm) = v1 ⊗ . . . ⊗ vm

(Problem 9.1 (a))

5. Let z =
∑k

i=1 ui⊗vi⊗wi ∈ U⊗V ⊗W . Prove that if {u1, . . . , uk} and {v1, . . . , vk}
are linearly independent and wi 6= 0 for all i, then k is the smallest length of z.

3.4 Induced maps

In this section, we study Hom(⊗m
i=1Vi,⊗

m
i=1Wi). Let Ti ∈ Hom(Vi,Wi) for all i. Then

we define a multilinear map from V1 × · · · × Vm to ⊗m
i=1Wi by

ϕ(v1, . . . , vm) := T1v1 ⊗ · · · ⊗ Tmvm

By Theorem 3.12 (with ⊗m
i=1Wi in the role ofW ) there is a unique T ∈ Hom(⊗m

i=1Vi,⊗
m
i=1Wi)

such that (ϕ = T ◦ ⊗, i.e.)

T (v1 ⊗ · · · ⊗ vm) = T1v1 ⊗ · · · ⊗ Tmvm

We denote this T by T1 ⊗ · · · ⊗ Tm and call it the induced map of T1, . . . , Tm, i.e.

(⊗m
i=1Ti)(v1 ⊗ · · · ⊗ vm) = T1v1 ⊗ · · · ⊗ Tmvm.

(Drawing the corresponding diagram with vector spaces might be helpful).

One can show that T1 ⊗ · · · ⊗ Tm is a tensor (an element) of the tensor product
⊗m
i=1Hom(Vi,Wi).
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if time: this is in section 3.7, thm 3.7.2

The main focus of this section is to study the map T1⊗· · ·⊗Tm ∈ Hom(⊗m
i=1Vi,⊗

m
i=1Wi)

as a linear map. We will see how it behaves with respect to composition, how to deter-
mine its rank and its adjoint.

Theorem 3.20. Let Si ∈ Hom(Wi, Ui), Ti ∈ Hom(Vi,Wi), i = 1, . . . ,m. Then

(⊗m
i=1Si) ◦ (⊗

m
i=1Ti) = ⊗m

i=1(Si ◦ Ti).

(It might be helpful to draw the diagrams with the vector spaces to illustrate the
statement).

Proof. It is enough to show the claim on decomposable elements, since ⊗m
i=1Vi is spanned

by them. This is what we do.

(⊗m
i=1Si)(⊗

m
i=1Ti)(v1 ⊗ · · · ⊗ vm) =(⊗m

i=1Si)(T1v1 ⊗ · · · ⊗ Tmvm)

=S1T1v1 ⊗ · · · ⊗ SmTmvm

=⊗m
i=1 (SiTi)(v1 ⊗ · · · ⊗ vm).

Theorem 3.21. Let Ti ∈ Hom(Vi,Wi), i = 1, . . . ,m. Then

rk (T1 ⊗ · · · ⊗ Tm) =

m∏

i=1

rkTi

Proof. Let rkTi = ki for all i. So there is a basis {ei1, . . . , eiki , eiki+1, . . . , eini
} for Vi

such that Tiei1, . . . , Tieiki are linearly independent inWi and Tieiki+1 = · · · = Tieini
= 0,

i = 1, . . . ,m. The set {e⊗γ : γ ∈ Γ(n1, . . . , nm)} is a basis for ⊗m
i=1Vi.

Moreover,

(⊗m
i=1Ti)e

⊗
γ = T1e1γ(1) ⊗ · · · ⊗ Tmemγ(m)

so that if γ /∈ Γ(k1, . . . , km), then (⊗m
i=1Ti)e

⊗
γ = 0 (as for some i, γ(i) > ki). Since

Tei1, . . . , T ei,ki are linearly independent in Wi for all i, the vectors

(⊗m
i=1Ti)e

⊗
γ , γ ∈ Γ(k1, . . . , km)

are linearly independent in ⊗m
i=1Wi (why?), hence

rk⊗m
i=1Ti = |Γ(k1, . . . , km)| =

m∏

i=1

ki =
m∏

i=1

rkTi.

The next result describes the adjoint of T1 ⊗ · · · ⊗ Tm viewed as a linear map. For
notation/reminder: see Subsection 3.7.2 at the end of this chapter.
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Theorem 3.22. Let Ti ∈ Hom(Vi,Wi), where Vi and Wi are inner product spaces for
i = 1, . . . ,m. Then

(⊗m
i=1Ti)

∗ = ⊗m
i=1T

∗
i .

Proof. We use the notation (·, ·) for the inner products on all the spaces Vi, Wi.

((⊗m
i=1Ti)v

⊗, w⊗) = (T1v1 ⊗ · · · ⊗ Tmvm, w1 ⊗ · · · ⊗ wm) (inner product on ⊗iWi)

=

m∏

i=1

(Tivi, wi) (defin.: inner prod on ⊗iWi in terms of inner prod on Wi’s)

=

m∏

i=1

(vi, T
∗
i wi) (adjoints of T∗

i
, now on Vi’s)

= (v1 ⊗ · · · ⊗ vm, T
∗
1w1 ⊗ · · · ⊗ T ∗mwm) (defin. of inner prod on ⊗iVi)

= (v⊗,⊗m
i=1T

∗
i w
⊗)

Since ⊗m
i=1Vi is spanned by decomposable tensors, we have the desired result.

Exercises for Section 3.4

1. Prove that

(a) Prove that T1 ⊗ · · · ⊗ Tm = 0 if and only if some Ti = 0,

(b) T1 ⊗ · · · ⊗ Tm is invertible if and only if all Ti are invertible.

2. Let Si, Ti ∈ Hom(Vi,Wi) for i = 1, . . . ,m. Prove that ⊗m
i=1Ti = ⊗m

i=1Si 6= 0 if and
only if Ti = ciSi 6= 0 for i = 1, . . . ,m and

∏m
i=1 ci = 1.

3. Let Ti ∈ EndVi for i = 1, . . . ,m. Prove that ⊗m
i=1Ti is invertible if and only if Ti

is invertible for every i. In this case, (⊗m
i=1Ti)

−1 = ⊗m
i=1T

−1
i .

4. Let Ti ∈ Hom(Vi,Wi) for i = 1, . . . ,m. Define

ϕ : Hom(V1,W1)× · · · ×Hom(Vm,Wm) → Hom(⊗m
i=1Vi,⊗

m
i=1Wi)

by ϕ(T1, . . . , Tm) = T1 ⊗ · · · ⊗ Tm. Prove that ϕ is multilinear.

Exercise 4 can be used to show that T1 ⊗ · · · ⊗ Tm is an element of a tensor product,
namely of Hom(⊗m

i=1Vi,⊗
m
i=1Wi).

3.5 Some models of tensor products

[Lecture 5, 8.12. 2015]
We now consider the special case V1 = · · · = Vm where all the spaces Vi are equal

and where the target space is the field C.
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Recall that M(V, . . . , V ;C) denotes the space of all m-multilinear maps f : V m :=
×m(V ) := V × · · · × V → C.

The goal is to see that the tensor product

m copies
︷ ︸︸ ︷

V ⊗ · · · ⊗ V can be viewed asM(

m copies
︷ ︸︸ ︷

V ∗, . . . , V ∗;C)
or as M(V, . . . , V ;C) and that the tensor product V ∗ ⊗ · · · ⊗ V ∗ can be understood as
M(V, . . . , V
︸ ︷︷ ︸

m copies

;C).

Let E = {e1, . . . , en} be a basis of V and let E∗ = {f1, . . . , fn} be the dual basis of
V ∗, i.e.,

fi(ej) = δij , i, j = 1, . . . , n.

In this situation we abbreviate the set Γ(

m times
︷ ︸︸ ︷
n, . . . , n) as

Γ(n : m) = {γ : γ = (γ(1), . . . , γ(m)), 1 ≤ γ(i) ≤ n, i = 1, . . . ,m}.

We write V ⊗m or also ⊗m(V ) for the m-fold tensor product V ⊗ · · · ⊗ V .

Theorem 3.23. 1. The set {
∏m
i=1 fα(i) : α ∈ Γ(n : m)} is a basis of M(V, . . . , V ;C).

2. M(V, . . . , V ;C) = (V ∗)⊗m, in other words: there is a tensor map
⊗ : V ∗ × · · · × V ∗ →M(V, . . . , V ;C) and dimM(V, . . . , V ;C) = nm.

3. M(V ∗, . . . , V ∗;C) = V ⊗m, in other words: there is a tensor map
⊗ : V × · · · × V →M(V ∗, . . . , V ∗;C) and dimM(V ∗, . . . , V ∗;C) = nm.

Proof. (1) We first show that the set S := {
∏m
i=1 fα(i) : α ∈ Γ(n : m)} spansM(V, . . . , V ;C).

For this, first observe that for each eβ = (eβ(1), . . . , eβ(m)) ∈ V ×· · ·×V and β ∈ Γ(n : m),

(
m∏

i=1

fα(i))eβ =
m∏

i=1

fα(i)(eβ(i)) = δα,β (3.10)

Let f ∈M(V, . . . , V ;C). Then we claim we can write f as follows

f =
∑

α∈Γ(n:m)

f(eα)

m∏

i=1

fα(i)

where eα = (eα(1), . . . , eα(m)). This works since by (3.10),




∑

α∈Γ(n:m)

f(eα)
m∏

i=1

fα(i)



 (eβ) =
∑

α∈Γ(n:m)

f(eα)δα,β = f(eβ), β ∈ Γ(n : m)

So f can be written as a linear combination of elements of S.



28 CHAPTER 3. MULTILINEAR ALGEBRA

It remains to show that S is a linearly independent set. Assume

∑

α∈Γ(n:m)

cα

m∏

i=1

fα(i) = 0.

Then

0 =




∑

α∈Γ(n:m)

cα

m∏

i=1

fα(i)



 (eβ) =
( ∑

α∈Γ(n:m)

cα

m∏

i=1

fα(i)(eβ)

︸ ︷︷ ︸

δα,β

)

= cβ for every β ∈ Γ(n : m)

(2) It is easy to see that the map ⊗ : (V ∗)m = ×m(V ∗) →M(V, . . . , V ;C) defined by

⊗(g1, . . . , gm) =
m∏

i=1

gi

is multilinear. From part (1), {
∏m
i=1 fα(i) : α ∈ Γ(n : m)} is a basis of M(V, . . . , V ;C).

So
dimM(V, . . . , V ;C) = |Γ(n : m)| = nm = (dimV )m = (dimV ∗)m.

Therefore, ⊗ is a tensor map and 〈im⊗〉 =M(V, . . . , V ;C), i.e.M(V, . . . , V ;C) = ⊗mV ∗.

(3) Analoguous to the proof of (2): We can define ⊗ : V m → M(V ∗, . . . , V ∗;C) by
⊗(v1, . . . , vm) =

∏m
i=1 vi where the latter is defined as follows:

(
m∏

i=1

vi

)

(g1, . . . , gm) :=

m∏

i=1

gi(vi)

By Theorem 3.23 (2) and (3), we can say that M(V, . . . , V ;C) is a model for (V ∗)⊗m

and that M(V ∗, . . . , V ∗,C) is a model for V ⊗m.
Another model for V ⊗m isM(V, . . . , V ;C)∗, the dual space ofM(V, . . . , V ;C), as we will
see now.

Theorem 3.24. M(V, . . . , V ;C)∗ is a model for ⊗mV , i.e., there is a tensor map ⊗ :
V × · · · × V →M(V, . . . , V ;C)∗ and dimM(V, . . . , V ;C)∗ = nm.

Proof. For v1, . . . , vm ∈ V define
∏m
i=1 vi ∈M(V, . . . , V ;C)∗ by

(
m∏

i=1

vi)f = f(v1, . . . , vm), f ∈M(V, . . . , V ;C).

From Theorem 3.23 (1), the set {
∏m
i=1 fα(i) : α ∈ Γm,n} is a basis ofM(V, . . . , V ;C). Now

from (3.10), {
∏m
i=1 eα(i) : α ∈ Γ(n : m)} is the dual basis of {

∏m
i=1 fα(i) : α ∈ Γ(n : m)}

and thus is a basis of M(V, . . . , V ;C)∗. Then define ⊗ : V × · · · × V →M(V, . . . , V ;C)∗

by ⊗(v1, . . . , vm) =
∏m
i=1 vi.
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Elements of the vector space M(V, . . . , V ;C) are called contra-variant tensors; ele-
ments of M(V ∗, . . . , V ∗,C) are called covariant tensors.3

The tensor space

V p
q :=

p
︷ ︸︸ ︷

V ⊗ · · · ⊗ V ⊗

q
︷ ︸︸ ︷

V ∗ ⊗ · · · ⊗ V ∗

is called a tensor space of type (p, q) (with covariant type of degree p and with contra-
variant type of degree q). Analoguous to the previous treatment, under some tensor
map, M(V ∗, . . . , V ∗, V, . . . , V ;C) (p copies of V and q copies of V ∗, compare this with
Theorem 3.23) is a model of V p

q as we will indicate now:

Let E = {e1, . . . , en} be a basis of V and let E∗ = {f1, . . . , fn} be the dual basis of
V ∗. Then

{

p
∏

i=1

eα(i)

q
∏

j=1

fβ(j) : α ∈ Γ(n : p), β ∈ Γ(n : q)}

is a basis for

M(V ∗, . . . , V ∗, V, . . . , V ;C) (p copies of V and q copies of V ∗)

Define ⊗ : V × · · · × V × V ∗ × · · · × V ∗ →M(V ∗, . . . , V ∗, V, . . . , V ;C) by

⊗(eα(1), . . . , eα(p), fβ(1), . . . , fβ(q)) =

p
∏

i=1

eα(i)

q
∏

j=1

fβ(j)

Then

{eα(1) ⊗ · · · ⊗ eα(p) ⊗ fβ(1) ⊗ · · · ⊗ fβ(q) : α ∈ Γp,n, β ∈ Γq,n}

={e⊗α ⊗ f⊗β : α ∈ Γp,n, β ∈ Γq,n}

is a basis of V p
q .

Exercises for Section 3.5

1. Define a simple tensor map ⊠ : (V ∗)m → (⊗mV )∗ such that ⊠mV ∗ = (⊗mV )∗.

2. Let M(V1, . . . , Vm;W ) be the set of all multilinear maps from V1 × · · · ×Vm to W .
Prove that dimM(V1, . . . , Vm;W ) = dimW ·

∏m
i=1 dimVi.

3contravariant vectors: under a base change using the invertible matrix A, the entries of a contravari-
ant vector change with the inverse A−1 of the matrix of the base change. Under this base change,
covariant vectors change with A.
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3.6 Exterior spaces

now chapter 5 (page 127) in the book? maybe not.
or waffle, pages 7-8 and Lerman, pages 710 -and the notes.
First following Waffle: Then Serge Lang, XIX, §1
And book by Gallier (diff geo)

In this section, we consider some specific examples of multilinear maps. The starting
point is the space of multilinear maps (forms) M(V, . . . , V ;K) from m copies of the
K-vector space V to the field K.

We start by considering a specific notion of multiplication, namely one that relates to
area and volume. The basic idea is as follows: Given two vectors v and w, we can form
the parallelogram that they span, and write v ∧ w for something as the “area” of the
parallelogram. This is not quite the usual notion of area, however, because we want to
think of it as not just a single number (in general) but also as having a “two-dimensional
direction” (the same way a single vector v both has a size and a direction). That is, if
we had a parallelogram pointing in a “different direction”, i.e. in a different plane, we
would think of it as different.

What would the properties of v ∧ w be. Scaling the entry v or the entry w scales
the parallelogram, so it should scale its area. So we expect, for scalars c, to have
(cv)∧w = c(v∧w) = v∧ (cw). So the operation ∧ should be bilinear. Another property
of ∧ would be, that for any vector v, v ∧ v should be 0 - if the vectors point in the same
direction, the “parallelogram” they span is just a line segment and has no area. These
are the only two properties we really need.

As before, vector spaces are finite dimensional and defined are over some field K -
mostly over C or over the real numbers R.

Definition 3.25. Let V be a vector space. Then the exterior square (product)
∧2(V )

of V is the quotient of V ⊗ V by the subspace U spanned by the elements v ⊗ v for all
v ∈ V . We write v ∧w for the image of v⊗w under the quotient map V ⊗ V →

∧2(V ).

What does
∧2(V ) look like? First observation (consequence of v ∧ v = 0):

0 = (v +w) ∧ (v + w) = v ∧ v + v ∧w + w ∧ v + w ∧w = v ∧ w + w ∧ v.

So for any v and w, v ∧ w = −w ∧ v. The operation ∧ is thus anti-commutative or
alternating.

[Lecture 6, 15.12. 2015]
In terms of a basis of V , say {ei}i, we have that the set {ei⊗ej}ij is a basis of V ⊗V .

In
∧2(V ), we have ei ∧ ei = 0 and ei ∧ ej = −ej ∧ ei. So

∧2(V ) can be spanned by the
elements ei ∧ ej for i < j. We can show that they are linearly independent:

Theorem 3.26. Suppose {ei}i=1,...,n is a basis for V . Then {ei ∧ ej}1≤i<j≤n is a basis
for

∧2(V ). In particular, dim
∧2(V ) =

(
n
2

)
.

Proof. The idea behind the proof is that
∧2(V ) is the “free” (or “universal”) vector

space in which you can multiply two elements of V in an anti-commutative way, so to
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show that the ei ∧ ej (for i < j) are linearly independent, you have to construct some
vector space with such a multiplication in which they are linearly independent.

We define a vector space E as follows: an element of E is a formal linear combination
of symbols eij for i < j. So the set {eij}i<j is a basis of E.
We define a map T : V ⊗ V → E by T (ei ⊗ ej) = eij if i < j, T (ei ⊗ ej) = −eji if i > j,
and T (ei ⊗ ei) = 0. We want to show that T gives a map S :

∧2(V ) → E; it suffices to
show that T (v ⊗ v) = 0 for all v ∈ V . Let v =

∑
ciei; then

v ⊗ v =
∑

ij

cicjei ⊗ ej =
∑

i

c2i ei ⊗ ei +
∑

i<j

cicj(ei ⊗ ej + ej ⊗ ei).

We thus see that T (v ⊗ v) = 0. Hence T gives a map S :
∧2(V ) → E which sends

ei ∧ ej to eij . Since the eij (for i < j) are linearly independent in E by construction,
this implies that the ei ∧ ej (for i < j) are linearly independent, and hence a basis.

One thing to note about
∧2(V ) (as we know about

⊗2(V )) is that not every element
is of the form v ∧ w. (That is, not every “area vector” is just an area in some plane;
it can also be a sum of areas in different planes.) For example, if {ei} is a basis of V ,
dimV ≥ 4, then e1 ∧ e2 + e3 ∧ e4 cannot be simplified to a single v ∧ w.

Definition 3.27. Let r ≥ 0 be an integer, and V be a vector space. Then the rth exterior
power of V ,

∧r(V ) is the quotient of V ⊗ · · · ⊗ V (with r factors) by the subspace U
spanned by all tensors v1 ⊗ · · · ⊗ vr for which two of the vi are equal.
Elements of

∧r(V ) are alternating r-tensors or alternating tensors of degree r. Elements
of the form u1 ∧ · · · ∧ ur with ui ∈ V are called simple or decomposable alternating r-
tensors.
The exterior algebra

∧
(V ) is the direct sum

⊕

r≥0

∧r(V ). It is also called the Grassmann
algebra or the alternating algebra.

Remark 3.28. (1) The exterior algebra is an algebra over the field K. This means,
∧
(V ) is a K-vector space with a bilinear product, it is a set with multiplication, addition

and scalar multiplication by elements of the field. (Note that it is finite dimensional,
since we assumed that V is finite dimensional, cf. Theorem 3.31).

(2) We could have worked with modules over a commutative ring instead (and this
is also done when introducing tensor products, exterior product, etc.), so replacing V
and K with a module E over a commutative ring R and considered r-multilinear maps
from Er to the field K. The tensor product E⊗m and the exterior product

∧r(E) are
also modules for R.

By definition, there is an r-multilinear map V r →
∧r(V ) (called canonical) obtained

from the composition

V r −→ V ⊗r −→ V ⊗r/U =

r∧

(V ). (3.11)

The map is alternating (should be clear). We also have:



32 CHAPTER 3. MULTILINEAR ALGEBRA

Theorem 3.29 (Universal property of the rth exterior power of a vector space). Let U
and V be vector spaces. If f : V r → W is r-multilinear and alternating, there exists a
unique linear map f ′ :

∧r(V ) → W such that f = f ′ ◦ ∧r, i.e. making the diagram

V r ∧r //

f
''PP

PP
PP

PP
PP

PP
PP

P

∧r(V )

f ′

��
W

commutative.

The proof of this works analoguously as the proofs for the statements about tensor
products (Theorems 3.8 and 3.12), so we can omit it.

Proof. By the the universal property of tensor maps of Theorem 3.8 and by Theo-
rem 3.12, there is a unique linear map f̃ : V ⊗r → W such that f̃(v1 ⊗ · · · ⊗ vr) =
f(v1, . . . , fr). Since f is alternating, f̃ vanishes on the subspace U from Definition 3.27.
Hence it induces f ′ : V ⊗r/U →W is as desired.

V r ⊗r
//

f
''❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖ V ⊗r

f̃
��

projection //
∧r(V )

f ′

vv♥♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

W

This induced map vanishes on the subspace U (spanned by all the tensors with repeated
entry), hence it induces f ′.

Corollary 3.30. The space of r-linear alternating maps Altr(V ;W ) = {f : V r → W :
f is alternating} is isomorphic to Hom(∧r(V ),W ). In particular, if W = K, this yields
an isomorphism (∧r(V ))∗ ∼= Altr(V ;K).

We think of an element of
∧r(V ) as some sort of “r-dimensional volume vector”.

Similarly as for r = 2, one can show the following:

Theorem 3.31. Let {ei}i=1,...,n be a basis for V and r ≥ 0. Then
{ei1 ∧ ei2 ∧ · · · ∧ eir}i1<···<ir is a basis for

∧r(V ). In particular, dim
∧r(V ) =

(
n
r

)
.

Proof. The claims can be shown analoguosly as the statements of Theorem 3.26.

Example 3.32. Let V be a vector space with basis {v1, v2, v3, v4}. Then

basis
∧0(V ) {1}
∧1(V ) {v1, v2, v3, v4}
∧2(V ) {v1 ∧ v2, v1 ∧ v3, v1 ∧ v4, v2 ∧ v3, v2 ∧ v4, v3 ∧ v4}
∧3(V ) {v1 ∧ v2 ∧ v3, v1 ∧ v2 ∧ v4, v1 ∧ v3 ∧ v4, v2 ∧ v3 ∧ v4}
∧4(V ) {v1 ∧ v2 ∧ v3 ∧ v4}
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We now consider special values of r more generally (using Theorem 3.31):

•
∧0(V ) = K, since the “empty” tensor product is K.

•
∧1(V ) = V .

•
∧n(V ) is 1-dimensional, spanned by e1 ∧ · · · ∧ en for any basis {ei}i of V .

• dim
∧r(V ) = 0 if r > n.

Remark 3.33. Note that given any linear map T : V →W between two vector spaces,
we get a linear map

∧r T :
∧r(V ) →

∧r(W ) by setting
∧r T (v1 ∧ · · · ∧ vr) = T (v1) ∧

· · · ∧ T (vr) (and extending linearly to
∧r(V )). To see that this is well-defined, we note

that this map is multilinear and vanishes if there exist i 6= j with vi = vj . (Intuitively,
the idea is that given a linear map, it also gives us a way to turn r-dimensional volumes
into r-dimensional volumes. ) This can be extended to a map

∧
(T ) :

∧
(V ) →

∧
(W ),

by setting
∧
(T )(x1 ∧ · · · ∧ xt) = T (x1) ∧ · · · ∧ T (xt) for any x1, . . . , xt in V (any t ≥ 0).

(The map
∧
(T ) is a homomorphism of graded K-algebras.)

Now in particular, we can consider the case W = V and r = n = dimV . In this case
we have a map T from V to itself. What is T doing to (n-dimensional) volume in V ?
The space

∧n(V ) is 1-dimensional, so
∧n(T ) is a linear map from a 1-dimensional space

to itself. Any such map is multiplication by some scalar, and this is independent of the
choice of basis of V . This scalar is what T multiplies volumes by, from a geometric point
of view.

Definition 3.34. Let T : V → V be a linear map and n = dimV . Then the determinant
det(T ) is the scalar such that

∧n T is multiplication by det(T ).

Recall that the exterior algebra of V is
∧
(V ) = ⊕m≥0

∧m(V ). It is graded by the
degree of alternating tensors.

Since V is finite dimensional, say of dimension d, we actually have

∧

(V ) =
d⊕

m=0

m∧

(V )

and since each
∧m(V ) has dimension

(
d
m

)
, we deduce that

dim(
∧

(V )) =
d∑

m=0

(
d

m

)

= 2d = 2dim(V ).

[Lecture 7, 16.12. 2015]

Remark 3.35. There is a linear map µ′ :
∧r(V ) ⊗

∧s(V ) →
∧r+s(V ) induced by the

(bilinear) multiplication map µ :
∧r(V )×

∧s(V ) →
∧r+s(V ) (cf. Definition 3.7), defined

on pairs of decomposable alternating tensors as follows

µ(v1 ∧ · · · ∧ vr, w1 ∧ · · · ∧ ws) = v1 ∧ · · · ∧ vs ∧ w1 ∧ · · · ∧ ws
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and extended to all of
∧r(V )×

∧s(V ). We write µ(x, y) (with x ∈
∧r(V ), y ∈

∧s(V ))
as x ∧ y. waffle ex. 3.6:
Geometrically, this corresponds to combining an r-dimensional volume with an s-dimensional
volume to get an r + s-dimensional volume. We write x ∧ y for µ(x, y).

The multiplication
m∧

(V )×
n∧

(V ) →
m+n∧

(V )

is skew-symmetric in the following sense:

Theorem 3.36. For all α ∈
∧m(V ) and for all β ∈

∧n(V ), we have

β ∧ α = (−1)mnα ∧ β

Proof. Since v ∧ u = −u ∧ v for all u, v ∈ V , the claim follows by induction.

Remark 3.37. 6 lines of text at the end of page 776 Note that α∧α = 0 for every simple
tensor α = u1 ∧ · · · ∧ un. What about α ∧ α = 0 for an arbitrary element α ∈

∧
(V )?. If

dim(V ) ≤ 3, one can show that α ∧ α = 0 for all α ∈
∧
(V ). In dimension 4, this is not

true anymore, e.g. if {u1, u2, u3, u4} is a basis for V , and if α = u1 ∧ u2 + u3 ∧ u4, we
have

α ∧ α =(u1 ∧ u2 + u3 ∧ u4) ∧ (u1 ∧ u2 + u3 ∧ u4)

= · · · = u1 ∧ u2 ∧ u3 ∧ u4 + u3 ∧ u4 ∧ u1 ∧ u2

=2u1 ∧ u2 ∧ u3 ∧ u4

Pairings

Definition 3.38. Let V and W be vector spaces. A pairing is a bilinear map
〈 , 〉 : V ×W → K. The pairing is non-degenerate if

〈v0, w〉 = 0 ∀w ∈W =⇒ v0 = 0

〈v,w0〉 = 0 ∀v ∈ V =⇒ w0 = 0

An example for a non-degenerate pairing is the so-called evaluation map:

V ∗ × V → K, (f, v) 7→ f(v)

Theorem 3.39. If b : V ×W → K, (v,w) 7→ b(v,w), is a non-degenerate pairing, then
V ∼=W ∗ and W ∼= V ∗

Proof. Define the map f : V → W ∗ as follows

(f(v))(w) = b(v,w)

This map is linear and

ker f = {v ∈ V : f(v) = 0} = {v ∈ V : b(v,w) = 0 ∀ w ∈W} = {0}.
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(Note that f(v) = 0 means that f(v) is the zero map.) The last equality follows from
the non-degeneracy of the pairing. So dimV ≤ dimW ∗ = dimW . Similarly, define
a linear map g : W → V ∗ by g(w)(v) = b(v,w). Its kernel is also 0. So dimW ≤
dimV ∗, therefore dimV ∗ = dimV = dimW ∗ = dimW and we get that f and g are
isomorphisms.

Corollary 3.40. Let 1 ≤ k ≤ n. The map 〈·, ·〉:
∧k(V ∗)×

∧k(V ) → K given by

〈v∗1 ∧ · · · ∧ v∗k, v1 ∧ · · · ∧ vk〉 = det (v∗i (vj))

gives a non-degenerate pairing, hence

k∧

(V ∗) ∼=

k∧

(V )

(The pairing is defined in simple alternating tensors - and then extended to all of
∧k(V ∗)×

∧k(V ))

Proof. Let b : (V ∗)k × V k → K be (the 2k-linear map) defined (on simple elements) by

b(v∗1 , . . . , v
∗
k, v1, . . . , vk) = det(v∗i (vj)ij)

For fixed (v∗1 , . . . , v
∗
k) in (V ∗)k, b is alternating in the vj ’s. So there is a map b : (V ∗)k ×

∧k(V ) → K with

(v∗1 , . . . , v
∗
k, v1 ∧ · · · ∧ vk) 7→ det(li(vj))

(Theorem 3.29). Similarly, for fixed v1 ∧ · · · ∧ vk in
∧k(V ), b is alternating in the v∗i ’s

(and k-linear), so there exists a pairing b′ :
∧k(V ∗)×

∧k(V ) → K.
To check non-degeneracy, evaluate the pairing on the respective bases. The claim then
follows from Theorem 3.39.

Remark 3.41. Explicitely, every element v∗1 ∧ · · · ∧ v∗k ∈
∧k(V ∗) defines a k-linear

alternating map by setting

v∗1 ∧ · · · ∧ v∗k (v1, . . . , vk) := det(li(vj)ij)

for all (v1, . . . , vk) ∈ V k. In particular,

v∗1 ∧ v
∗
2 (v1, v2) = v∗1(v1)v

∗
2(v2)− v∗1(v2)v

∗
2(v1).

Exercises for Section 3.6

1. Identify
∧2(R3) with R3 by identifying e1∧e2 with e3, e2∧e3 with e1 and e3∧e1 with

e2. Show that under this identification, the exterior product v ∧w ∈
∧2(R3) = R3

is the same as the cross product u× w ∈ R3.
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2. exercise 3.2 of Waffle
Let V have basis {e1, e2} and let T : V → V be given by T (e1) = ae1 + ce2 and
T (e2) = be1 + de2. Compute

∧2 T :
∧2(V ) →

∧2(V ) in terms of this basis. What
is det(T )?

3. Exercise 3.4 of Waffle
Let Sym2(V ) be the quotient of V ⊗ V by the subspace spanned by elements of
the form v ⊗ w − w ⊗ v. We write vw for the image of v ⊗ w under the quotient
map V ⊗ V → Sym2(V ). If {ei} is a basis for V , show that {eiej}i≤j is a basis for
Sym2(V ).
Hint: imitate the proof of theorem 3.26

4. Exercise 3.7 of Waffle
Let x ∈

∧r(V ), y ∈
∧s(V ) and z ∈

∧t(V ). Show that (x∧ y)∧ z = x∧ (y∧ z) and
that x ∧ y = (−1)rsy ∧ x where x ∧ y is defined as in Lemma 3.35.

5. Proposition 29.20 of Gallier
For any vector space V , the vectors u1, . . . , un ∈ V are linearly independent iff
u1 ∧ · · · ∧ un 6= 0.

3.7 Reminder from linear algebra

3.7.1 Reminder on inner products

Let V be a vector space over C. An inner product on V is a function (·, ·): V × V → C

such that
1. (u, v) = (v, u) for all u, v ∈ V .
2. (α1v1 + α2v2, u) = α1(v1, u) + α2(v2, u) for all vi, u ∈ V , αi ∈ C.
3. (v, v) ≥ 0 for all v ∈ V and (v, v) = 0 if and only if v = 0.

V is then called an inner product space. The norm induced by the inner product is
defined as

‖v‖ =
√

(v, v), v ∈ V

Vectors v with ‖v‖ = 1 are unit vectors. Two vectors u, v ∈ V are orthogonal if (u, v) = 0,
denoted by u ⊥ v. A basis E = {e1, . . . , en} is an orthogonal basis, if the vectors are
pairwise orthogonal. It is orthonormal, if (ei, ej) = δij .

Fact:

Let F := {f1, . . . , fn} be a basis of the C-vector space V . Then there exists a unique
inner product (·, ·) on V such that F is an orthonormal basis. (cf. Problem 7.3 (a))

Proof of this fact: Let (·, ·) be an inner product with ONB E = {e1, . . . , en}. Define
S ∈ EndV by Sfi = ei. The endomorphism S is invertible. (Why? please give an
argument - e.g. by definition, S has rank n = dimV ). Set T := S∗S > 0. (positive semi-
definiteness, i.e. S∗S ≥ 0, holds for any homomorphism between inner produc spaces.
Positive definiteness, i.e. S∗S > 0, holds for invertible homomorphisms. View S as a
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square matrix. Then the adjoint S∗ of S is the complex conjugate transpose of S.) So
〈u, v〉 := (Tu, v) is an inner product. (Fact: For T ∈ End V , 〈u, v〉 := (Tu, v) defines an
inner product if and only if T is pos. definite w.r.t. (·, ·)). The elements f1, . . . , fn form
an ONB w.r.t. 〈·, ·〉. Uniqueness: straightforward.

Exercise:

Let E = {e1, . . . , en} be a basis of V . For any u =
∑n

i=1 aiei and v =
∑n

i=1 biei, show
that (u, v) :=

∑n
i=1 aibi is the unique inner product on V so that E is an orthonormal

basis (cf. Problem 7.3 (b)).

3.7.2 Reminder on Adjoints

Let V ,W be inner product spaces with inner products (·, ·)V and (·, ·)W respectively. For
each T ∈ Hom(V,W ), the adjoint of T is S ∈ Hom(W,V ) such that (Tv,w)W = (v, Sw)V
for all v ∈ V , w ∈W and is denoted by T ∗. Clearly, (T ∗)∗ = T .
Fact:

Let W,V be inner product spaces. Each T ∈ Hom(V,W ) has a unique adjoint.

This is Theorem 1.4.1 in [5]. To prove it, use thm 1.3.4 of [5]: we can find an ONB
w.r.t. (·, ·)V . Let E = {e1, . . . , en} be an ONB of V . Then for w ∈ W , one defines
S ∈ Hom(W,V ) by

Sw :=

n∑

i=1

(w, Tei)W ei.

etc. And show uniqueness.

And then another fact:
If E and F = {f1, . . . , fm} are ONB’s of the inner product spaces V and W and
T ∈ Hom(V,W ) with matrix A representing T w.r.t. the bases E and F , then T ∗

is represented by A∗ (the complex conjugate transpose of the matrix A), a matrix w.r.t.
the bases F and E.
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Chapter 4

Rings and modules

Modules over rings generalize the concept of vector spaces over a field. Every vector
space has a basis, but for modules, this is not always the case.

4.1 Basic definitions

Recall that a ring R (with unit) is a set with two operations, denoted + and ·, R×R→ R,
such that
R1 (R,+) is a commutative group.
R2 The multiplication · is associative and has a unit element.
R3 for all x, y, z ∈ R, we have (x+ y)z = xz + yz and z(x+ y) = zx+ zy.
The last condition is called the distributivity.

The unit element for the addition is denoted by 0 or 0R, the unit element for multi-
plication by 1 or 1R.

Definition 4.1. Let R be a ring. A left module over R or a left R-module M is an
abelian group, usually written additively, together with an operation of R on M , such
that for all r, s ∈ R and x, y ∈M , we have

(r + s)x = rx+ sx, r(x+ y) = rx+ ry, r(sx) = (rs)x and 1Rx = x

As an exercise: check that a(−x) = −(ax) and 0Rx = 0M , a0M = 0M (for arbitrary
a ∈ R, x ∈M).

Right R-modules are defined analogously. We will work with left R-modules unless
mentioned otherwise. There are cases where it is important to distinguish between the
action of R from left and the one from right. In the following examples, switching from
left to right modules can mostly be done by a simple notational change. This is not the
case in Example 4.2 (f).

Example 4.2. (a) If M is a vector space over a field K, then M is a K-module.

(b) Any ring R is a module over itself. Informally: elements of a ring can be added and
subtracted (abelian group part of definition), we can multiply every r ∈ R by x ∈ R
and the distributivity yields the conditions for R-modules.

39
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(c) Let (R,+, ·) = (Z,+, ·) where + and · are addition and multiplication of integers,
R is commutative. Every abelian group A is a Z-module. Addition and subtraction
are carried out according to the group structure of A; the key point is that we can
multiply x ∈ A by the integer n. If n > 0, nx = x+ x+ · · · + x (n times); if n < 0,
then nx = −x− x− · · · − x (|n| times). Concrete examples:
Let M1 = Z, M2 = 〈a〉 = aZ = {. . . ,−2a,−a, 0, a, 2a, . . . } and M3 = Z /aZ for
a ≥ 0. Then the Mi are abelian groups and left and right Z-modules.

(d) Let R be any ring and Rn the set of all n-tuples with components in R. Then Rn

is an R-module with the usual definitions of addition and scalar multiplication (e.g.
r(x1, . . . , xn) = (rx1, . . . , rxn)).

(e) Let M = Rm,n be the set of all m × n matrices with entries in R. Then M is
an R-module, where addition is ordinary matrix addition and multiplication of the
scalar c ∈ R by the matrix A means multiplication of each entry of A by c.

(f) Let I be a left ideal of the ring R; then I is a left R-module (if x ∈ I and r ∈ R,
then rx belongs to I, but xr is not necessarily in I! Similarly, a right ideal is a right
R-module, and a two-sided ideal is both a left and a right R-module.

(g) Let J be a two-sided ideal of R. Then the factor ringR/J is a module over A: if r ∈ R
and r+J is a coset of J in R, then one defines the operation to be r(x+J) = rx+J .
This defines an R-module structure on R/J . We will do this more generally below:
if M is a module and N a submodule (cf. Definition 4.7), we can define the quotient
module M/N . (Section 4.4, see Definition 4.37 and discussion afterwards).

(h) An additive group consisting of 0 alone is a module over any ring.

[Lecture 8, 11.1.2016]

Definition 4.3. Let R be a commutative ring (with unit). An R-algebra (an algebra
over R) is an R-module A together with composition A × A → A, (x, y) 7→ xy called
multiplication which is distributive over addition and is linked to the action of R on A
by the identities

a(xy) = (ax)y = x(ay) ∀ a ∈ R,∀ x, y ∈ A

If the multiplication above satisfies additional conditions, we obtain different types
of algebras: If the multiplication is associative, then A is called an associative algebra.
(In this case, A is a ring under the addition and multiplication). If the multiplication
is commutative, A is a commutative algebra. If A contains a multiplicative identity
element, A is unitary. A unitary associative algebra in which every non-zero element
has an inverse is called a division algebra.

Example 4.4. C is a division algebra over R.
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Example 4.5. Let R be a commutative ring (with unit). Let RN be the set of all maps
f : N → R (i.e. the set of all sequences of elements of R), with 0 included in N. Endow
RN with the obvious addition, namely for f, g ∈ RN let f + g be defined by

(f + g)(n) = f(n) + g(n)

RN with this addition is an abelian group. We define R × RN → RN by (r, f) 7→ rf ,
where rf ∈ RN is the element given by

(rf)(n) = rf(n)

This makes RN into an R-module. We now make it into an R-algebra, we need to define
a multiplication for this:
Given f, g ∈ RN, define the product map fg : N → R by

(fg)(n) =
n∑

i=0

f(i)g(n − i)

One checks that this makes RN a R-algebra. It is called the algebra of formal power
series with coefficients in R. mehr text dazu: seiten 5,6 von Blyth

Example 4.6. If R is a ring (with 1), then the set Rn,n of n × n-matrices over R is a
unitary associative R-algebra.

Exercises for Section 4.1

1. Let M be an abelian group and let EndM be the set of all endomorphisms on M ,
i.e. the set of all group homomorphisms f : M → M . Show that EndM is an
abelian group under the operation (f, g) 7→ f + g where (f + g)(x) := f(x)+ g(x).

Show also that
1) (EndM,+, ◦) is a ring with unit;
2) M is an EndM -module under the action EndM ×M →M given by (f,m) 7→
f ·m = f(m);
3) if R is a ring (with unit) and µ : R→ EndM a ring morphism with µ(1R) = idM ,
then M is an R-module under the action R ×M → M given by (λ,m) 7→ λm =
(µ(λ))(m).

2. Let G be a finite abelian group with |G| = m. Show that if n, t ∈ Z then

n ≡ t mod m =⇒ ng = tg ∀ g ∈ G

Deduce that G is a Z /mZ-module under the action Z /mZ×G → G given by
(n + mZ, g) 7→ ng. Conclude that every finite abelian group whose order is a
prime p can be regarded as a vector space over a field of p elements.
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3. what exactly is Pn(R)??

If R is a commutative ring (with unit) show that the set Pn(R) of all polynomials
over R of degree less than or equal to n is an R-module. Show also that the set
P (R) of all polynomials over R is a unitary associative R-algebra.

4. If A is a ring (with unit) define its centre to be

Z(A) := {x ∈ A : xy = yx ∀ y ∈ A}

Show that Z(A) is a ring (with unit). If R is a commutative ring (with unit) prove
that A is a unitary associative R-algebra if and only if there is a 1-preserving
(sending 1R to 1Z(A)) ring morphism ϕ : R→ Z(A).

(Hint: =⇒: denoting the action of R on A by (r, a) 7→ r·a, define ϕ by ϕ(r) = r·1A.
⇐=: Define an action by (r, a) 7→ r · a = ϕ(r)a.)

4.2 Submodules; intersections and sums

Definition 4.7. By a submodule of an R-module M we mean a subgroup N of M that
is stable under the action of R onM , in the sense that if x ∈ N and r ∈ R, then rx ∈ N .

A non-empty subset N of an R-module M is a submodule of M if and only if

x− y ∈ N and rx ∈ N ∀ x, y ∈ N, r ∈ R (“submodule criterion”)

These two conditions are equivalent to the condition

rx+ sy ∈ N ∀ r, s ∈ R, x, y ∈ N

(check the equivalence yourself)
if the first two conditions hold, then rx ∈ N and sy = (−s)y ∈ N , hence rx− sy ∈ N .
If the 3rd condition holds, then for r = 1R and s = −1R, we obtain x− y ∈ N , and for
s = 0R, we obtain rx ∈ N .

Definition 4.8. A non-empty subset B of an R-algebra A is a subalgebra of A if

x− y ∈ B,xy ∈ B, rx ∈ B ∀ x, y ∈ B, ∀ r ∈ R

Example 4.9. Let R be a ring (with unit) and consider R as an R-module (as in
Example 4.2 (b)). The submodules of R are precisely the left ideals of R. Similarly, if
we consider R as a right R-module, then the submodules of R are precisely the right
ideals of R.

Example 4.10. If G is an abelian group, then the submodules of the Z-module G are
the subgroups of G.

Theorem 4.11. If (Mi)i∈I is a family of submodules of an R-module M , then
⋂

i∈IMi

is a submodule of M .
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proof skipped in class

Proof. First observe that
⋂

i∈IMi 6= ∅, since every Mi is a subgroup of M and hence
contains the identity element 0M . Since each Mi is a submodule, we have

x, y ∈
⋂

i∈I

Mi =⇒ x, y ∈Mi ∀ i ∈ I

=⇒ x− y ∈Mi ∀ i ∈ I

=⇒ x− y ∈
⋂

i∈I

Mi

and
x ∈

⋂

i∈I

Mi, r ∈ R =⇒ rx ∈Mi ∀ i ∈ I =⇒ rx ∈
⋂

i∈I

Mi

Consequently,
⋂

i∈IMi is a submodule of M .

Now let S be a subset of an R-module M , possibly S = ∅ and consider the collection
of all submodules of M that contain S. By Theorem 4.11, the intersection of this
collection is again a submodule of M and it contains S. It is the smallest submodule of
M containing S. We call it the submodule generated by S, denoted 〈S〉. We can give an
explicit description of this submodule:

〈S〉 =

{
{0M} (the zero submodule) if S = ∅
all linear combinations (over R) of elements of S else

(4.1)

Definition 4.12. The R-module M is generated by the subset S of M (S is a set of
generators for M) if 〈S〉 =M . By a finitely generated R-module we mean an R-module
which has a finite set of generators.

Let (Mi)i∈I be a family of submodules of an R-module M . We consider the sub-
module 〈∪i∈IMi〉 generated by ∪i∈IMi. It is the smallest submodule of M containing
every Mi. It is often called (by abuse of notation) the submodule generated by the family
(Mi)i∈I . It can be characterised as in the theorem below. For this, let P∗(I) be the set
of all non-empty finite subsets of the set I.

Theorem 4.13. Let (Mi)i∈I be a family of submodules of an R-module M . Then the
submodule generated by ∪i∈IMi consists of all finite sums of the form

∑

j∈J mj where
J ∈ P∗(I) and mj ∈Mj .

Proof. A linear combination of elements of ∪i∈IMi is precisely a sum of the form
∑

j∈J mj

for some J ∈ P∗(I). The result is thus an immediate consequence of the description of
〈S〉 in (4.1).

Because of Theorem 4.13, we call the submodule generated by the family (Mi)i∈I
the sum of the family and denote it by

∑

i∈IMi. If I is finite, say I = {1, 2, . . . , n}, we
often write

∑n
i=1Mi or M1 +M2 + · · ·+Mn.

We have two immediate consequences of this:
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Corollary 4.14. (1) (Commutativity of
∑

) If σ : I → I is a bijection then
∑

i∈I

Mi =
∑

i∈I

Mσ(i)

(2) (Associativity of
∑

) If (Ik)k∈A is a family of non-empty subsets of I with I = ∪k∈AIk
then ∑

i∈I

Mi =
∑

k∈A

(
∑

i∈Ik

Mi).

proof skipped in class

Proof. (1) is clear.
(2) A typical element of the right-hand side is

∑

k∈J(
∑

i∈Jk
mi) with Jk ∈ P∗(Ik) and

J ∈ P∗(A). By associativity of addition in M this can be written as
∑

i∈K mi where
K = ∪k∈JJk ∈ P∗(I). Thus the right-hand side is contained in the left-hand side.

As for the converse inclusion, a typical element of the left-hand side is
∑

i∈I mi where
J ∈ P∗(I). Now J = J ∩ I = ∪k∈A(J ∩ Ik) so that if we define Jk = J ∩ IK we have
Jk ∈ P∗(Ik) and, by the associativity of addition in M ,

∑

i∈J mi =
∑

k∈B(
∑

i∈Jk
mi)

where B ∈ P∗(A). Thus the left-hand side is contained in the right-hand side.

If we take A = {1, 2} in (2) of Corollary 4.14 and set I1 = {i}, I2 = I \ I1, we obtain
as a further corollary, for all i ∈ I, the following:

∑

i∈I

Mi =Mi +
∑

j 6=i

Mj

Note that ∪i∈IMi need not be a submodule of M , so in general,
∑

i∈IMi 6= ∪i∈IMi:
Take I = {1, 2}, let M1 and M2 be the subspaces of the vector space R2 given by
M1 = {(x, 0) : x ∈ R} and M2 = {(0, y) : y ∈ R}. We have M1 +M2 = R2 whereas
M1 ∪M2 ( R2.

Let M be an R-module, let A and B be submodules of M . Then A + B is the
smallest submodule of M containing both A and B. A ∩B is the largest submodule of
M contained in A and in B. The set of submodules of M , ordered by set inclusion, is
therefore such that every two-element subset {A,B} has a supremum (namely A + B)
and an infimum (namely A∩B). We say that the set of submodules ofM forms a lattice.
An important property of this lattice is that it is modular, in the following sense:

Theorem 4.15 (Modular law). If M is an R-module and if A,B,C are submodules of
M with C ⊆ A then

A ∩ (B + C) = (A ∩B) + C

Proof. Since C ⊆ A we have A+C = A. Now (A∩B)+C ⊆ A+C and (A∩B)+C ⊆ B+C
and so we have

(A ∩B) + C ⊆ (A+ C) ∩ (B + C) = A ∩ (B + C).

To obtain the reverse inclusion, let a ∈ A∩ (B+C). Then a ∈ A and there exists b ∈ B,
c ∈ C such that a = b + c. Since C ⊆ A we have c ∈ A and therefore b = a − c ∈ A.
Consequently, b ∈ A ∩B and so a = b+ c ∈ (A ∩B) + C.
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Exercises for Section 4.2

1. Let M be an R-module. If S is a non-empty subset of M , define the annihilator
of S in R to be

AnnR S = {r ∈ R : rx = 0M ∀ x ∈ S}.

Show that AnnR S is a left ideal of R and that it is a two-sided ideal whenever S
is a submodule of M .

2. Describe the kernel of the ring morphism µ from Exercise 1 (3) to Section 4.1.

3. Prove that the ring of endomorphisms of the abelian group Z is isomorphic to the
ring Z, and that the ring of endomorphisms of the abelian group Q is isomorphic
to the field Q.

(Hint: Use Exercise 1 to Section 4.1 and Exercise 2 above. Note that if f ∈ EndZ
then f = µ(f(1)). )

4. Let M be an R-module. If r, s ∈ R show that

r − s ∈ AnnRM =⇒ rx = sx ∀ x ∈M

Deduce that M can be considered as an R/AnnRM -module. Show that the anni-
hilator of M in R/AnnRM is zero.

4.3 Morphisms; exact sequences

[Lecture 9, 12.1.2016]

In the theory of groups, group homomorphisms preserve the group structure. In
K-vector spaces, K-linear maps preserve the vector space structure. In ring theory,
ring morphisms preserve the ring structure. We now define structure-preserving maps
between modules over a ring.

Definition 4.16. If M and N are R-modules, then f :M → N is a R-morphism if

(1) f(x+ y) = f(x) + f(y) ∀ x, y ∈M ;

(2) f(rx) = rf(x) ∀ x ∈M , ∀ r ∈ R.

An R-morphism is a R-monomorphism if it is injective and it is an R-epimorphism
if it is surjective. It is an R-isomorphism if it is bijective. An R-morphism f :M →M
is often called an R-endomorphism.

If f is an R-morphism f :M → N we have f(0M ) = 0N and f(−x) = −f(x) for all
x ∈M .

Example 4.17. If M and N are abelian groups regarded as Z-modules then a Z-
morphism f :M → N is simply a group homomorphism. more in blyth, ex. 3.1
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Example 4.18. Let M be an R-module and n > 0. Then Mn is also an R-module (n
copies of M). For 1 ≤ i ≤ n, the map pri :M

n →M described by

pri(x1, . . . , xn) = xi

is an R-epimorphism, the i-th projection of Mn onto M .

Next we describe how R-morphisms f :M → N induce maps between the lattices of
submodules (cf. discussion above Theorem 4.15).

Theorem 4.19. Let f : M → N be a morphism between R-modules. Then for every
submodule X of M , the set f(X) is a submodule of N and for every submodule Y of N ,
the set f−1(Y ) is a submodule of M .

Proof. Note first that f(X) and f−1(Y ) are not empty, the first, since X contains 0M
and so f(0M ) = 0N ∈ f(X). Analoguously, 0M ∈ f−1(Y ).

Since f is in particular a group homomorphism from M to N , and since as submod-
ules, X and Y are subgroups of M and N respectively, we get that the image f(X) is
a subgroup of N and that the preimage f−1(Y ) is a subgroup of M (facts about group
homomorphisms, introductory algebra course, e.g. [2, Satz 2.13]). The only thing that
remains to be checked is that f(X) and f−1(Y ) are stable under the action of R (in M
or in N respectively).

So let y ∈ f(X). There exists x ∈ M such that f(x) = y. For r ∈ R arbitrary, we
then have

ry = rf(x)
f R-morph.

= f(rx) ∈ f(X)

Now if x ∈ f−1(Y ), then f(x) ∈ Y . For r ∈ R arbitrary, we have

f(rx)
f R-morph.

= rf(x) ∈ Y (Y is a submodule of N), hence rx ∈ f−1(Y )

In particular, im f = f(M) is a submodule of N and ker f = f−1({0N}) is a sub-
module of M .

We write L(M) for the lattice of submodules of M . By Theorem 4.19, we can
define maps f→ : L(M) → L(N) and f← : L(N) → L(M) through f→ : X 7→ f(X),
f← : Y 7→ f−1(Y ). We will often simply write f for f→ : L(M) → L(N) and f−1 for
the map f← : L(N) → L(M).

These maps are inclusion-preserving: if X1, X2 are submodules of M such that
X1 ⊆ X2, then f→(X1) ⊆ f→(X2); if Y1, Y2 are submodules of N with Y1 ⊆ Y2, then
f←(Y1) ⊆ f←(Y2).

Lemma 4.20. Let f : M → N be an R-morphism. If A is a submodule of M and B a
submodule of N then
(a) f(f−1(B)) = B ∩ im f ;
(b) f−1(f(A)) = A+ ker f .
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Proof. One can show more generally that the following two properties hold:
(a’) f

(
A ∩ f−1(B)

)
= f(A) ∩B

and that
(b’) f−1 (B + f(A)) = f−1(B) +A.

(a) then follows by setting A =M in (a’), (b) follows from (b’) by taking B = {0N}.

For (a’): First note that f(f−1(B)) ⊆ B since for y ∈ f−1(B), f(y) ∈ B. Since f = f→

is inclusion-preserving, ⊆ follows.
To obtain ⊇, let y ∈ f(A) ∩ B. Then y = f(a) for some a ∈ A and y ∈ B. Since
f(a) ∈ B we have a ∈ f−1(B), so a ∈ f−1(B) ∩A, hence y ∈ f

(
A ∩ f−1(B)

)
.

For (b’): We have A ⊆ f−1(f(A)) since for a ∈ A, we have f(a) ∈ f(A). Since f−1 = f←

is inclusion-preserving, we get ⊇.
To obtain ⊆, let x ∈ f−1(B + f(A)). Then f(x) ∈ B + f(A) and so f(x) ∈ B and
f(x) = f(A) for some a ∈ A. This gives x − a ∈ ker f = f−1({0N}) ⊆ f−1(B) and
therefore x ∈ f−1(B) +A.

Just as with group homorphisms, we can compose R-morphisms to obtain new R-
morphisms. The basic facts concerning this are the following:

(a) If f :M → N and g : N → P are R-morphisms, then the composition g ◦ f :M →
P is also an R-morphism.
(To see this: we know this is true for group homomorphisms. So one only need to
check that for all r ∈ R, for all x ∈M , we have (g ◦ f)(rx) = · · · = r(g ◦ f)(x). )

(b) If f :M → N and g : N → P are R-epimorphisms, then so is g ◦ f .

(c) If f :M → N and g : N → P are R-monomorphisms, then so is g ◦ f .

(d) If g ◦ f is an epimorphism, then so is g.

(e) If g ◦ f is a monomorphism, then so is f .

Concerning compositions of morphisms, there are two ‘diagram-completion’ problems
that we will consider now:

A1
g1 //

f1
��

C1 C2

g2

��
B1 B2

f2

// A2

If we are given a diagram with R-modules and R-morphisms A1, B1, C1 and f1, g1, under
which conditions does there exist a morphism h1 : B1 → C1 such that h1 ◦ f1 = g1?
The dual problem is a diagram as on the right, with modules A2, B2, C2 and morphisms
f2, g2: what are the conditions ensuring the existence of a morphism h2 : C2 → B2 such
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that f2 ◦ h2 = g2?

A1
g1 //

f1
��

C1 C2

g2

��

∃h2

{{
B1

∃h1

;;

B2
f2

// A2

h1 ◦ f1 g1 f2 ◦ h2 g2

We first consider these questions on the level of sets and maps between them.

Theorem 4.21. (a) Let A,B,C be non-empty sets, f : A→ B, g : A→ C maps. Then
the following conditions are equivalent:

(1) There exists a map h : B → C with h ◦ f = g;
(2) f(x) = f(y) =⇒ g(x) = g(y) for all x, y ∈ A

(b) Let A,B,C be non-empty sets and f : B → A, g : C → A maps. Then the following
conditions are equivalent:

(3) There exists a map h : C → B such that f ◦ h = g;
(4) im g ⊆ im f .

(do the proof?)

Proof. (a) The implication (1) =⇒ (2) is clear.
For (1) ⇐= (2) consider the subset G of im f × C given by

G := {(x, z) : y = f(x), z = g(x) for some x ∈ A}

The subset G is non empty, as for any x ∈ A, (f(x), g(x)) ∈ G. Now given any y ∈ im f
there is a unique z ∈ C such that (y, z) ∈ G. In fact, if y = f(x), choose z = g(x) to see
that such an element z exists. To see that it is unique, suppose that (y, z) ∈ G and that
(y, z′) ∈ G. By the definition of G, we have y = f(x) = f(x′) and z = g(x), z′ = g(x′)
for some x, x′ ∈ A. From this, by (2), g(x) = g(x′), and so z = z′.

We can therefore define a map t : im f → C as follows:

t(f(x)) := g(x) ∀ x ∈ A

We need to extend this to a map on all of B: With this, we can construct h : B → C:

h(y) =

{
t(y) if y ∈ im f ;
some c ∈ C otherwise.

Then for every x ∈ A we have h(f(x)) = t(f(x)) = g(x), and so h ◦ f = g.

Similarly, the implication (3) =⇒ (4) is clear.
For (4) ⇐= (3): If (4) holds, then for every x ∈ C there exists y ∈ B such that
g(x) = f(y). Given any x ∈ C, choose one of these y ∈ B and label it yx (by the axiom
of choice), i.e. yx is an element of B with g(x) = f(yx). This gives us a map h : C → B
by setting h(x) = yx. This satisfies f(h(x)) = f(yx) = g(x), hence f ◦ h = g.
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Corollary 4.22. (a) If A,B are non-empty sets and f : A → B is a map, then the
following statements are equivalent:

(α) f is injective;

(β) there exists g : B → A such that g ◦ f = idA;

(γ) f is left cancellable, in the sense that for every non-empty set C and all maps
h, k : C → A,

f ◦ h = f ◦ k =⇒ h = k.

(b) If A,B are non-empty sets and f : A → B is a map, then the following statements
are equivalent:

(α′) f is surjective;

(β′) there exists g : B → A such that f ◦ g = idB;

(γ′) f is right cancellable, in the sense that for every non-empty set C and all maps
h, k : B → C,

h ◦ f = k ◦ f =⇒ h = k.

Proof. (α) ⇐⇒ (β) is immediate from (1) ⇐⇒ (2).
The implication (β) =⇒ (γ) is straightforward (try it out!), (γ) =⇒ (α) requires more
work. (α′) ⇐⇒ (β′) is immediate from (3) ⇐⇒ (4).
(β′) =⇒ (γ′) is straightforward, (γ′) =⇒ (α′) requires more work.
Most work: (γ) =⇒ (α) and (γ′) =⇒ (α′)

For details: This is the Corollary on page 20 in [3].

The statements from Theorem 4.21 and Corollary 4.22 cannot be made into module-
theoretic results by simply replacing “non-empty set” by R-module and “map” by R-
morphisms. The following examples illustrates this.

Example 4.23. Consider the diagram of Z-modules and Z-morphisms

Z
idZ //

×2
��

Z

Z

in which idZ is the identity morphism and ×2 the Z-morphism acting as n 7→ 2n. By
Theorem 4.21 (a) there is a map h : Z → Z such that h ◦ (×2) = idZ. But no such
Z-morphism can exist: Suppose h were such a Z-morphism. Then for every n ∈ Z, we
would have 2h(n) = h(2n) = n. In particular, 2h(1) = 1; and this is impossible, since
the equation 2x = 1 has no solution in Z.

Example 4.24. Let p be a prime, consider the subgroup Qp of Q defined as follows

Qp := {x ∈ Q : x =
k

pn
for some k ∈ Z and some n ∈ N}.
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Note that Z is a subgroup of Qp. We can thus form the quotient group Qp /Z. As
abelian groups, they are Z-modules. Consider the diagram

Qp /Z

id
��

Qp /Z f
// Qp /Z

of Z-modules and Z-morphisms, where f is defined as x 7→ px. Since for all k ∈ Z and
for all n ∈ Z we have

k

pn
+ Z = p(

k

pn+1
+ Z)

we see that im f = Qp /Z = im id. By Theorem 4.21 (b) there is therefore a map
h : Qp /Z → Qp /Z such that f ◦ h = id. However, no such Z-morphism can exist: If h
were such a Z-morphism, we would have

1

p
+ Z = f

(

h(
1

p
+ Z)

)

=p

(

h(
1

p
+ Z)

)

=h

(

p(
1

p
+ Z)

)

= h(1 + Z) = 0 + Z

which is nonsense since x+ Z = 0 + Z if and only if x ∈ Z.

[Lecture 10, 18.1.2016]
In certain situation, there are module-theoretic analogues of Theorem 4.21. The

following two are examples of such. [3] will give more later.

Theorem 4.25. Consider the diagram

A
g //

f
��

C

B

of R-modules and R-morphisms in which f is an R-epimorphism. Then the following
are equivalent:

(1) there is a unique R-morphism h : B → C such that h ◦ f = g;
(2) ker f ⊆ ker g.

Moreover, such an R-morphism h is a monomorphism if and only if ker f = ker g.

Proof. (1) =⇒ (2): Suppose that (1) holds, take x ∈ ker f . Then g(x) = h(f(x)) =
h(0) = 0.

(2) =⇒ (1): Suppose that ker f ⊆ ker g. Given x, y ∈ A we have

f(x) = f(y) =⇒ f(x− y) = f(x)− f(y) = 0B

=⇒ x− y ∈ ker f ⊆ ker g

=⇒ g(x) − g(y) = g(x− y) = 0C

=⇒ g(x) = g(y)
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By Theorem 4.21 (a) we can therefore define a map h : B → C such that h ◦ f = g.
Since f is surjective, it follows by Corollary 4.22 that f is right cancellable and so h is
unique. It remains to show that h is an R-morphism. Since f is surjective1, this follows
from the equalities

h(f(x) + f(y)) = h(f(x+ y)) = g(x+ y) = g(x) + g(y) = h(f(x)) + h(f(y))

h(rf(x)) = h(f(rx)) = g(rx) = rg(x) = rh(f(x))

(for all x, y ∈ A, r ∈ R).

To the last statement: if h is injective, then since g(x) = h(f(x)) we have

x ∈ ker g =⇒ f(x) ∈ ker h = {0B} =⇒ x ∈ ker f,

and so we have equality in (2). Conversely, suppose that ker g = ker f and let x ∈ ker h.
Since f is surjective we have x = f(y) for some y ∈ A and so 0B = h(x) = h(f(y)) = g(y)
and so y ∈ ker g = ker f . From this, x = f(y) = 0B and h is injective.

Only the proof of Theorem 4.25 was done in class, the proof of 4.26 was omitted.

Theorem 4.26. Consider the diagram

C

g

��
B

f
// A

of R-modules and R-morphisms in which f is an R-monomorphism. Then the following
are equivalent:

(1) there is a unique R-morphism h : C → B such that f ◦ h = g;

(2) im g ⊆ im f .
Moreover, such an R-morphism h is an epimorphism if and only if im g = im f .

Proof. (1) =⇒ (2): If (1) holds then g(c) = f(h(c)) ∈ im f for every c ∈ C.

(2) =⇒ (1): If (2) holds then by Theorem 4.21 (b) there is a map h : C → B such
that f ◦ h = g. Since f is injective, it follows by Corollary 4.22 that f is left cancellable
and so h is unique. Now for all c, d ∈ C and r ∈ R we have the equalities

f(h(c+ d)) = g(c + d) = g(c) + g(d) = f(h(c)) + f(h(d)) = f(h(c) + h(d)),

f(h(rc)) = g(rc) = rg(c) = rf(h(c)) = f(rh(c))

Since f is injective2, we deduce that h(c + d) = h(c) + h(d) and h(rc) = rh(c), so
that h is indeed an R-morphism.

1compare with Example 4.23!
2compare with Example 4.24!
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For the last claim: if h is surjective, then for every b ∈ B there exists b ∈ B with
b = h(c). So f(b) = f(h(c)) = g(c) and we have im f ⊆ im g.

Conversely, if im f = im g, then for every b ∈ B there exists c ∈ C such that f(b) =
g(c) = f(h(c)) whence b = h(c), since f is injective. Consequently, h is surjective.

It is costumary to say, in the situations of Theorems 4.25 and 4.26, that the dia-
grams commute. This notion is often used for diagrams of sets and maps (groups and
homomorphisms, R-modules and R-morphisms, etc.) between them, it is a convenient
abbreviation.

Definition 4.27. Given a diagram of sets and maps we say that the diagram is com-
mutative if all compositions of maps between a starting set to an ending set are equal.

Example. The triangle

A
g //

f
��

C

B
h

>>
⑦⑦⑦⑦⑦⑦⑦⑦

is commutative if and only if h ◦ f = g. The diagram

A
f //

α
��

B
g //

β
��

C

γ

��
A′

f ′ // B′
g′ // C ′

is commutative if and only if f ′ ◦ α = β ◦ f and g′ ◦ β = γ ◦ g, i.e. if and only if each of
the squares commutes.

Another important concept is the following.

Definition 4.28. A sequence of modules and morphisms is a diagram of the form

. . . //Mi−1
fi−1 //Mi

fi //Mi+1
// . . .

The sequence is said to be exact at Mi if im fi−1 = ker fi. The sequence is exact if it is
exact at each Mi.

The zero module is usually written as 0 in a sequence of modules and morphisms.
From the definition, we have:

Theorem 4.29. Let f :M → N be an R-morphism and let 0 →M , N → 0 denote the
inclusion map and the zero map respectively. Then f is

(1) a monomorphism iff 0 −→M
f

−→ N is exact;

(2) an epimorphism iff M
f

−→ N −→ 0 is exact;

(3) an isomorphism iff 0 −→M
f

−→ N −→ 0 is exact.
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Example 4.30. If f : A → B is a group homomorphism of abelian groups, then we
have the exact sequence

0 −→ ker f
ι

−→ A
π

−→ A/ ker f −→ 0

where ι is the inclusion map and π is the natural epimorphism. Likewise, we have the
exact sequence

0 −→ im f −→ B −→ B/ im f −→ 0

An exact sequence of the form

0 −→M ′
f

−→M
g

−→M ′′ −→ 0

is called a short exact sequence.

In an exact sequence, the composition of two successive morphisms is the zero
morphism. The converse is not true in general, as fi ◦ fi−1 = 0 is equivalent to
im fi−1 ⊆ ker fi. Sequences (of modules and morphisms) with fi ◦ fi−1 = 0 for all i
are called semi-exact3.

The following result is a useful property of the kernel of an R-morphism. It illustrates
the notions we have just introduced.

Theorem 4.31. Given the diagram of R-modules and R-morphisms

A

α
��

0 // X
f

// Y
g

// Z

with exact row and with g ◦ α = 0 there is a unique R-morphism h : A → X such that
the completed diagram is commutative.

Proof. Since g ◦α = 0 and since the row is exact we have that imα ⊆ ker g = im f . The
morphism f is injective (Theorem 4.29) and so the result follows from Theorem 4.26.

Theorem 4.32. Let f : M → N be an R-morphism. If ι : ker f → M is the inclusion
map then

(1) f ◦ ι = 0;
(2) if P is an R-module and if g : P → M is an R-morphism such that f ◦ g = 0

then there is a unique R-morphism β : P → ker f such that the following diagram is
commutative:

P
∃!β

||②②
②②
②②
②②

g

��
ker f

ι
//M

f
// N

3compare with the notion of a chain complex.
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Proof. (1) is clear and (2) is covered by Theorem 4.31

It can be shown that the pair (ker f, ι) is characterised by the properties of Theo-
rem 4.32. exercise 3.5 of [3].

We now present an example of a technique known as diagram chasing.

Theorem 4.33 (The four lemma). Suppose that the diagram of modules and morphisms

A
f //

α
��

B
g //

β
��

C
h //

γ
��

D

δ
��

A′
f ′

// B′
g′

// C ′
h′

// D′

is commutative and has exact rows. Then the following holds:
(1) If α, γ are epimorphisms and δ is a monomorphism then β is an epimorphism;
(2) If α is an epimorphism and β, δ are monomorphisms then γ is a monomorphism.

Proof. (1) Let b′ ∈ B′. Since γ is surjective, there exists c ∈ C such that g′(b′) = γ(c).
By the commutativity of the right-hand square we have

δ(h(c)) = h′(γ(c)) = h′(g′(b′)) = 0

since h′ ◦ g′ = 0. Thus h(c) ∈ ker δ = 0 and so h(c) = 0 giving c ∈ ker h = im g so that
c = g(b) for some b ∈ B. Then, by the commutativity of the middle square,

g′(b′) = γ(c) = γ(g(b)) = g′(β(b)).

Consequently, b′ − β(b) ∈ ker g′ = im f ′, so that b′ − β(b) = f ′(a′) for some a′ ∈ A′.
Since α is surjective, there exists a ∈ A with a′ = α(a). Now the commutativity of the
left-hand square yields b′ − β(b) = f ′(α(a)) = β(f(a)). We thus have

b′ = β(b) + β(f(a)) = β(b+ f(a)) ∈ im β

and β is surjective.
part (2) is analoguous and thus was skipped in class
(2) Let c ∈ ker γ. Then δ(h(c)) = h′(γ(c)) = h′(0) = 0 and so h(c) ∈ ker δ = 0. Thus

c ∈ kerh = im g so that c = g(b) for some b ∈ B. Now 0 = γ(c) = γ(g(b)) = g′(β(b))
so β(b) ∈ ker g′ = im f ′ whence β(b) = f ′(a′) for some a′ ∈ A′. Now a′ = α(a) for
some a ∈ A, so β(b) = f ′(α(a)) = β(f(a)). Since β is a monomorphism, we deduce that
b = f(a) whence c = g(b) = g(f(a)) = 0 since f ◦ g = 0.

Theorem 4.34 (The five lemma). Suppose that the diagram of modules and morphisms

A

α1

��

// B //

α2

��

C //

α3

��

D //

α4

��

E

α5

��
A′ // B′ // C ′ // D′ // E′

is commutative and has exact rows. If α1, α2, α4 and α5 are isomorphisms, then so is
α3.
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Proof. Applying Theorem 4.33 (1) to the right-hand three squares shows that α3 is an
epimorphism. Applying Theorem 4.33 (2) to the left-hand three squares shows that α3

is a monomorphism.

Corollary 4.35. Suppose that the diagram of modules and morphisms

0 // A

α
��

// B //

β
��

C //

γ

��

0

0 // A′ // B′ // C ′ // 0

is commutative and has exact rows. If α and γ are isomorphisms, then so is β.

Proof. Take A = A′ = E = E′ = 0 in Theorem 4.34

[Lecture 11, 19.1.2016]

Exercises for Section 4.3

1. Let R be a commutative ring (with unit). Prove that a map f : R ×R→ R is an
R-morphism if and only if there exist α, β ∈ R such that

f(x, y) = αx+ βy for all x, y ∈ R

2. If A and B are submodules of an R-module M , establish a short exact sequence

0 −→ A ∩B
γ

−→ A×B
π

−→ A+B −→ 0

(Hint: Observe that the ‘obvious’ definitions of γ and π, namely γ(x) = (x, x) and
π(x, y) = x+ y do not work. Try π(x, y) = x− y)

3. A short exact sequence of the form

(f,E, g) : 0 −→ A
f

−→ E
g

−→ B −→ 0

is called an extension of A by B.

(a) Given any R-modules A and B show that at least one extension of A by B
exists.

(b) Two extensions (f1, E1, g1) and (f2, E2, g2) of A and B are said to be equivalent
if there exists an R-morphism h : E1 → E2 such that h ◦ f1 = f2 and g2 ◦ h = g1.
Prove that such an R-morphism is an isomorphism.

(c) Show that there the following two are non-equivalent short exact sequences

0 −→ Z2 −→ Z2 ×Z4 −→ Z4 −→ 0

0 −→ Z2 −→ Z8 −→ Z4 −→ 0

i.e. that these are extensions of Z2 by Z4 that are not equivalent.
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4.4 Quotient modules; basic isomorphism theorem

In this section, we will see an important way of constructing new modules from old ones.
This arises from the following problem: Suppose that M is an R-module and that E is
an equivalence relation on M . Precisely when can we define operations on the set M/E
of equivalence classes so that M/E becomes an R-module with the natural surjection
π :M →M/E? This important question is settled in the following result , in which we
denote the class of x modulo E by [x]E .

Theorem 4.36. Let M be an R-module and E an equivalence relation on M . The
following statements are equivalent:

(1) there is a unique addition ([x]E , [y[E) 7→ [x]E + [y]E and a unique R-action
(r, [x]E) 7→ r[x]E such that M/E is an R-module and the natural surjection is an R-
epimorphism, i.e. the following identities hold:

[x]E + [y]E = [x+ y]E , r[r]E = [rx]E ∀x, y ∈M ∀ r ∈ R

(2) E is compatible with the structure of M , in the sense that

x ≡ a mod E, y ≡ b mod E =⇒ x+ y ≡ a+ b mod E

x ≡ a mod E, r ∈ R =⇒ rx ≡ ra mod E

(3) There is a submodule ME of M such that

x ≡ y mod E ⇐⇒ x− y ∈ME

Proof. (1) ⇐⇒ (2) is immediate on applying Theorem 4.21 to the diagram

M ×M
g //

f

��

M/E

M/E ×M/E
‘addition’

88qqqqqqqqqqq

(for h =“addition”) where f is the map (x, y) 7→ ([x]E , [y]E) and g is given by (x, y) 7→
[x+ y]E and to the diagram

R×M
g′ //

f ′

��

M/E

R×M/E
‘r· ’

99ssssssssss

with f ′ given by (r, x) 7→ (r, [x]E) and g′ by (r, x) 7→ [rx]E . The uniqueness of these
operations follows from the fact that both vertical maps are surjective and so are right
cancellable.

(2)=⇒ (3): Suppose that E is compatible with the structure of M . Then [0]E (the
class of 0 modulo E) is a submodule of M . In fact, if x ≡ 0 mod E and y ≡ 0 mod E
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then, by compatibility, x− y ≡ 0− 0 = 0 mod E and if x ≡ 0 mod E and r ∈ R then
rx ≡ r0 = 0 mod E. Moreover, we have

=⇒: x ≡ y mod E =⇒ x− y ≡ y − y = 0 mod E

⇐=: x− y ≡ 0 mod E =⇒ x = (x− y) + y ≡ 0 + y = y mod E

so that x ≡ y mod E ⇐⇒ x− y ∈ [0]E .
(3)=⇒ (2): Suppose that ME is a submodule of M such that x ≡ y mod E is

equivalent to x − y ∈ ME . Then from x ≡ a mod E and y ≡ b mod E we have
x−a ∈ME and y−b ∈ME so that,ME being a submodule, x+y−(a+b) =∈ME whence
x+ y ≡ a+ b mod E. Similarly, from x ≡ a mod E we have rx− ra = r(x− a) ∈ME

for all r ∈ R so that rx ≡ ra mod E. Thus E is compatible with the structure of
M .

Definition 4.37. In the situation of Theorem 4.36 we say that M/E is the quotient
module of M by the compatible equivalence relation E.

If we identify equivalence relations on M that yield the same quotient set, we get a
bijection from the set of compatible equivalences on M to the set of submodules of M :
For every compatible equivalence relation E on M define ϕ(E) to be the submodule
[0]E .
(a) That ϕ is surjective follows from the fact that if N is a submodule of M then the
relation F given by

x ≡ y mod F ⇐⇒ x− y ∈ N

is (as can be checked) a compatible equivalence relation on M with

x ≡ 0 mod F ⇐⇒ x ∈ N

so that ϕ(F ) = [0]F = N .
(b) That ϕ is also injective results from the fact that if E and F are compatible equiva-
lence relations on M such that ϕ(E) = ϕ(F ) then [0]E = [0]F and so, by Theorem 4.36
(3), x ≡ y mod E is equivalent to x ≡ y mod F , whence E = F by the agreed identi-
fication.

Because of this bijection, it is standard practice to write M/N for the quotient
module M/E where N is the submodule corresponding to E (namely N = [0]E). This
abuse of notation yields a corresponding abuse of language: M/N is called the quotient
module of M by the submodule N . In this case the equivalence class of x will be written
[x]N . Note that, as in the case of quotient groups, [x]N coincides with the coset x+N =
{x+ n : n ∈ N}: we have

y ∈ [x]N ⇐⇒ [y]N = [x]N

⇐⇒ x− y ∈ N

⇐⇒ y = x+ n for some n ∈ N

We now consider the question of how to identify the submodules of a quotient module.
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Theorem 4.38 (Correspondence theorem). If N is a submodule of an R-module M
then there is an inclusion-preserving bijection from the set of submodules of M/N to the
set of the submodules of M that contain N .

Proof. Suppose that A is a submodule of M that contains N . Then the set

A/N := {[a]N : a ∈ A}

is a submodule of M/N . Consider the map ψ from the set of all such submodules A
to the set of submodules of M/N described by ψ(A) = A/N . Since ψ so defined is the
restriction (to the set of submodules that contain N) of the natural surjection πN , it is
clear that ψ is inclusion-preserving.

We observe from Corollary 4.22 (applied to f = ψ) that if N ⊆ A then

π−1N (ψ(A)) = π−1N (πN (A))
Lm 4.20(b)

= A+ kerπN = A+N = A.

So part (β) from Corollary 4.22 holds. Consequently, ψ is injective.

We now observe that if P is any submodule of M/N then, again by Corollary 4.22,

ψ(π←N (P )) = π→N (π←N (P ))
Lm 4.20(a)

= P ∩ imπN = P,

so part (β′) of Corollary 4.22 holds. Consequently, ψ is also surjective.

Corollary 4.39. Every submodule of M/N is of the form A/N where A is a submodule
of M that contains N

Our aim now is to consider certain induced morphisms from one quotient module to
another, and to establish some fundamental isomorphisms.

Theorem 4.40. Let f : M → N be an R-morphism. If A and B are submodules of M
and N respectively then the following statements are equivalent:

(1) f(A) ⊆ B:

(2) There is a unique R-morphism f∗ :M/A→ N/B such that the diagram

M
f //

πA
��

N

πB
��

M/A
f∗

// N/B

is commutative.

Moreover, when such an R-morphism f∗ exists, it is

(a) a monomorphism if and only if A = f−1(B);

(b) an epimorphism if and only if B + im f = N .
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Proof. Applying Theorem 4.25 to the diagram

M
πB◦f //

πA

��

N/B

M/A

we see that (2) holds if and only if

kerπA ⊆ ker(πB ◦ f).

Now

x ∈ ker πA ⇐⇒ [x]A = [0]A ⇐⇒ x ∈ A,

and similarly

x ∈ ker(πB ◦ f) ⇐⇒ [f(x)]B = [0]B ⇐⇒ f(x) ∈ B.

Thus we see that (2) holds if and only if x ∈ A implies f(x) ∈ B, which is (1).

Last part skipped in class.
As for the last statements, we observe that f(A) ⊆ B is equivalent to A ⊆ f−1(B) and
that therefore

ker f∗ ={[x]A : f(x) ∈ B}

={[x]A : x ∈ f−1(B)}

=f−1(B)/A,

so that f∗ is injective if and only if A = f−1(B).

Finally,

im f∗ = {[f(x)]B : x ∈M}

and so f∗ is surjective if and only if for every n ∈ N there exists x ∈M with

[n]B = [f(x)]B ,

which is equivalent to the condition that for every n ∈ N there exists m ∈M with

n− f(x) ∈ B,

which is equivalent to N = B + im f .

[Lecture 12, 25.1.2016]

If f : M → N is an R-morphism then we shall denote by f+ : M → im f which is
given by the same prescription as f , namely f(x) = f+(x). Note that although f and
f+ have the same effect on elements of M , we distinguish between them since they have
different arrival sets. f+ is by definition surjective, f need not be.
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Theorem 4.41 (First isomorphism theorem). If f :M → N is an R-isomorphism then
there is a unique R-morphism ψ :M/ ker f → im f such that the diagram

M
f+ //

π

��

im f

M/ ker f

ψ

::ttttttttt

is commutative

Proof. Applying Theorem 4.40 in the case where N = im f , B = {0N} and A = ker f we
obtain the existence of a unique R-morphism ψ :M/ ker f → im f such that ψ ◦π = f+.
Since f+ is surjective, so is ψ. Moreover,

ker f = f−1{0} = f−1(B)

and so ψ is also injective. Thus ψ is an isomorphism.

Corollary 4.42. If M → N is an R-morphism then there is an inclusion-preserving
bijection from the set of submodules of im f to the set of submodules of M that contain
ker f

Proof. Immediate by Theorem 4.38

Corollary 4.43 (Canonical decomposition of morphisms). Every morphism can be ex-
pressed as the composite of an epimorphism, an isomorphism, and a monomorphism.

Proof. With the above notation, the diagram

M
f //

π

��

f+

%%❏❏
❏❏

❏❏
❏❏

❏❏
N

M/ ker f
ψ

// im f

ι

OO

is commutative, ι being the natural inclusion. It follows from this that f = ι ◦ψ ◦π.

Although the above decomposition is called canonical (or natural) it is by no means
unique, but if

M
α

−→ A
β

−→ B
γ

−→ N

is another such decomposition of f then necessarily A ∼= M/ ker f and B ∼= im f . see
exercise 4.6

Theorem 4.44 (Second isomorphism theorem). If M is an R-module and if N , P are
submodules of M such that P ⊆ N then N/P is a submodule of M/P and there is a
unique R-isomorphism

h :M/N −→ (M/P )/(N/P )



4.4. QUOTIENT MODULES; BASIC ISOMORPHISM THEOREM 61

such that the following diagram is commutative:

M
πP //

πN

��

M/P

π

��
M/N

h
// (M/P )/(N/P )

Proof. We know by Corollary 4.39 that N/P is a submodule of M/P . Since πP (N) =
{[n]P : n ∈ N} = N/P , we can apply Theorem 4.40 to the above diagram to obtain
the existence of a unique R–morphism h :M/N → (M/P )/(N/P ) making the diagram
commutative. Now since, by the commutativity, h ◦ πN is an epimorphism, so is h. To
show that h is also a monomorphism, it suffices to note that π−1P (N/P ) = N and appeal
to Theorem 4.40 again.

The third isomorphism theorem is a consequence of the following.
Given an R-module M and a submodule A of M , it is clear that we have an exact

sequence
0 −→ A

ιA−→M
πA−→M/A −→ 0

in which ι is the natural inclusion and πA the natural surjection. This generalises to
arbitrary R-modules the situation of Example 4.30 in which the abelian groups are
considered as Z-modules.

Theorem 4.45. If A and B are submodules of an R-module M then there is a commu-
tative diagram (with exact rows and columns) of the form

0

��

0

��

0

��
0 // A ∩B

��

// B

��

// B/(A ∩B) //

��

0

0 // A

��

//M

��

//M/A //

��

0

0 // A/(A ∩B)

��

//M/B

��

//M/(A+B) //

��

0

0 0 0

Proof. Let ιA be the natural inclusion. Then we have ιA(A ∩ B) ⊆ B and so we can
apply Theorem 4.40 to obtain the commutative diagram

A
ιA //

πA∩B

��

M

πB
��

A/(A ∩B)
(ιA)∗

//M/B



62 CHAPTER 4. RINGS AND MODULES

Considering likewise the inclusion ιB : B →M we obtain a similar commutative diagram.
These diagrams can be joined together and extended to form all but the bottom right-
hand corner of the big diagram, namely

•

��

•

��

•

��
• // •

��

// •

��

// • //

��

•

• // •

��

// •

��

// • // •

• // •

��

// •

��
• •

We can complete the bottom right-hand corner by defining maps ψB :M/A→M/(A+
B) and ψA :M/B →M/(A +B) by

ψB([x]A) := [x]A+B , ψA([x]B) := [x]A+B .

It is clear that ψB and ψA are R-morphisms which make the completed diagram com-
mutative.

We now show that the bottom row

0 −→ A/(A ∩B)
(ιA)∗
−→ M/B

ψA−→M/(A +B) −→ 0

is exact. By symmetry, the right-hand column will then also be exact. Since ψA is
surjective and since (ιA)∗ is injective (Theorem 4.40) it only remains to show that
im(ιA)∗ = kerψA. For this purpose, we note that im(ιA)∗ = {[x]B : x ∈ A} and
kerψA : {[x]B : x ∈ A+B}. Observing that

x ∈ A+B =⇒ x = a+ b for some a ∈ A, some b ∈ B =⇒ [x]B = [a+ b]B = [a]B

we obtain kerψA ⊆ im(ιA)∗ and by observing that

x ∈ A =⇒ x = a for some a ∈ A =⇒ [x]B = [a]B = [a+ b]B

we obtain the reverse inclusion.

Corollary 4.46 (Third isomorphism theorem). If A and B are submodules of an R-
module M then

A/(A ∩B) ∼= (A+B)/B

Proof. Since A and B are submodules of A+B we can apply the above in the case where
M = A+B. The bottom row of the diagram becomes

0 −→ A/(A ∩B) −→ (A+B)/B −→ (A+B)/(A+B) −→ 0

Since (A+B)/(A+B) is a zero module, the exactness of this row together with Theo-
rem 4.29 (3) gives the required isomorphism.
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The lectures went only up to the third isomorphism theorem and then stopped
The last of the isomorphism theorems that are often used is the Butterfly Lemma

(or Lemma of Zassenhaus). It uses the Hasse diagram, a diagram with non-horizontal
edges where an ascending line segment from A to B means that A is a submodule of B.

Theorem 4.47 (Butterfly Lemma). LetM be an R-module with submodules N,P,N ′, P ′

such that N ⊆ P and N ′ ⊆ P ′. Then relative to the Hasse diagram

P P
′

N N
′

N ∩ P
′

N
′
∩ P

N
′ + (N ∩ P

′)N + (P ∩N
′)

N + (P ∩ P
′) N

′ + (P ∩ P
′)

P ∩ P
′

N ∩ P
′ +N

′
∩ P

the following quotient modules are isomorphic

N + (P ∩ P ′)

N + (P ∩N ′)
∼=

P ∩ P ′

(N ∩ P ′) + (N ′ ∩ P )
∼=
N ′ + (P ∩ P ′)

N ′ + (P ∩ P ′)

Proof. The proof uses the modular law (Theorem 4.15), the third isomorphism theorem
(Corollary 4.46) for A = P ∩ P ′ and B = N + (P ∩ N ′) and the second isomorphism
theorem (Theorem 4.44). For details: [3, §4]

Exercises for Section 4.4

1. An R-module is cyclic if it is generated by a singleton subset. Let M = Rx be a
cyclic R-module. Recall that the annihilator of x is the submodule AnnR({x}) =
{r ∈ R : rx = 0}. Prove that M ∼= R/AnnR({x}).

Deduce that if R is a principal ideal domain (a commutative integral domain in
which every ideal is generated by a singleton subset) and if x ∈ R is such that
AnnR(x) = pkR for some p ∈ R (see exercise 2.2) then the only submodules of M
are those in the chain

0 = pkM ⊂ pk−1M ⊂ · · · ⊂ pM ⊂ p0 =M

(Hint: use the correspondence theorem)

check whether its really x ∈ R might be - as M ∼= R/AnnR x
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2. Let f : M → N be an R-morphism and suppose that f can be expressed as the
composite map

M
α

−→ A
β

−→ B
γ

−→ N

where α is an epimorphism, β an isomorphism and γ a monomorphism. Prove that
A ∼=M/ ker f and B ∼= im f .

3. Let R be a commutative unitary ring and let Rn[X] be the R-module of all poly-
nomials of dgree at most n with coefficients in R. Show that, for n ≥ 1,

Rn−1[X] ∼= Rn[X]/R

(Hint: Consider the differentiation map)



Notation for Chapters 3 and 4

• Let V andW be vector spaces over the field K. We write Hom(V,W ) for the space
of K-linear maps between V and W (or Homomorphisms between V and W ). We
write End(V ) for Hom(V, V ), the space of endomorphisms of V .

• Cm,n the space of m × n-matrices over C. If R is a ring (with unit), Rm,n is the
space of m× n-matrices over R.

• x ∈ V , V vector space: xT the transpose of x (similar for matrices).

• [x1, . . . , xn] for the matrix formed by the column vectors xi ∈ Cm.

• V m = ×m(V ) = V × · · · × V for the product of m factors of the vector space V .

• M(V1, . . . , Vm,W ) the set of multilinear maps from V1 × · · · × Vm to W .

• The space of r-linear alternating maps, Altr(V ;W ) := {f : V r →W : f is alternating}.

• Let V1, . . . , Vm be K-vector spaces of dimensions n1, . . . , nm. Then we define
Γ(n1, . . . , nm) := {γ : γ = (γ(1), . . . , γ(m)) | 1 ≤ γ(i) ≤ ni, i = 1, . . . ,m}, some-
times abbreviated as Γ. This notation helps enumerating basis vectors of the tensor
product of m vector spaces of dimensions n1, . . . , nm.
If V1 = · · · = Vm =: V we have n1 = · · · = nm = n for n := dimV ; in this case we
just write Γ(n : m):
Γ(n : m) = {γ : γ = (γ(1), . . . , γ(m)), 1 ≤ γ(i) ≤ n, i = 1, . . . ,m}.

• Consider V1 ⊗ · · · ⊗ Vm for C-vector spaces Vi of dimension ni, and where Ei =
{ei1, . . . , eini

} is a basis of Vi for i = 1, . . . ,m. Let γ ∈ Γ = Γ(n1, . . . , nm). We
write
e⊗γ for the basis vector e1γ(1) ⊗ · · · ⊗ emγ(m).

For (u1, . . . , um) ∈ V1 × · · · × Vm we write
u⊗ := u1 ⊗ · · · ⊗ um (which is, by definition, ⊗(u1, . . . , um)).

• V ⊗m = ⊗m(V ) = V ⊗ · · · ⊗ V (m copies of V in the tensor product) and
(V ∗)⊗m = ⊗m(V ∗) = V ∗ ⊗ · · · ⊗ V ∗ (m copies of V ∗).

• Let I be a set. We write P∗(I) for the set of all non-empty finite subsets of I.

65



66 CHAPTER 4. RINGS AND MODULES

• Let R be a ring (with unit), let M be a (left) R-module. We write L(M) for the
lattice of submodules of M .

• N = {0, 1, 2, 3, . . . } = Z≥0.
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